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Abstract: In this investigation, we portray the effect of inclined matjc field on peristaltic flow of a Jeffrey fluid in presence of
heat and mass transfer in an inclined symmetric or asymengtidnnel. The Joule heating, Soret, Dufour and slip eff@eegaken
into a consideration. The governing equations are cortvéroen moving to fixed frame of reference and the resultingatigns have
then been simplified utilizing the assumptions of long wamgth and low but finite Reynolds number approximation. Samaiytical
solutions have been obtained for the pressure gradienpeieture distribution, concentration distribution, ldgndinal velocity and
pressure rise by using the multi-steps differential tramafmethod (Ms-DTM), a reliable and sturdy technique thairiowe accuracy
and overcome drawbacks raised in using the standard diffatéransform method (DTM). This model is applicable ta@raransport
from ground to upper branches of tall trees, petroleum ittguod industries and vegetable glycerin. In fact, thdtiratep DTM is
applicable to nonlinear models such as Non-Newtonian tadtitsfluid models which is more complicated and have a higlegree of
non-linearity, in a direct way without using linearizatjqgrerturbation or restrictive assumptions.
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1 Introduction

In the past few decades, substantial interest in studyiagptristaltic flow in channels/tubes, because of it's a wide
application and vital roles in geophysical, environmerghlsiological and industrial processes. Slight such pment
processes contain spermatozoa transport in the ductef§esf male reproductive tract, water transport from gebian
upper branches of tall trees, blood pumps in heart lung machirine transport from kidney to bladder, chime
movement in gastrointestinal tract, blood circulationimadl blood vessels, sanitary and corrosive fluids transgoct
(see [1-6]). Non-Newtonian Fluids has a singular charéstiey it show both properties of solid and liquid, as the
relationship among the shear rate and the shear stress. aksptes for application of non-Newtonian fluid: Food
industries the petroleum industry oil refining industrigsprocessing industries such as paper production, hahgoll
wire drawing, glass-fiber production, etc.

Jeffrey fluid is a one subclass of non-Newtonian fluids whiel been attracted much by the investigators, this fluid

model is adequate for describe the characteristics of aétax and retardation times. V.P. Rathod et al [7] addressed
peristaltic flow of Jeffrey fluid with slip effects in an inokkd channel. Effects of an endoscope and magnetic field on the
peristalsis involving Jeffrey fluid is elucidates by Hayata. [8]. Characteristics of Jeffrey fluid model for peailsic

flow of chime in small intestine with magnetic field is repartey Akbar et. al. [9]. Hayat et. al. [10] study the Impacts of
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constructive and destructive chemical reactions in magmgdrodynamic (MHD) flow of Jeffrey liquid due to nonlinear
radially stretched surface. Hussain et al [11] investigfaéeHeat transfer analysis in peristaltic flow of MHD Jefffieyd
with variable thermal conductivity.

Joule heating occurs when the energy of an electric cursecttanged into heat as it flows through a resistance. There
are many practical uses of Joule heating such as electsiestnd other electric heaters Soldering irons and caetridg
heaters electric fuses electronic cigarettes usually vimyridoule heating, vaporizing propylene glycol and vegetabl
glycerin, thermistors and resistance thermometers. 8lipJaule heating effects in mixed convection peristalaasport

of Nano fluid with Soret and Dufour effects is reported by Hastaal [12]. Hayat et al [13] elucidates the radiative and
Joule heating effects on peristaltic transport of dustydfinia channel with wall properties. Influence of Joule Hegtin
on MHD Peristaltic Flow of a Nano fluid with Compliant Walls isported by Reddy et al [14]. Influence of slip and
Joule heating with radiation on MHD peristaltic blood flowtlvporous medium through a coaxial asymmetric vertical
tapered channel blood flow analysis study is discussed bylAi5]. Hayat et al [16] addressed Joule heating and
thermal radiation effects on peristalsis in curved configjon.

To be more specific, In transaction with heat and mass trapsdbdlems, we address a phenomenon named by diffusion
thermo effect (Duffour effect) in which an energy flux could produced by the concentration gradients in addition to
that generated by the temperature gradients, as well onvagemass fluxes could be produced by heat gradients which
is renowned by thermal-diffusion effect (Sort effect) [22}.

