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Abstract: In this paper we use Differential Transformation Method (DTM) to solve the mathematical modeling of yellow fever
dynamics incorporating secondary host. The DTM numerical solution was compared with the MAPLE RungeKutta 4-th order. The
variable and parameter values used for analytical solutionwere estimated from the data obtained from World Health Organization
(WHO) and UNICEF. The results obtained are in good agreementwith Runge-Kutta. The solution was also presented graphically and
gives better understanding of the model. The graphical solution showed that vaccination rate and recovery rate play a vital role in
eradicating the yellow fever in a community.

Keywords: Semi-analytical, mathematical modeling, yellow fever, dynamics, differential transformation method.

1 Introduction

Almost all epidemiological models are basically system of non-linear ordinary differential equations (ODEs). The work
of mathematical biologist consists of model building, parameter estimation, sensitivity analysis of the model parameters
and numerical simulation.

Yellow fever is caused by the yellow fever virus and is spreadby the bite of the female mosquito. It only infects humans,
other primates and several species of mosquito, [1].Yellowfever is one of the world infectious diseases. It was estimated
that 200 000 cases and 30,000 deaths of yellow fever are reported per year globally, of which 90% are in Africa, [2].

The model equations are formulated using first order ordinary differential equation. Three populations were considered:
human, vector (mosquito) and secondary host (monkey) populations.

The populations are sub- divided into compartments with assumptions of the nature and rate of transfer from one
compartment to another. We consider the total population sizes denoted byNh(t), Nv(t) and Nm(t) for the humans,
mosquitoes (Aedesaegypti) and monkeys respectively. The model equation is given below and the description of the
variables and parameter is also given in table 1.
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dSh
dt = Λh −

α1ShV2
Nh

− (ν + µh)Sh

dIh
dt = α1ShV2

Nh
− (γh + µh + δh) Ih

dRh
dt = νSh + γhIh − µhRh

dV1
dt = Λv −

α2V1Ih
Nh

− α3V1Im
Nm

− (µv + δv)V1

dV2
dt = α2V1Ih

Nh
+ α3V1Im

Nm
− (µv + δv)V2

dSm
dt = Λm − α4SmV2

Nm
− µmSm

dIm
dt = α4SmV2

Nm
− (µm + δm) Im
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The total populations are gives as
Nh = Sh + Ih +Rh

Nv =V1+V2

Nm = Sm + Im


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

(2)

Differential Transformation Method (DTM) is one of the methods used to solve linear and nonlinear differential
equations. It was first proposed by Zhou, [3], for solving linear and nonlinear initial value problems in electrical circuit
analysis. The DTM construct a semi-analytical numerical technique that uses Taylor series for the solution of differential
equations in the form of a polynomial. DTM is a very effectiveand powerful tool for solving different kinds of
differential equations. This technique has been used by different people to solve different kinds of problems such as;
fractional differential equations, [4, 5], differential algebraic equations [6], nonlinear oscillatory system, [7], quadratic
Riccati differential equation, [8], the numerical solution of Susceptible Infected Recovered (SIR) model, [9], the solution
of prey and predator problem, [10], fourth-order parabolicpartial differential equations, [11], Volterra integral equations,
[12] and difference equations, [13]. The main advantage of this method is that it can be applied directly to linear and
nonlinear Ordinary Differential Equations (ODEs) withoutlinearization, discretization or perturbation.

In this paper we solved a system of seven first order ordinary differential equations (ODEs). We compared our numerical
result with Rungr-Kutta and they are in agreement. We also represented the solution graphically.

2 Material and method

2.1 Differential transformation method (DTM)

An arbitrary functionf (t) can be expanded in Taylor series about a pointt = 0 as

f (t) =
∞

∑
k=0

tk

k!

[

dk f
dtk

]

t=0
(3)

The differential transformation off (t) is defined as

F (t) =
1
k!

[

dk f
dtk

]

t=0
(4)
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Then the inverse differential transform is

f (t) =
∞

∑
k=0

tkF (t) (5)

In [14] if y(t) and g(t) are two uncorrelated functions witht whereY (k) and G(k) are the transformed functions
corresponding toy(t) andg(t) then, the fundamental mathematical operations performed by differential transform can
be proved easily and are listed as follows

Table 1: The fundamental mathematical operations by differential transformation method (DTM). Source: [14].

