c_—./
NTMSCI 7, No. 2, 171-178 (2019) BISKA 1

© NewTrendsinMathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2019.355

Product of composition and differentiation operators on
a space of entire functions

Pawan Kumar! and Mohd Arief?

1 Department of Mathematics, Govt. Degree College Kathugialn
2 Department of Mathematics, Central University of Jammdidn

Received: 10 May 2018, Accepted: 14 December 2018
Published online: 21 May 2019.

Abstract: The product of composition operatGyp and differentiation operatdd is written asCy D andDCy which are defined as
CyDf = f'op andDCy f = (fo@)’ respectively. In this paper, we characterize the contjrafithe operator€y D andDCy on &, the
space of entire functions.
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1 Introduction

Let X be a non-empty set and X) be a vector space of complex valued functions<otf ¢ : X — X is a mapping such
thatfog € V(X) for all f € V(X), then the composition transformati@p : V (X) — V(X) is defined as

Cpf =fop ¥ feV(X)

If V(X) is a topological vector space afig is continuous oV (X), then we callCy as composition operator induced by
¢. Further, lety : X — C be a function, then the multiplication transformatidy : V (X) — V(X) defined as

Myf=u.f v feV(X)

If V(X) is a topological vector space al, is continuous oWV (X), thenMy, is called the multiplication operator induced
by . LetD be the differentiation operator defined¢fX) asDf = f’. The generalized composition operat6yD and
DCy onV(X) are defined a§3Df = f'o¢ andDCy f = (fog¢ ) for all f € V(X) respectively. A complex valued function
f: C — Cis called entire function if it is analytic in the whole coreglplaneC. If f is an entire function, then the power
series representation of f can be written as

f(2) = if“nz* 1)

where{f,} a sequence of complex numbers such tnhat|l?,mﬁ%1 = 0. Conversely on every sequenté} of complex
e
numbers such tha}1t Iir11‘An|% = 0, there is an entire functioh represented by (1.1). A metrit on the class of entire
oo

functions is defined byl(f,g) = sup{|fo — Gol.| fn — @n|% :n>1}. The class of entire functions topologized by this
metric is denoted by¢. It has been shown in lye8] that & is a non-normable complex metrizable locally convex
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topological vector space. In the spaé€eof entire functions, the convergence of a sequence of efuinetions is
equivalent to the uniform convergence of entire functignany circle of finite radius and this convergence is called th
strong convergence ifl.

The continuous linear function& on & is given byF () = S1_, faan Wheref(2) = S7_panZ" and{ f,} be a sequence
of complex numbers such th@tﬁ,ﬁ} be a bounded sequence. The set of all bounded linear consirfunctional ong’
is denoted bys™*. For eachh € N, we defines, : C — C asen(z) = 2" V z< C. Then the sequend@, : n € N} is called
a basis for8’. A sequencdan} in & is called a basis fo# if for eacha € &, there exists a unique sequerdg(a)} of
complex nos such thatr = 3 _,fa(a).an. For R > 0, we denote byDg, the open unit disc inC defined as
Dr={ze€ C:|z] < 1}. The space’ of entire functions has been studied extensively by 189,[L0] and [11].

In this paper, we initiated the study of generalized contfmsbperators on the spaéeof entire functions. Much of the
work on composition operators is done on Hardy space. Foemloout composition operator on Hardy space, we refer
to Schwartz 19 and Shapiro2(] .

This paper is organised as follows. In the first section, wee gntroduction of the work done here. We study the
boundedness of the opera@yD in the second section and in the third section, we study thededness of the operator
DCy on the space’.

2 Boundedness of the operator CyD

In this section, we shall characterize the boundednessmdrgized composition operat@yD on spaces’ of entire
functions. For this purpose, we need the following Lemma.

Lemmal. Let f € &. Thenfor eachze Dr
M(R, f).R

@< Rz

Proof. By the Cauchy integral formula for derivative, we have

iy L f(w) o
f'(2) = 27 o (W—z)ZdW where Cr: |z =R
This implies that
1 [ [f(w) MR 1 MR ) 1 M(R f).R
f/ <—/ < ’ / = i 2R = ’
O o o =22 ™= o R ) ™ T T2 RN R4
Therefore M(R.f)R
() < =22, V z€Drg.
TAI= Ry

Theorem 1. Let ¢ : C — C beamappingand D : & — & bethe differentiation operator. Then the generalized composition
operator CyD : & — & is continuous (bounded) iff ¢ is an entire function.