Because of the flow behavior of non-Newtonian fluids, the guoing equations become more sophisticated to handle as
supplemental nonlinear terms evidence in the equationsotiom Thus we turn to find the analytical solution for our
model using a semi-analytical method named by Multi-steffeidintial transform method (MsDTM). The DTM
introduces promising approach form any applications irfed#nt domains of science. However, DTM has some
disadvantages. By using the DTM, we obtain a series solusictually a truncated series solution. This series saiutio
does not offer the real behaviors of the problem but givesestypapproximation to the true solution in a very small
region. It is the purpose of this paper is to propose a raialgorithm of the DTM. The new algorithm, multi-step DTM
progressed in this paper, accelerates the convergence séttes solution over a large region and improves the acgura
of the DTM. For this, we apply the multi-step differentiahtisform method, which provides the solution in terms of
convergent series over a sequence of subintervals [17-20].

So far, no investigation has been made yet to elucidate faetefof Joule heating on peristaltic flow of a Jeffrey fluid in
presence of heat and mass transfer under applying myftieifeerential transform method, the velocity slip at the
boundaries are taken into a consideration. Physical betsawif different parameter are achieved and their salient
features are established through figures for pressureptisssure gradient, velocity, temperature and conceoitrafio
assure the numerical algorithm applied here, results amgpaoed with good manners and found to be in excellent
agreement. It is paramount to note that the results of thissitigation are new and are published for the first time.

2 Mathematical formulations

Let us consider the peristaltic flow of non-Newtonian fluidffiey fluid) in a two-dimensional channel having widths
anddo, under the effect of a constant magnetic figdis the phase differenceg varies in the range & ¢ < @; =0
corresponds to a symmetric channel with waves out of phasdéoap the waves are in phase. The geometry of the wall
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surface is defined as:
2
Y=Hy=d1+ alcos[T (X - ct)] Upper wall Q)
Y=H;=-dy— b1c05{ (X ct)+ ¢ Lower wall 2)

Wherea; andb; are the amplitudes of the wavek,+ d, is the width of the channet, is the velocity of propagation,is
the time andX is the direction of wave propagation, Furthermag, by, d;, d> and@ satisfy the condition.

A2 1 b? 4 2a1bycosp < (di + dy) (3)

The governing equations of the flow under consideration esexipressed as follows [1, 6, 15]. The Continuity Equation:

ou oV

X + v 0 4)
The Momentum Equations:
ou ou oU]  JdP  0JSx  0Sy 2 . .
p { ot +U—— X +V0—Y} =X + E + oy oBjcosy (Ucosy—Vsiny) — pgsina, (5)

ot Ud_x Vd_Y —a—YJr E +=22 EY — oB3siny (Ucos/— Vsiny) — pgcosa, (6)

Heat equation yields:

p{av oV aV} OP  0Sy  0Sy

/

[ oT 0 oT Kk
C{at—FUﬁ O_Y} o

o a
axz " avz) e, \axe Tave {1“2( X Vd_Y)] ™

(D) a(2)' 4 (2, 20
oX oY oxX = dY

Mass transfer equation yields:

N

9°T  9%T Dk (92C 9°C
+( +—)+p mT( )+u
3

(8)

at " Yax Vay axztave )T \axe Tave

{ac aC (3C} b (azc 02c> Dkt <02T aZT)
= Um

Where (U,V,0) are the velocity components in the laboratory fr@¥&’), T is the temperature of the flui@ is the

concentration of the fluidl is the mean value of 0 andT®°, C is the mean value a0 andC° Both the magnetic field

and channel are inclined at anglesnda respectivelygis the acceleration due to gravityfluid densityC’ concentration

susceptibilityK’ thermal diffusion ratioDm, mass diffusivity. The constitutive equation for the extiress tenso8is [1].

N

5= 1+

(V+A2) (9)
Here A1 is the ratio of relaxation to retardation timeghe shear rate), the retardation time, and dots denote the
differentiation with respect to time. The transformatidostween the laboratory and wave frames are given by
x=X-ct,y=Y,u=U—-c, v=V and p(x) = P(X,t). In which (x,y), (u,v) and pare the coordinates, velocity
components and pressure in the wave frame.
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The dot product:

3.3=a(7><§).a(7><§) (10)
:aZ(ng).(ng)
i i K i ik
=0’ U vV 0|.| U vV 0

Bopsiny Bocosy 0 Bosiny Bgcosy 0
= 02B2(Ucos/— Vsiny)2.