Original Function Transformed Function
y(t) = f (t)± g(t) Y (k) = F (k)±G(k)
y(t) = a f (t) Y (k) = aF (k)

y(t) = d f (t)
dt Y (k) = (k+1)F (k+1)

y(t) = d2 f (t)
dt2

Y (k) = (k+1)(k+2)F(k+2)

y(t) = dm f (t)
dtm Y (k) = (k+1)(k+2). . . (k+m)F(k+m)

y(t) = 1 Y (k) = δ (k)
y(t) = t Y (k) = δ (k−1)

y(t) = tm Y (k) = δ (k−m) =

{

1, k = m
0, k 6= m

y(t) = f (t)g(t) Y (k) = ∑k
m=0 G(m) f (k−m)

y(t) = e(λ t) Y (k) = λ k

k!

y(t) = (1+ t)m Y (k) = m(m−1). . .(m−k+1)
k!

Table 2: Values for parameters used for analytical solutions.

Variables Description Values per year Source
Sh (0) Number of susceptible humans at time 177092484 E6
Ih (0) Number of infectious humans at time 34200 E3
Rh (0) Number of recovered/Immune human at time 29070 E4
V1 (0) Number of non-carrier vectors at time 35000000 Assumed
V2 (0) Number of carrier vectors at time 15000000 Assumed
Sm (0) Number of susceptible secondary host at time 35000 Assumed
Im (0) Number of infectious secondary host at time 15000 Assumed
Nh Total human population at time 177155754 E1
Nv Total vector population at time 50000000 Assumed
Nm Total secondary vector population at time 50000 E10
α1 Effective virus Transmission rate from mosquito to humans 0.05 Assumed
α2 Effective virus Transmission rate from humans to mosquito 0.48 [15] Chitnis
α3 Effective virus Transmission rate from secondary host to mosquito 0.042 Assumed
α4 Effective virus Transmission rate from mosquito to secondary host 0.001 Assumed
Λh Recruitment number of human population 6865728 E2
Λv Recruitment number of mosquito population 2000000 Assumed
Λm Recruitment number of secondary vector population 5000 Assumed
δh Disease-induced death rate of humans 0.15 E7
δv Death rate of mosquito due to application of insecticide 0.001 Assumed
δm Disease-induced death rate of secondary host 0.002 Assumed
µh Natural death rate of human population 0.012 E8
µv Natural death rate of mosquito population 0.02 Assumed
µm Natural death rate of secondary host population 0.005 E11
γh Recovery rate of human population due to drug administration 0.85 E5
v vaccination rate for the human population 0.75 E9
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2.2 Analytical solution of the model equations using differential transformation method (DTM)

In this section we are going to apply Differential Transformation Method to the Model equation and solve. Let the model
equation be a functionq(t), q(t) can be expanded in Taylor series about a pointδv as

q(t) =
∞

∑
k=0

tk

k!

[

dkq
dtk

]

t=0
(6)

where,
q(t) = {sh(t), ih(t), rh(t), v1(t), v2(t), sm(t), im(t)} (7)

The differential transformation ofq(t) is defined as

Q(t) =
1
k!

[

dkq
dtk

]

t=0
(8)

where,
Q(t) = {Sh(t), Ih(t), Rh(t), V1(t), V2(t), Sm(t), Im(t)} (9)

Then the inverse differential transform is

q(t) =
∞

∑
k=0

tkQ(t) (10)

Using the fundamental operations of differential transformation method in table 2.1, we obtain the following recurrence
relation of equation as

Sh (k+1) =
1

k+1

[

Λh −
α1

Nh

k

∑
m=0

Sh (m)V2(k−m)− (v+ µh)Sh (k)

]

(11)

Ih (k+1) =
1

k+1

[

α1

Nh

k

∑
m=0

Sh (m)V2 (k−m)− (γh + µh + δh) Ih (k)

]

(12)

Rh (k+1) =
1

k+1
[vSh (k)+ γhIh (k)− µhRh (k)] (13)

V1(k+1) =
1

k+1

[

Λv −
α2

Nh

k

∑
m=0

V1(m) Ih (k−m)−
α3

Nm

k

∑
m=0

V1 (m) Im (k−m)− (µv + δv)V1 (k)

