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Abstract: In this work we we prove that all involutive Hom-Lie triple systems are whether simple or semi-simple. Moreover, we prove
that an involutive simple Lie triple system give a rise of Involutive Hom-Lie triple system.
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1 Introduction

The classification of semisimple Lie algebras with involutions can be found in [5]. The Hom-Lie algebras were initially
introduced by Hartwig, Larson and Silvestrov in [6] motivated initially by examples of deformed Lie algebras coming
from twisted discretizations of vector fields. The Killing form K of g is nondegenerate andÎ¸ is symmetric with respect
to K. In [1], the author studied Hom-Lie triple system using the doubleextension and gives an inductive description of
quadratic Hom-Lie triple system. In this work we recall the definition of involutive Hom-Lie triple systems and some
related structure and we prove that all involutive Hom-Lie triple systems are whether simple or semi-simple. Moreover,
we prove that an involutive simple Lie triple system give a rise of Involutive Hom-Lie triple system.

Definition 1. A Hom-Lie triple system is a triple(L, [−,−,−],α) consisting of a linear spaceL, a trilinear map[−,−,−] :
L×L×L → L and a linear mapα : L → L such that

[x,x,z] = 0, (skewsymmetry)

[x,y,z]+ [y,z,x]+ [z,x,y] = 0, (ternary Jacobi identity)

[α(u),α(v), [x,y,z]] = [[u,v,x],α(y),α(z)]+ [α(x), [u,v,y],α(z)]+ [α(x),α(y), [u,v,z]],

for all x,y,z,u,v∈ L. If Moreoverα satisfiesα([x,y,z]) = [α(x),α(y),α(z)] (resp.α2 = idL) for all x,y,z∈ L, we say that
(L, [−,−,−],α) is a multiplicative (resp. involutive) Hom-Lie triple system. A Hom-Lie triple system(L, [−,−,−],α) is
said to be regular ifα is an automorhism ofL.

When the twisting mapα is equal to the identity map, we recover the usual notion of Lie triple system [4,3]. So, Lie
triple systems are examples of Hom-Lie triple systems. If weintroduce the right multiplicationR defined for allx,y∈ L
by R(x,y)(z) := [x,y,z], then the conditions above can be written as follow:

R(x,y) =−R(y,x),

R(x,y)z+R(y,z)x+R(z,x)y= 0,

R(α(u),α(v))[x,y,z] = [R(u,v)x,α(y),α(z)]+ [α(x),R(u,v)y,α(z)]+ [α(x),α(y),R(u,v)z].
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We can also introduce the middle (resp. left) multiplication operatorM(x,z)y := [x,y,z] (resp.L(y,z)x := [x,y,z]) for all
x,y,z∈ L . The equations above can be written in operator form respectively as follows:

M(x,y) =−L(x,y) (1)

M(x,y)−M(y,x) = R(x,y) for all x,y∈ L . (2)

We can write the equation above as one of the equivalent identities of operators:

R(α(u),α(v))R(x,y)−R(α(x),α(y))R(u,v) = (R(R(u,v)x,α(y))+R(α(x),R(u,v)y))α.

R(α(u),α(v))M(x,z)−M(α(x),α(z))R(u,v) = (M(R(u,v)x,α(z))+M(α(x),R(u,v)z))α.

Definition 2. Let (L, [−,−,−],α) and(L′
, [−,−,−]′,α ′) be two two Hom-Lie triple systems. A linear map f: L → L′ is

a morphism of Hom-Lie triple systems if

f ([x,y,z]) = [ f (x), f (y), f (z)]′ and f◦α = α ′ ◦ f .

In particular, if f is invertible, thenL andL′ are said to be isomorphic.

Definition 3. Let (L, [−,−,−],α) be a Hom-Lie triple system andI be a subspace ofL. We say thatI is an ideal of L if
[I,L,L]⊂ I andα(I)⊂ I.

Definition 4. A Hom-Lie triple systemL is said to be simple (resp. semisimple) if it contains no nontrivial ideal (resp.
Rad(L) = {0}).

According to a result in [2], if A is a Malcev algebra, then(A, [−,−,−]) is a Lie triple system with triple product

[x,y,z] = 2(xy)z− (zx)y− (yz)x. (3)

Thus, if A is a Malcev algebra andα : A→ A is an algebra morphism, then,Aα = (A, [−,−,−]α = α ◦ [−,−,−],α) is a
multiplicative Hom-Lie triple system, where[−,−,−] is the triple product in (3).

Proposition 1.Let L be a Lie triple system andα be an automorphism ofL. If L is simple, theL is also simple.