Defining following non-dimensional quantities:

geX g Y goUg_y o et M H

d2 a1 b1 pCdj_ T-— To C- Co CUC/
d=-2 a==t b=-1 Re= = -~ P =

d17 d]_, d ,Re u ) Tl_TO ¢ C]_—C()’ r k/ )
g M ,_Kd o pOnkr(T-To) , _ pDmkr (C—Cy)

oD’ Dm’ UTA(CL—Co) ’ HCC (Ty—To)’

2 2 2 2

rec = ———< c 5 I\/l2 = O-OBOdl, r = C—,é: ﬂ, 1 = 7kldlc .

C (T1—To) H gch uc Dm(C—Co)

WhereRe is the Reynolds numbaeb,is the dimensionless wave numbris the Prandtl numbe; is the Schmidt number,
S is the Soret numbeB; Dufour numberM Hartman numbels; Froude number anH; is the Eckert number. Writing
the stream functioy = g(x,y), which is related to u and by the relationsi = %—‘}‘,’, V= *%_Lf’ and by substituting with
equations9), (11) and (?) into Eqgs. (4-7) (After dropping bars) yield.

x 0 . .
ORe [y Py — Wxlhyy] = f% + &2 daS(X + aiyy — MZcosy(yy + 1) cos/+ dyksiny + %sma, (12)

_ _ 9P 5295 595y spgi iny_ e
ORe [— Wy Wx+ Wyly| = 3y +4 F ) 3y SMZsiny (g, + 1) cos/+ dyksiny Fcos, (13)

1 1 Ao2Cd 0 0
0210500 (152 (00 )) 65 (-0 o
— M2EccoSy(Wy + 1)?,
1
SRe [y — U] = & [0t 9] + [6%6rc+ By (15)
Where equationd) is satisfied identically and,
25 cdAz 0 0

Sx = 1+ A [14— d—l (‘-I-’ya—x - 4&@)} Uy, (16)

20 coA J 7]
S {1 d 2(
1

= 1+ A L‘Uyd_x - 4&@)} [lpyyfézll’xx] ) a7
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25 coA,
Sy= i A [1 (Wyax Yxoo )] Py (18)
Then by adopting the long wavelengéh« 1), low Reynolds number process, equation (12-15) becomes
op 0 1 0%y Re
&er_y (ma—y2> MZcoSy (Yy+1) + —sma 0, (19)
Ip
2
9y ~° (20)
1020 E. (0% 2¢ 2 oy \?
o T o) ~Orge M Eeosv(G o) -0 @
1 0% 06
s oy oy 22
Implies thatp is not a function iny and eliminating pressure above Egns.
9? 1 0%y 2y
a7 (o7 e ) MoV =0 =
The convenient boundary conditions can be put into theviollg forms:
_9,_ oW W L v —
= 2,¢ =0,6 =0, dy +L 2 1, aty=h; = 1+ acormx, (24)
_ oy | 0%y _ h—
z,uff— =10=1— dy Ldyz = -1 aty=hy=—d—bcos2mx+ ¢). (25)

WhereL the non-dimensional is slipping parameter ayid the flux in the wave frame. The dimensional time mean flow
rateQ in the laboratory frame is related ¢pthrough the relation [1, 13]

Q=qg+1+d. (26)

3 Differential transfor mation method

Consider a general equation df order ordinary differential equation [19]
y(t, f, ... f™y=o.

Subject to the initial equations
f00)=d, k=0,..,n—

To demonstrate the differential transformation method D) Tor solving differential equations, the basic definitsoof
differential transformation are introduced as followst lfét) be analytic in a domaiD and lett = t° represent any
point in D. The functionf(t) is then represented by one power series whose centre igtbeatt®. The differential
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transformation of thé& — th derivative of a functiorf (t) is defined as the following:

0
F (k)= (%) Kddt:k)mﬂ - vteD. (27)

And the inverse transformation &f(k) can take the form

f(t)= % F(K) (t—to)®, vteD. (28)
k=0

In fact, from Eq. 27) and £8), we obtain

o (t_to)® [ gk
=y " kt?> <ddtﬁ(§t)>tt Mt eD. (29)

k=0

Eq. (28) implies that the concept of differential transformatienderived from the Taylor series expansion. Form the
definitions of 7) and @8); it is easy to prove that the functions comply with the faling basic mathematics operations
(see Table 1). In real applications, the functih) is expressed by a finite series a2@)(can be written as:

ZOF t—to)™, vteD. (30)

Eq. (30) implies thaty .1 F (K) (t —to)® is negligibly small. The following table show that the tréorenation for
some functions and relation by using differential transfation method.