]

(14)

V2(k+1) =
1

k+1

[

α2

Nh

k

∑
m=0

V1(m) Ih (k−m)−
α3

Nm

k

∑
m=0

V1 (m) Im (k−m)− (µv + δv)V2 (k)

]

(15)

Sm (k+1) =
1

k+1

[

Λm −
α4

Nm

k

∑
m=0

Sm (m)V2 (k−m)− µmSm (k)

]

(16)

Im (k+1) =
1

k+1

[

α4

Nm

k

∑
m=0

Sm (m)V2 (k−m)− (µm + δm) Im (k)

]

(17)

with the initial conditions

Sh (0) = 170,638,700, Ih (0) = 34,200, Rh (0) = 6,482,854, V1(0) = 35,000,000,

V2(0) = 15,000,000, Sm (0) = 35,000, Im (0) = 15,000

(18)
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The parameter values are

Nh = 177,155,754, Nv = 50,000,000, Nm = 50,000, Λh = 6,865,728, Λv = 2,000,000,

Λm = 5,000, α1 = 0.005, α2 = 0.48, α3 = 0.042, α4 = 0.001, δh = 0.15, δv = 0.001,

δm = 0.002, µh = 0.012, µv = 0.02, µm = 0.005, v = 0.75, γh = 0.85

(19)

we considerk = 0, 1, 2, 3.

Cases A1 to B2 are the variation of different values ofv andγh.

Case A1: High vaccination rate,v = 0.75,

Sh (1) =−123233202.4, Sh (2) = 50410489, Sh (3) =−10522906.5, Sh (4) = 3722257.1

Ih (1) = 37630.56, Ih (2) =−44815.62, Ih (3) = 22336.18, Ih (4) =−6862.42

Rh (1) = 127930301, Rh (2) =−46964039.7, Rh (3) = 12777780.56, Rh (4) =−2006631.9

V1 (1) = 820756.75, V1 (2) = 831582.47, V1 (3) = 664582.61, V1(4) = 489515.59

V2 (1) = 129243, V2(2) = 158442.53, V2 (3) =−4846.12, V2 (4) = 7020.79

Sm (1) =−5675, Sm (2) = 3320.20, Sm (3) = 1297.03, Sm (4) = 1154.30

Im (1) = 10395, Im (2) =−842.40, Im (3) = 366.07, Im (4) =−93.44


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(20)

Then, the closed form of the solution wherek = 0, 1, 2, 3 can be written as

sh (t) = ∑∞
k=0 Sh (k) .tk = 170638700−123233202.4t+50410489t2−10522906.5t3+3722257.1t4+ ...

ih (t) = ∑∞
k=0 Ih (k) .tk = 34200+37630.56t−44815.62t2+22336.18t3−6862.42t4+ ...

rh (t) = ∑∞
k=0 Rh (k) .tk = 6482854+127930301t−46964039.7t2+12777780.56t3−2006631.9t4+ ...

v1 (t) = ∑∞
k=0V1 (k) .tk = 35000000+820756.75t+831582.47t2+664582.61t3+489515.59t4+ ...

v2 (t) = ∑∞
k=0V2 (k) .tk = 15000000+129243t+158442.53t2−4846.12t3+7020.79t4+ ...

sm (t) = ∑∞
k=0 Sm (k) .tk = 35000−5675t+3320.20t2+1297.03t3+1154.30t4+ ...

im (t) = ∑∞
k=0 Im (k) .tk = 15000+10395t−842.40t2+366.07t3−93.44t4+ ...


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Case A2: v = 0.50,

Sh (1) =−80573527.36, Sh (2) = 24076431, Sh (3) =−1824022.32, Sh (4) = 1950173.5,

Ih (1) = 37630.56, Ih (2) =−35785.5, Ih (3) = 15625.66, Ih (4) =−4219.96,

Rh (1) = 85270626, Rh (2) =−20639012.6, Rh (3) = 4085155.40, Rh (4) =−236937.8,

V1(1) = 820756.75, V1(2) = 831582.47, V1 (3) = 664297.16, V1(4) = 489695.70,

V2(1) = 129243, V2(2) = 158442.53, V2 (3) =−4560.67, V2 (4) = 6840.68,

Sm (1) =−5675, Sm (2) = 3320.20, Sm (3) =−1297.03, Sm (4) = 1154.25,

Im (1) = 10395, Im (2) =−842.40, Im (3) = 366.07, Im (4) =−93.49


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Then, the closed form of the solution wherek = 0, 1, 2, 3 can be written as

sh (t) = ∑∞
k=0 Sh (k) .tk = 170638700−80573527.36t+24076431t2−1824022.32t3+1950173.5t4+ ...