Proof. Assume that the operat@4D : & — & is continuous. The@yDf = f’0¢ is an entire function. In particular for
=2 € &, whereey(2) = 2, we havef'op = e;0¢ = ¢ is an entire function.

Conversely, assume thetis an entire function. In order to prove th@§D is a continuous operator, it is sufficient to
show thatCy D is continuous at origin.
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LetR> 0 be given, theidr is a compact subset @, but¢ is a continuous map, therefogéDr) is compact subset @t
and so we can finkk > M(R,¢) such that¢(Dr) C Dk. Now, convergence inf is equivalent to the uniform
convergence in any circle of finite radius. Lgf,} be a sequence i s.t f, — 0. Then for eacle > 0, there exists

2
no € N such thaM(K, fn) < s.% for n > ng, whereKg = K- M(K, ¢).
From Lemma 1, we have

MK, f)K _  M(K, f)K
(K-1¢(2))? ~ (K=M(K,9))?

If2(9(2)] < <€, VY zeDg, N>no.
Therefore
CyDfn= flop -0 as n— oo

This proves that the operatGy D is continuous.

Theorem 2. Let T € C(&). Then T is a generalized composition operator of the type CyD for some entire function

$:C - Ciff .
_ o n-1
Ten_n[TZ} )

Proof. Suppose, there exists an entire funcigyonC — C such thafl = CyD. Now

Ten = CyDen = €,0¢ =ng" = n[e109] o n[Cs D2

2} :n[T(

N[ @

Conversely, assume th#ié, = n[T(%)]"?

SettingT(%) = ¢, theng is an entire function and 0y D is a generalized composition operator. Now

o] = 3, o= 3 fon[1(G1]"* = 5 furg = 5 oot = 5 rcyoe

Z}fnen} CsDf, ¥V fe&

TE=T [

ﬁoMs

Therefore,T =CyD and sor is a generalized composition operator.

Theorem 3. Let T € C(&). Then T is generalized composition operator of the type CyD iff T*A C B, where A= {E;:
zeClandB={E,0D:ze C}

Proof. Firstly, suppose that T be a generalized composition operéihen3 an entire functionp : C — C such that
T =CyD.

Now, forze C, E, € &*, we have

(T*Ez)f = Ex(Tf) = E;(CyDf) = E,(f'0p) = (t'09)(2) = f'(¢(2)) = Ep(» f' = (E4(»0D)f, forall f e £andze C.
= T*E,f = (E4(»0D)f = (EwoD)f, where¢ : C — Cisdefined by ¢(2) =

HenceT*E; = E, oD, for somew ¢ C.

. T*ACB.
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Conversely, suppose thatA C B, whereA= {E;:ze C} andB = {E,0D : zc C}. Now for f € & andz e C, we have
(Tf)(2) =E,(Tf) =(T*E,)f = (Ex0D)f for somewe C
Now defineg : C — C as¢(z) =w. Then
(TH(@Epx ' =1'(9(2)) = (CyDT)(2)

This implies thafl =CyD. Hence T is a generalized composition operator.

Theorem 4. Let T =CyD € C(&). Then T* : £* — &* isa generalized composition operator if ¢ (z) = az

Proof. LetF € &*, f € & and¢(z) = az Definey : C — C by @(z2) = az Then

0

Fi2=S RZ", f(z):i)ﬁ,z”.

n=

Therefore i )
F'(2) = nZlnFnzH, f'(2) = n;nfnz'“*l
Now
(Fo9)(2) = 5 (Fob)m) 2= 5 (Fop)n—12"* @
and

—h

(109)(2) = 1'($(2) = 3 nfa(8(2)" = ¥ nfaa™ 222 @

From (1) and (2), we get

—

(fod)(n—1) =nfoa"™ 1 =n"1a"? where f,=27"1.

Also

o0

Fp@)= Y nh(w(@)"" = inFnanlznl.

n=1

Now

(CoD*F) () =F[C4Df] = F(f'0p) = iFn(f’Oqﬁ)(n)

=Fo(f'0¢)(0) + Zan(f'0¢)(n*1) [~ Fo(f'09)(0) =0

_ inpn.f“na”l — F/(@(f)) = (CyDF)(f).

ThereforeCy D* = CyD for some entire functiogp.
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3 Boundedness of the operator DCy.

In this section, we characterize the boundedness of therglezel composition operatoBCy on the space’ of entire
functions.