Table 1: Operations of the one dimensional differential transform.

Original function | Transformed function
f(t)=g(t)+h(t) F(k) G(k)?H(k)

f()=ag(t) F(K)=aG(K)

fF()=g(t)h(t) F(k>:Z| —0G(DH (k=)

f (t) =99 F (k) = (k+1) G (k+])

f (t) =200 F(k):“*') G (k+n)
fFO=u®)vH)w(t) F(k =5 030UV Hwk-r-1)

4 Multi-steps differential transformation method

The multi-step DTM is treated as an algorithm in a sequendstefvals for finding accurate approximate solutions for
systems of differential equations.

Suppos€0, T] is the interval over which we want to find the solution for ateys of equation®7— 29). In actual
applications of the DTM, the approximate solution for a eysbf equations can be expressed by the finite series

=y apt®, te[o,T]. (31)

The multi-steps approach introduces a new idea for cortsigithe approximate solution. Assume that the intef®ar |
is divided intoM sub intervalsty,_1,tm], m=1,2,...,M of equal step siza = T by using the nodels, = mh The main
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ideas of the Multi-step DTM are as follows. First, we applg TM to a system of equatiori27 — 29) over the interval
[0, T] we will obtain the following approximate solution,

N
fi(t)= 3 ant, t€[0t], (32)
k=0

Using the initial conditiong (¥ (0) = C, Formm > 2 and at each sub intervi, 1, tm] we will use the initial conditions
f,%k) (tm=1) = frﬁl (tm=1) and apply the DTM to Eq$25— 27) over the intervdty-1,tm], wheret® in Eq. (26) is replaced
by tm-1 the process is repeated and generates a sequence of apgsotution sumfy (t), m=1,2,...,M for the

solutionf(t).

N
fn(®) =5 @mk(t—tim-1)° € [tm.tm-1] (33)
k=0

5 Analytical solutions by means of the Multi-step DTM

Now, we apply the differential transform method propertas table 1 to Eqns(21— 23) For finding @(x,y),
6(x,y), ¢(x,y) andp(x,y), then we have

([k+ 1 [k+2] [k+ 3] [k+4]

T >W[k+4]|\/|20052y[k+1] k+2]¥[k+2]=0, (34)

i[rnLl][kr+1][kr+2]tP[r+1]l.U[kr+2] (35)

r=

k+1] [k+2 Kpi) @[k+2]+Df‘D[k+2]} * (15\)

r

— M2coSyE, <6(k,0)+2[k+ Wk+1+ i[rJrl] [kr+1]W[r+1]tp[kr+1]> =0,
é[k+1][k+2]d>[k+2]z—S[k+1][k+2]6[k+2]. (36)

With the associated boundary conditions.

kioqﬂhZ () —h (0] = Eqa kioek[hz (X)—h (X =0, kioq?k[hz (x) —h (¥)]€ =0, (37)
> Kz (00— (0 LS (k- )Wy —ha (0] = 1 at y=ho.

K=1 &

3 a0 ~m = S 5 Ot M9 =1 5 a0~ 1. @)

i K [ha (x) —hy (X)) T —L i k(k—1) W, [ha(x) —hy ()] 2= -1 aty=h,.
k=1

6 Graphical results and discussions

Here the non-linear analysis is computed for the Ms-DTM. €haracteristics of several emerging parameters on the
distributions of pressure rise and pressure gradient dsaweklocity, temperature and concentration fields aregudh
the Figs. 1-25.
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6.1 Pressure rise

Figs. 1-4 are ploted to see the effects of various valuesaodittyle of inclinatiory, Jeffrey parametet0, Froude number

F and Hartmann numbév on pressure rise. It is observed that there is a linear oslship betweeAP andQ. Values

for whichAP > 0 andQ < 0 is known as the retrograde pumping or backward pumpingregiorAP > 0;0< Q < Q°
indicates peristaltic pumping region, @t= Q° > 0; AP = 0 this refer to the case of free pumping. Finally, the region
wasAP < 0 andQ > Q° > 0 is called the co-pumping or the augmented region.