ih (t) = ∑∞
k=0 Ih (k) .tk = 34200+37630.56t−35785.5t2+15625.66t3−4219.96t4+ ...

rh (t) = ∑∞
k=0 Rh (k) .tk = 6482854+85270626t−20639012.6t2+4085155.40t3−236937.8t4+ ...

v1 (t) = ∑∞
k=0V1 (k) .tk = 35000000+820756.75t+831582.47t2+664297.16t3+489695.70t4+ ...

v2 (t) = ∑∞
k=0V2 (k) .tk = 15000000+129243t+158442.53t2−4560.67t3+6840.68t4+ ...

sm (t) = ∑∞
k=0 Sm (k) .tk = 35000−5675t+3320.20t2−1297.03t3+1154.25t4+ ...

im (t) = ∑∞
k=0 Im (k) .tk = 15000+10395t−842.40t2+366.07t3−93.49t4+ ...
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Case A3: v = 0.25,

Sh (1) =−37913852.36, Sh (2) = 8407293, Sh (3) = 1552944.40, Sh (4) = 1614589.6

Ih (1) = 37630.56, Ih (2) =−26755.38, Ih (3) = 10420.16, Ih (4) =−2511.81

Rh (1) = 42610951, Rh (2) =−4978904.26, Rh (3) = 712942.67, Rh (4) = 97134.48

V1(1) = 820756.75, V1(2) = 831582.47, V1(3) = 664011.72, V1 (4) = 489816.49

V2(1) = 129243, V2 (2) = 158442.53, V2 (3) =−4275.22, V2(4) = 6719.89,

Sm (1) =−5675, Sm (2) = 3320.20, Sm (3) =−1297.03, Sm (4) = 1154.20

Im (1) = 10395, Im (2) =−842.40, Im (3) = 366.07, Im (4) =−93.54
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Then, the closed form of the solution wherek = 4 can be written as

sh (t) = ∑∞
k=0 Sh (k) .tk = 170638700−37913852.36t+8407293t2+1552944.40t3+1614589.6t4+ ...

ih (t) = ∑∞
k=0 Ih (k) .tk = 34200+37630.56t−26755.38t2+10420.16t3−2511.81t4+ ...

rh (t) = ∑∞
k=0 Rh (k) .tk = 6482854+42610951t−4978904.26t2+712942.67t3+97134.48t4+ ...

v1 (t) = ∑∞
k=0V1(k) .tk = 35000000+820756.75t+831582.47t2+664011.72t3+489816.49t4+ ...

v2 (t) = ∑∞
k=0V2(k) .tk = 15000000+129243t+158442.53t2−4275.22t3+6719.89t4+ ...

sm (t) = ∑∞
k=0 Sm (k) .tk = 35000−5675t+3320.20t2−1297.03t3+1154.20t4+ ...

im (t) = ∑∞
k=0 Im (k) .tk = 15000+10395t−842.40t2+366.07t3−93.54t4+ ...


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Case B1: γh = 0.65

Sh (1) =−123233202.4, Sh (2) = 50410489, Sh (3) =−10522907.02, Sh (4) = 3722257.4

Ih (1) = 44470.56, Ih (2) =−43829.6, Ih (3) = 19082.11, Ih (4) =−5085.28

Rh (1) = 127923461, Rh (2) =−46965538.7, Rh (3) = 12780987.9, Rh (4) =−2008287.2

V1 (1) = 820756.75, V1 (2) = 831258.15, V1 (3) = 664550.01, V1 (4) = 489611.70

V2 (1) = 129243, V2 (2) = 158766.85, V2 (3) =−4813.52, V2 (4) = 6924.69

Sm (1) =−5675, Sm (2) = 3320.20, Sm (3) = 1296.96, Sm (4) = 1154.31

Im (1) = 10395, Im (2) =−842.40, Im (3) = 366.14, Im (4) =−93.43


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
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(26)