SinceL is not abelian, thenL α is also not abelian. Moreover, letI be an ideal ofL α . For all x,y∈ L anda∈ I we have,

[a,x,y]α ∈ I .

That is,
[α(a),α(x),α(y)] ∈ I .

Consequently,I is an ideal ofL becauseα is an automorphism. Thus,I = {0}.

Theorem 1. Let (L, [., ., .],θ ) be an involutive Hom-Lie triple system. Then,(L, [., ., .]θ ,θ ) is simple or semi-simple.
Moreover, in the second caseL can be wrien asL := Lθ = S ⊕ θ (S ) whereS is a simple ideal ofL. Conversely, If
(L, [., ., .],θ ) is an involutive simple Lie triple system, then(L, [., ., .]θ ,θ ) is an involutive Hom-Lie triple system.

Suppose thatLθ is not simple and putS a minimal ideal ofLθ . We get[L θ ,Lθ ,S ]θ is an ideal ofLθ which is contained
onS . Thus,

[Lθ ,L θ ,S ]θ = {0} or [Lθ ,Lθ ,S ]θ = S .

Now, firstly, if [L θ ,Lθ ,S ]θ = {0}, then θ ([Lθ ),θ (Lθ ),θ (S )] = {0}. That is, [L ,L ,θ (S )] = {0}, becauseθ is a
bijective linear map. which mean thatθ (S )⊂ Z(L ) = {0}. Thus,[Lθ ,Lθ ,S ]θ = S . Hence,[L ,L ,θ (S )] = S . Which
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implies thatθ ([L ,L ,θ (S )]) = [θ (L ),θ (L ),θ 2(S )] = θ (S ). Consequently,

[L ,L ,S +θ (S )]⊂ S +θ (S ).

Furthermore,
θ (S +θ (S )) = θ (S )+θ 2(S ) = θ (S )+S .

Thus,S +θ (S ) is an ideal of(L , [., ., .],θ ). SinceS +θ (S ) 6= {0}, thenL = S +θ (S ).

Now, we have to prove that the summation is direct. In fact, sinceθ is an automorphism ofLθ , thenθ (S ) is an ideal of
Lθ . Thus,S ∩θ (S ) = S or S ∩θ (S ) = {0} becauseS is minimal. Suppose thatS ∩θ (S ) = S , thenS = θ (S )

becauseθ is bijective. On the other hand,

[L ,L ,S ] = θ ([θ (L ),θ (L),θ (S )]) = θ ([L ,L ,S ]θ )⊂ θ (S ) = S .

Thus,S is an ideal of(L , [., ., .],θ ) andS = L because(L , [., ., .]) which contradict the fact thatS 6= L andS 6= {0}.
Consequently,S ∩θ (S ) = {0} andL = S ⊕θ (S ).

Let us prove thatS is a simple ideal of(L θ , [., ., .]θ ). In fact,L = L θ = S ⊕ θ (S ). Sinceθ is an automorphism ofL
thenθ is an automorphism ofLθ .

[θ (S ),L ,L ] = θ ([θ (S ),L ,L ] = θ ([S ,θ (L ),θ (L)] = θ ([S ,L ,L ])⊂ θ (S ).

Thus,θ (S ) is an ideal ofLθ . Furthermore,

[S ,S ,S ]θ = [S ⊕θ (S ),S ⊕θ (S ),S ]θ = [L θ ,Lθ ,S ] = S .

Thus,S is a simple ideal ofLθ because it is simple with[S ,S ]theta= S . Consequently,Lθ is semi-simple.

Corollary 1. Let (L, [., ., .]) be a Lie triple system with involutionθ . such that ,L = S ⊕θ (S ) whereS is a simple ideal
of (L, [., ., .]). Then the Hom-Lie triple system(Lθ , [., ., .]θ ,θ ) is simple.

Let I be an ideal ofL θ such thatI 6= {0}. We have

[L ,L ,θ (I )] = [θ (L ),θ (L ),θ (I )] = [L ,L ,I ]

becauseL = θ (L ) andI is an ideal ofL θ . Moreover,

[L ,L ,I ] = θ ([θ (L),θ (L ),θ (I )]) = θ ([L ,L ,I ]theta)⊂ θ (I ) = I ,

becauseI is stable underθ since it is an ideal of the Hom-Lie triple system ofL θ . Consequently,I is an ideal ofL .
Thus,I = S or I = θ (S ) or I = L . Sinceθ (I )⊂ I , thenI 6= S andI 6= θ (S ). Thus,I = 6= S ⊕θ (S ) = L .
Moreover, since[L ,L ,L ] = L , then[L θ ,Lθ ,Lθ ] = Lθ . Thus,(L θ , [., ., .]θ ,θ ) is a simple Hom-Lie triple system.
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