¢ Influences ofA0 andy are portrayed in Figs 1-2. Here it is observed that the pugw@te decrease by increasih
andy in the retrograde and peristaltic regions till a certairue®) = Q*, after whichAP increases withQ > Q*. Itis
noticed that the peristaltic pumping region becomes lighitler with the decrease af0 andy.

e Fig 3. Describe the behavior & on pressure risdP, it's clear that pressure rise decreases in all pumpingregith
an increase in Froude number

e The opposite effect of 0 can be observed with increasing in Hartmann number on thgmg rate in Fig 4.

6.2 Pressure gradient

Figs. 5-8 are affirmed to visualize the influence of pressrﬂdignt%> for various values of Jeffrey paramefed, Froude
number, Hartmann number M and the angle of inclinatin

e Fig. 5 Show that for high Jeffrey paramefed the resistance to the flow in the central part of the chaneelehses?

e Fig. 6 implies that for the Froude numbgrthe resistances to the flow all over the channel decreases.

e The pressure gradient for different values of M and againstptotted in Figs. 7-8. It is shown that farc [0, 0.23]
andx € [0.6, 1], the pressure gradient is small, i.e. the flow can easily péts®ut imposition of a large pressure
gradient, while in the regior € [0.24,0.61], the pressure gradient increases with an increase in M asrdates with
an increase in, so a large pressure gradient is requirecatdesthe flux to pass.

e The pressure gradient for different valuesyodind against x is displayed in Fig. 8. It is shown thatxar [0,0.23]
andx € [0.6,1], the pressure gradientis large, while in the regi@0.24,0.61], the pressure gradient decreases with
an increase iry.

6.3 Velocity profile

Figs. 9-12 are scrutinized to study the impactsMf A0, L andy on the axial velocity.

e We percept fronfigs. 9-10 and 11 that the longitudinal velocity decreases with an increadd; A0 and increases
with an increase ity at the central region of the channel, whilst the longitutiredocity increases with an increase in
M, A0 and decreases with an increas¢ at the Both sides of the channel regions.

e Fig 12. discuss the effect of slip parameter L on the longitudimddwity, which divided into two parts, in the first half
at the left channel the longitudinal velocity decreases \ait increase in L, the opposite effect of slip parameter can
easily clarified at the second half at the right channel.

6.4 Heat and mass characteristics

Figs. 13-18 are depicted the influenceypP;, M,A; andL on the temperaturé(y).

e The influence ofy, P, and A0 are demonstrated in Figs. 13-14 and 17 higher valugsaifd P yield increase in
temperaturé(y), and8(y) decreases with an increaseAf. Physically, larger heat generation parameter means an
increase in heat produced inside the boundary layer whadsléo higher temperature distribution.
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e Impact of slip parametdr is portrayed inFig. 18. It is disclosed that the temperature increases in the #ngtqf the
channel and then decreases in the second part of the chaitimahincrease ifh.

e Figs. 13-14 investigated to display the difference efféddartmann number M on temperatudé¢y) with absence of
Joule heating term and in presence of Joule heating terstlyinere6(y) reduces for higher values of Hartmann
numberM , with absence of Joule heating term. Howeuwfy) has opposite effects with an increase Hartmann
numberM, in presence of Joule heating term. So it's important stheéyetffect of Joule heating, its cause of leading

to get more active due to stock of energy which is useful ire@eing temperature.
Figs. 19-25 are plotted to study the impactyof;, M,A1,L andS;, S on the concentratiog (y):
e Figs. 19-24 are illustrated the influenceyofP, M, A1,L on concentratiog (y), we will find an opposite effect on the

effect of those parameter with the heat.

o Fig. 25 displayed to visualize that the concentration itistion decreases with an increase&inS together.

AP

-1 0 1 2 3

Fig. 1: The change oA P with Q for several values
of yat a=0.9, b=0.5, d=1.2p = £, K =0.8, M=0.5,
A0=3 PR =2E=0151=0,S=18=1,R =1,
Dt =0,a=02

Fig. 3: The change ofAP with Q for several values of
F at a=0.9, b=0.5, d=1.9= 3 A0=1,M=1y=7 R =
3E.=015L=015=1%=1R.=1D; =020 =
1.