Then, the closed form of the solution wherek = 4 can be written as

sh (t) = ∑∞
k=0 Sh (k) .tk = 170638700−123233202.4t+50410489t2−10522907.02t3+3722257.4t4+ ...

ih (t) = ∑∞
k=0 Ih (k) .tk = 34200+44470.56t−43829.6t2+19082.11t3−5085.28t4+ ...

rh (t) = ∑∞
k=0 Rh (k) .tk = 6482854+127923461t−46965538.7t2+12780987.9t3−2008287.2t4+ ...

v1 (t) = ∑∞
k=0V1 (k) .tk = 35000000+820756.75t+831258.15, t2+664550.01t3+489611.70t4+ ...

v2 (t) = ∑∞
k=0V2 (k) .tk = 15000000+129243t+158766.85t2−4813.52t3+6924.69t4+ ...

sm (t) = ∑∞
k=0 Sm (k) .tk = 35000−5675t+3320.20t2+1296.96t3+1154.31t4+ ...

im (t) = ∑∞
k=0 Im (k) .tk = 15000+10395t−842.40t2+366.14t3−93.43t4+ ...
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


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
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
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


























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(27)
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Case B2: γh = 0.35

Sh (1) =−123233202.4, Sh (2) = 50410489, Sh (3) =−10522907.8, Sh (4) = 3722257.8

Ih (1) = 54730.56, Ih (2) =−39785.58 Ih (3) = 14009.76, Ih (4) =−3005.13

Rh (1) = 127913201, Rh (2) =−46970352.2, Rh (3) = 12785861.92, Rh (4) =−2010176.9

V1(1) = 820756.75, V1(2) = 830771.66, V1 (3) = 664420.04, V1 (4) = 489724.20

V2 (1) = 129243, V2 (2) = 159253.34, V2 (3) =−4683.55,V2 (4) = 6812.18

Sm (1) =−5675, Sm (2) = 3320.20, Sm (3) = 1296.84, Sm (4) = 1154.31

Im (1) = 10395, Im (2) =−842.40, Im (3) = 366.26, Im (4) =−93.43


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




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










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
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(28)

Then, the closed form of the solution wherek = 0, 1, 2, 3 can be written as

sh (t) = ∑∞
k=0 Sh (k) .tk = 170638700−123233202.4t+50410489t2−10522907.8t3+3722257.8t4+ ...

ih (t) = ∑∞
k=0 Ih (k) .tk = 34200+54730.56t−39785.58t2+14009.76t3−3005.13t4+ ...

rh (t) = ∑∞
k=0 Rh (k) .tk = 6482854+127913201t−46970352.2t2+12785861.92t3−2010176.9t4+ ...

v1 (t) = ∑∞
k=0V1 (k) .tk = 35000000+820756.75t+830771.66t2+664420.04t3+489724.20t4+ ...

v2 (t) = ∑∞
k=0V2 (k) .tk = 15000000+129243t+159253.34t2−4683.55t3+6812.18t4+ ...

sm (t) = ∑∞
k=0 Sm (k) .tk = 35000−5675t+3320.20t2+1296.84t3+1154.31t4+ ...

im (t) = ∑∞
k=0 Im (k) .tk = 15000+10395t−842.40t2+366.26t3−93.43t4+ ...
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(29)

3 Result and discussion

3.1 Numerical solution

We only consider case A1 for the numerical solution
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Table 3: Numerical solution of susceptible humans.

t DTM RUNGE-KUTTA
0 170638700.0000 170638700.0000

0.1 158808961.7435 158773440.8068
0.2 147924295.8280 147779184.3165
0.3 137921564.8145 137591991.8407
0.4 128737631.2640 128152618.1621
0.5 120309357.7375 119406165.8516
0.6 112573606.7960 111301769.6829
0.7 105467241.0005 103792298.6814
0.8 98927122.9120 96834078.4782
0.9 92890115.0915 90386644.1674
1 87293080.1000 84412501.1746

Table 4: Numerical solution of infected humans.