Theorem 5. Let ¢ : C — C be a mapping such that ¢’ is bounded and D : & — & be the differentiation operator. Then
the generalized composition operator DCy : & — & is continuousiff ¢’ is constant.

Proof. Suppose that the operatd€; : & — & is continuous. TheDCy f = (fog)’ is entire for allf € &.

In particular forf = ze &, we haveDCy f = f'(¢).¢’ = 1.¢’ = ¢’ is an entire function. Therefor®’ being a bounded
entire function must be constant.

Conversely, suppose thét is constant. Theg is differentiable and hence continuous. To prove D@} is continuous
in &, it is enough to prove thdC, is continuous at origin. LR > 0 be given, theiDr is a compact subset @, but ¢
is a continuous map, therefogg Dr) is compact subset df and so we can fin& > M(R, ¢) such thatp (Dg) C Dk.
Now, convergence i#’ is equivalent to the uniform convergence in any circle otémadius.

2
Let {f,} be a sequence i#f s.t f, — 0. Then for eacls > 0, there existsip € N such thaM (K, f,) < €. K& @ ( 2k where
Ko=K—-M(K,¢) for n > no.

From Lemma (1), we have

KM(K, fn).[¢'(2)]

1(8(2)-9'@) = (0 @)18' D < =515

<&, V zeDr, Nn>ng.

HenceDCy fn = (fho9)’ — 0 as n— .
Theorem 6. Let T € C(&’). Then T be a generalized composition operator of type DCy iff
Ten=Te] for n=0,1,2,3...

Proof. Let T be a generalized composition operator of the t6%. Thend an entire functionp : C — C such that
T =DCy. Now

Ten = DCyen = (enog)’ = [¢"]' = [(e109)") = [€log]’ = DCy€] = Te] for n=0,1,2,3,....

Conversely, suppose thag, = Te]. Then sefle] = (¢")'. Clearly ¢ is an entire function. Now

Tf :T[n; faen] = ni faTen = ni foTel = ni fo(@" ;fn noo)’ z f,DCpen

:DC¢[ fien] = (DCy)f, for every f e &.

HM8

ThereforelT = DCy and soT be generalized composition operator.

Theorem 7. Let T € C(&"). Then T be a generalized composition operator of the type DCy iff T*A C B, where A= {E;:
ze C}andB = {E,DCy : we C and ¢ an entire function}
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Proof. First suppose that € C(£) be a generalized composition operator. THam entire functiorg : C — C such that
T =DCy. Now

(T*Ex)f =E4(Tf) =E,(DCyf) =E,(fop) = (E;D)(fog) = (E;D)(Cy f) = (E;DCyp)f.
ThusT*A C B.
Conversely, suppose thatA c B. Now for f € & andz e C, we have
(TH)(2) =Eo(Tf) = T*(Ef) = (T"E)(F) = (EwDCy, )(f),
wherew € C and ¢, an entire function. Now defing, : C — C as¢2(z) = w. Then

(T1)(2) =(Ep,(DCpy ) (f) = Eg, (1) (DCy, f) = (DCy, f)(92(2)) = (Df0d102)(2)
=D(fo¢)(z), where ¢ = $10¢, isan entire function.
=(DCy f)(2) = T =DCy

This completes the proof.
Theorem 8. Let T =DCy € C(&). Then T* : &* — &* be a generalized composition operator if ¢(z) =z

Proof. Let ¢ : C — C is defined by (z) = z Now, letF € &*, f € £. Then we have

F(2) = iFnz”, f(2) = if},z”, F'(2) = %nFnz”’l, f'(2) = infnz”’l.

n=1 n=1

Definey : C — C by §)(2) = z Then clearlyy is an entire function. Now

(10)(@) = F(#(@)8'(D = 3 nia(#(@)" 1= ¥ i and
(fod)(@) = S (Tod) (2 = S (Toh)(n— 17"

n=1 n=1

Since(fo¢)'(z) has a unique representation. Therefore, we have
(fop)'(n—1) =nfy=n"1, where f,=2""1

Also, we have

[ [

Flu@)y' (2= ZlnFn(w(z))“*llz ZlnFnz”’l.
Now

(T*F)(f) =F(Tf) =F(DCy f) = F(fop)' = Zo(ﬁfp)'(n)Fn =3 (fog)'(n-DFy= 3 k2"
n= n=1 n=1
=F'(Y(2)¥'(2) = (DCyF)(f) = (TF)(F).

Therefore,T* = T and soT * be a generalized composition operator.
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