Fig. 22 The change ofA P with Q for several values
of A0 ata=0.9, b=0.5,d=1.%8= %, F = 0.8, M=0.5,
y=3.P=2,Ec=015,1=0,§=15=1,Re=1,Ds =
0,a=0.2

-4

-1 0 1 2 3
Q

Fig. 4: The change ofAP with Q for several values of
M at a=0.9, b=0.5, d=1.2= 7, A0=1,F = 1.5, y=7,
P =3E.=0.151=01,S=1,S=1R=1D¢ =
0.2, =0.2.
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Fig. 5: The change offf with x for several values oA0
at a=0.5, b=0.5, d=1.2p= g, M=1, y:%}, P =3,Ec=0.15,
L=0.1,S =1,S%=1,Re=1,D¢ =0.2,a=1,F = 1,q=0.5.

0.0 0.2 04 0.6 0.8 1.0

X

Fig. 7: The change of(’,—f(’ with x for several values dfl at
a=0.9, b=0.5, d=1.2p= %, F=0.8,y=%, B = 2, Ec = 0.15,
L=0,§=1,%=1,Re=05D; =0,0=0.5,A 0=1g=0.5

u

-5 =10 =05 00 0.5 1.0 15
y
Fig. 9: The change ofi with y for several values o at

a=0.5,b=1.2,d=1.2p= J,R =3,Ec=025,1=0.1§ =1,
S§=1,Df=0210=15qg=-1 y=5.

Fig. 6: The change o%(’ with x for several values of; at

a=0.5, b=0.5, d=1.2p= I, M=1, y=1, B = 3, E; = 0.15,

L=0.1,5S=1,%=1,Re=1D; =0.2,0=1,A 0=1,g=0.5.
3 T T

-2

0.0 0.2 04 0.6 0.8 1.0

Fig. 8: The change o%(’ with x for several values of at
a=0.5, b=0.5,d=1.2p— g, F=0.8,M=1,R =2,E.=0.15,

.......

u

wnnnm A4=5

-1.0' L . L L
-20 -15 -10 -05 00 05 1.0 15

L I 1

y

Fig. 10: The change ofi with y for several values ok 0 at
a=0.7,b=1.2,d=1.2p= §,M =1, =2,E; =0.15, L=0.1,
S=1,%=1 D:=02,q9=-2 V:Tnz-
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¥

Fig. 11: The change ofi with y for several values of L
ata=0.5,b=0.4,d=2p= 5, M =1,R = 2,E. = 0.15,
A0=1,§=1,§=1,D;i=02,q=-1, y=5.

10}
03f
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Fig. 13: The change 08 with y for several values of
ata=0.5,b=0.4,d=2p= J,M =1,R = 3,Ec = 0.15,
A0=1,S=1,%=1,Df=02,L=01,g=—1
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Fig. 15: The change of with y for several values d1
ata=0.5,b=1.2,d=1.%= 7, B =3, Ec = 0.25, L=0,
§=1,%=1,Dt=0,A0=150g= -1, y=F (With
absence of Joule heating term).
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Fig. 12: The change ofi with y for several values of
ata=0.5,b=0.4,d=2= Z,M=1,R =3,E. =0.15,
A0=1,5=1,%=1,Ds=02,L=0.1,g=-1.
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Fig. 14: The change oB with y for several values of
P ata=0.5,b=1.2,d=1.%9=7,M=1,y=§,E. =
0.1510=1,5§=1,%=1,Df=0,L=0,9=-1.
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Fig. 16: The change of with y for several values d¥l
ata=0.5,b=1.2,d=1.= 7,R =3,Ec=0.25,L=0.1,
§=1,%=1 Df=0210=15qg=-1y=F (In
presence of Joule heating term).
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Fig. 17: The change ob with y for several values of
Alata=0.7,b=1.2,d=1.= 7, M=1,R =2,E. =
0.15,L=0.1,5=1,%=1,D;=02,9=-2,y=5.