t DTM RUNGE-KUTTA
0 34200.0000 34200.0000

0.1 37537.1800 37536.0791
0.2 40112.0646 40097.7604
0.3 42058.6711 41993.5847
0.4 43511.0163 43318.9995
0.5 44603.1175 44157.8393
0.6 45468.9917 44583.6265
0.7 46242.6559 44660.7545
0.8 47058.1274 44445.5439
0.9 48049.4230 43987.1459
1 49350.5600 43328.3858

Table 5: Numerical solution of recovered/immune humans.

t DTM RUNGE-KUTTA
0 6482854.0000 6482854.0000

0.1 18819021.5396 18817939.9880
0.2 30292574.9685 30282186.1550
0.3 40980180.9701 40939434.1593
0.4 50958506.2278 50848843.7416
0.5 60304217.4250 60065237.1135
0.6 69093981.2450 68639413.4068
0.7 77404464.3711 76618445.5887
0.8 85312333.4867 84045957.1847
0.9 92894255.2752 90962368.6286
1 100226896.4200 97405135.6545

Table 6: Numerical solution of non-carrier vector.

t DTM RUNGE-KUTTA
0 35000000.0000 35000000.0000

0.1 35091056.0823 35080407.1303
0.2 35202731.3097 35157538.6644
0.3 35339013.1778 35231484.6159
0.4 35503889.1822 35302332.1707
0.5 35701346.8188 35370165.8500
0.6 35935373.5830 35435067.6589
0.7 36209956.9705 35497117.2237
0.8 36529084.4771 35556391.9193
0.9 36896743.5984 35612966.9801
1 37316921.8300 35666915.6074

Table 7: Numerical solution of carrier vector.

t DTM RUNGE-KUTTA
0 15000000.0000 15000000.0000

0.1 15014503.8792 15014493.1895
0.2 15032147.5322 15032062.8936
0.3 15052901.8825 15052619.5164
0.4 15076737.8531 15076076.2887
0.5 15103626.3675 15102349.1053
0.6 15133538.3489 15131356.3760
0.7 15166444.7205 15163018.8884
0.8 15202316.4058 15197259.6814
0.9 15241124.3278 15234003.9327
1 15282839.4100 15273178.8525

Table 8: Numerical solution of susceptible monkeys.

t DTM RUNGE-KUTTA
0 35000.0000 35000.0000

0.1 34466.9990 34440.5880
0.2 34008.1842 33896.9068
0.3 33631.3378 33368.3130
0.4 33344.2419 32854.1937
0.5 33154.6788 32353.9653
0.6 33070.4305 31867.0716
0.7 33099.2793 31392.9824
0.8 33249.0074 30931.1922
0.9 33527.3969 30481.2188
1 33942.2300 30042.6022
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Table 9: Numerical solution of infected monkeys.

t DTM RUNGE-KUTTA
0 15000.0000 15000.0000

0.1 16031.4421 16024.5061
0.2 17048.2326 17019.7262
0.3 18052.5679 17986.6737
0.4 19046.6445 18926.3118
0.5 20032.6588 19839.5569
0.6 21012.8071 20727.2815
0.7 21989.2860 21590.3166
0.8 22964.2918 22429.4546
0.9 23940.0210 23245.4515
1 24918.6700 24039.0291

3.2 Graphical Representation of Solutions of the Model Equations

The graphical representations are from the analytical solutions of the model equations. They are plotted using MAPLE
software.

Fig. 1: The effect of high vaccination rate on the humane populations.

The numerical solution of different compartment of the model have been shown in table 3.1 to table 3.7. The DTM
solution is in agreement with the Runge-Kutta in Maple software.

Figure 3.1, 3.2 and 3.3 are the effect of the high, moderate and low vaccination rate on the human population
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Fig. 2: The effect of moderate vaccination rate on the human populations.

Fig. 3: The effect of low vaccination rate on the human population.

respectively. It was shown that as the vaccination rate increases the susceptible human population decreases and the

c© 2019 BISKA Bilisim Technology

 ntmsci.com/cmma 


20 S. A. Somma, N. I. Akinwande, R. T. Abah, F. A. Oguntolu and F. D, Ayegbusi: Semi-analytical solution...

Fig. 4: The effect of different vaccination rate on susceptible humans.

Fig. 5: The effect of different recovery rate on infected humans.

recovered human population increases. This is due to the fact that as susceptible humans are vaccinated they move to
recovered class. It was also shown that with high vaccination rate, the recovered population will grow more than the
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Fig. 6: The effect of different vaccination rate on recovered humans.

susceptible. So also, as the vaccination rate decreases thesusceptible population decreases a little and the recovered
population increases a little also. Figure 3.4 is the effectof different vaccination rate on susceptible human population.
The higher the vaccination rate the lower the susceptible population. The highest percentage almost decreased to zero.
This shows that as the susceptible population is vaccinatedthey are moving to recovered population. Figure 3.5, shows
the effect of different recovery rates on infected human population. Infected human population increase with low
recovery rate and decreases with high recovery rate. The infected population increases but with treatment and natural
healing, it begin to decreases. Figure 3.6, shows the effectof different vaccination rate on recovered human population.
The recovered population increased with high vaccination rate and decreased with low vaccination rate. The vaccinated
susceptible individuals moved to recovered class.

4 Conclusion

The numerical solution of DTM was validated with Runge-Kutta in Maple. It was discovered from the graphical solutions
that, the vaccination of susceptible human population willreduce the outbreak of yellow fever in a community.
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Appendix

Estimation of Variables and Parameter Values

It is difficult to get a reliable data, we estimated the parameter values based on the available data from the World Health
Organization (WHO), UNICEF and reliable related literature. The estimates are clearly explained in the following
sub-sections.

E1: The Total Human Population of Nigeria, Nh

According to the WHO (2015), Nigeria total human populationis at 177,155,754.

Nh = 177,155,754

E2: Recruitment Number of human in Nigeria, Λh

The number of surviving infants in Nigeria in 2014 is 6,865,728. Therefore,

Λh = 6,865,728
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E3: Infected Humans in Nigeria, Ih

The WHO estimate that, there are 200, 000 cases of yellow fever worldwide each year, resulting in 30,000 deaths of which
90% are in Africa.
90% of 200,000 = 180, 000 cases in Africa
90% of 30,000 = 27, 000 deaths in Africa
According to WHO in 2014 Africa total population is 951,820,000, and Nigeria total population is 19% of Africa total
population. Therefore,
19% of 180, 000 = 34,200 cases in Nigeria
19% of 27,000 = 5,130 death in Nigeria

Ih = 34,200

E4: Recovered/Immune Human population in Nigeria, Rh

Recovered/Immune Human population,Rh= recovered + immune
From E3 the number of cases is 34,200 and number of death is 5130.
Recovered= 34, 200 -5,130 = 29,070the number of surviving infants in 2014 is 6,865,728 and the percentage of
vaccinated is 94%. Therefore,
Vaccinated = 94% of 6,865,728 = 6,453,784.
Hence, Recovered/Immune Human population,Rh= 29,070+6,453,784= 6,482,854.

E5: Recovery Rate of Human, γh

From E3 and E4

γh =
Recovered/Immune

Number of cases

γh =
29,070
34,200

= 0.85

E6: Susceptible Human population in Nigeria, Sh

RecallNh = Sh + Ih +Rh therefore,
Sh = Nh − (Ih +Rh)

Sh = 177,155,754− (34,200−6,482,854)= 170,638,700

E7: Disease Induce death rate of Human, δh

From E3 the number of cases of yellow fever is 34,200 and the number of death from yellow fever is 5,130

δh =
Number of Death from yellow fever

Number of cases

δh =
5,130
34,200

= 0.15

E8: Natural Death Rate of Human, µh

According to WHO, the death rate of Nigeria is 12.01 deaths per 1,000. Therefore,

µh =
12.01
1000

= 0.012

E9: Vaccination rate of Human, v
The average percentage of vaccinated infants from 2005 to 2014 is 65.2%. Therefore, we estimate the vaccination rate as
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75%, i.e.
v = 0.75

E10: Total Number of Monkeys Nm

In [16] about 8,000 Drill monkey are found in Cross River State of Nigeria. However 50,000 monkeys are estimated for
Nigeria.
Hence, the number of recruitment of monkeys is given by;

Nm = 50,000

E11: Natural Death Rate of Monkeyµm

In [17] the lifespan of monkeys in the forest is 15-30years. Hence,

µm =
5

1000
= 0.005.

c© 2019 BISKA Bilisim Technology


	Introduction
	Material and method
	Result and discussion
	Conclusion