Fig. 19: Fig 19. The change ofy with y for several
values ofy ata=0.5, b=0.4,d=2p= Z,M=1,R =3,
E.=0.15,A0=1,5=1,%=1, D =0.2,L=0.1,
qg=-1
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Fig. 21: Fig 19. The change ofp with y for several
values oM ata=0.5,b=1.2,d=1.29= 7, R =3,Ec =
0.25,L=0,S=1,%=1, Dt =0,A0=1.5,q= —1,
y=15 (With absence of Joule heating term).
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Fig. 18: The change of with y for several values of L
ata=0.5,b=0.4,d=2= 3,M=1,R =2,E. = 0.15,
AO ::Lls' = 1! SI: 11 lDf = Ozvq: _13 y:_‘]__ré
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Fig. 20: The change ofpwith y for several values of
R ata=05,b=1.2,d=1.%=2, M=1,y=F E.=
0.15,A00=1,5=1,%=1,Dbs=0,L=0,g=-1.
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Fig. 22: The change op with y for several values d¥!
ata=0.5,b=1.2,d=1.= 7,R =3,Ec=0.25,L=0.1,
S=1,%=1,D;=02A0=15qg=—-1, y=F (In
presence of Joule heating term).
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Fig. 23: Fig 19. The change ofp with y for several
values of A0 at @=0.7, b=1.2, d=1.2p= J, M =1,
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Fig. 24: The change op with y for several values of L
ata=0.5b=04,d=2= 3, M=1R =2,E.=0.15,
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Fig. 25: The change op with y for several values d&
andSata=05b=12d=2¢=7,M=1,R =2,
L=0,E;=0.15,A0=1,Dt =0.2,g=2,y=g3.

Table 2: Comparison of velocity, Temperature and Concentratiorfilpsofor the selected values of the embedded
parametersM =1, R =3,y= £ E.=025L=01¢=7,d=12 D;=02,S=1,%=1,a=04,b=05.

y u(y) ND u(y) Ms—DTM Error of 8(y) ND 6(y) Ms — Error of ¢ (y) ND ¢ (y) Ms—DTM Error of
Solve solutions Solve DTM solutions Solve solutions
—155355 —1.02585761 —1.0258572 0 0 0 0 0 0 0
—1.25819 —1.09809064 —1.09809062 2x10° 8 0.231895 0.231895 2x10°9 0.00165098 0.00165099 1x10°°9
—0.9628 —1.02684131 —1.02684 2x10°8 0.451063 0.451063 1x10°8 0.00980551 0.0098055 6x10 9
—0.66748 —0.84418128 —0.844181 4x108 0.650584 0.650584 2x10°8 0.0284813 0.0284813 1x10°8
—0.37213 —0.59130465 —0.591305 2x10°8 0.817079 0.817079 4x10°8 0.0656345 0.0656345 2x10°8
—0.07677 —0.31896831 —0.318968 6x 10 8 0.9428577 0.942858 7x10 8 0.127577 0.127577 4x10°8
0.218578 —0.08524376 —0.0852439 1x10 7 1.03005 1.03005 1x10 7 0.217309 0.217309 6x10 8
0.513933 0.04705016 0.04705 1x10 7 1.08787 1.08787 1x10 7 0.336106 0.336106 9x10° 8
0.809289 0.00960650 0.00960633 1x10° 7 112281 112281 2x10°7 0.488515 0.488515 1x10° 7
1.104644 —0.27344174 —0.273442 2x10°8 1.11879 1.11879 2x10°7 0.692632 0.692632 1107
1.399999 —0.87068411 —0.870685 5x10° 8 1 1 3x10 7 1 1 2x10 7
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7 Conclusions

Joule heating effects on peristaltic flow of Jeffrey fluid iegence of heat and mass transfer in an inclined symmetric or
asymmetric channel is analyzed. Main findings of preserlyaisaare listed below.

e Pressure gradient tends to decrease with an increase iaftagyparameter and Hartmann number. However, reverse
behavior is noted for the angle of inclination.

¢ High of Jeffrey parameter and Hartmann number leads to aseréhe longitudinal velocity.

e There is an enhancement of temperature for large angle lafation and Prandtl number.

e The concentration field increases with an increadd ind decreases with an increas&irandS as in [1].

¢ In the center of the channel, the pressure gradient incseeitie an increase iM and decreases with the increasgin
asin[1].

o Effect of Hartmann number in temperature and concentratiggresence of joule heating term is opposite effect in
absence of joule heating.

o A fine comparison of our results and obtainable results alkglin the limiting case are also offered in the table.

¢ Infact, the multi-step DTM is applicable to nonlinear maiglich as Non-Newtonian peristaltic fluid models which is
more complicated and have a higher degree of non-linearitydirect way without using linearization, perturbation
or restrictive assumptions.
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