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Abstract: In this work, we considered perturbed vector equilibrium problems involving set-valued monotone mapping and prove some
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1 Introduction

Let f : D×D → R be a real function withf (x,x) = 0 for all x∈ D, whereD is a nonempty subset ofX andX be a real
topological vector space. Then the following problem, is tofind x∈ D such that

f (x,y) ≥ 0, for all y∈ D,

is known as an classical single-valued equilibrium problem(In short, EP)[2].

This problem contains many problems as special cases for instance, optimization problem, problem of Nash equilibria,
fixed point problems, variational inequalities and complementarity problems[2, 6] etc. Also, existence results for various
type of equilibrium problems involving vector mapping in ordered vector space have been considered by many authors,
see [1, 3, 6, 12]. Recently, Laszlo and Viorel[8] obtaining existence results for the set-valued equilibrium problems
formulated by Kristaly and Varga[7] by making the use of a special type of dense set i.e self-segment-dense set. Later on
Salahuddin and Verma[11] use the same concept and obtaining existence results for generalized set-valued vector
equilibrium problems. In this paper, motivated by the recent work [8, 11], we obtain the existence results for perturbed
vector equilibrium problem formulated by Fu[4] and perturbed scalar equilibrium problem given by Blum and Oettli [2]
both with and without compactness assumptions by using the concept of self-segment-dense set.

The concept of self-segment-dense set was introduced by Laszlo and Viorel[9] which is not same as that of a segment
dense set introduced by Luc[10]. Although, in one dimensional case, the concepts of a segment-dense set and a
self-segment-dense set are same and equivalent to the concept of a dense set. But in higher dimensions i.e greater than
one, self-segment-dense subset possess certain special properties, characterized by Lemma6, which play an important
role in obtaining our existence results.

In an infinite dimensional real Hilbert space it is known thatthe unit sphere is dense in the unit ball with respect to the
weak topology, but it is not self-segment-dense. This is a typical example of a dense set that is not self-segment-dense.
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We organize this paper as following. In the next section, we first introduced the necessary apparatus that we need and
perturbed equilibrium problem and we also define the notion of a self-segment-dense set. Section 3 and 4 contain the
main results of this paper, namely existence results for perturbed equilibrium problem and scalar equilibrium problems
by making the use of self-segment-dense set.

2 Preliminaries

Let Y be real locally convex Hausdorff space, andC ⊂ Y a pointed, closed convex cone with apex at origin and with
intC 6= φ . We say thatC satisfies the condition(∆) if there is a pointed, closed convex coneC̃ such thatC\ {0} ⊂ C̃. It is
well-known that ifC has a base, thenC satisfies condition(∆)

Definition 1. [10] Let X and Y be real locally convex topological vector spaces,C ⊂ Y a closed convex cone with apex
at the origin, and D⊂ X a nonempty subset. Let F: D → 2Y be a set-valued mapping. Then F is said to be lower semi-
continuous with respect to C at x∈ D (in short, C-l.s.c ) if for any y∈ F(x) and each neighborhood V of Y,y there is a
neighborhood U of x such that for each z∈U ∩D,F(z)∩ (V +C) 6= φ and F is said to be C-l.s.c on D if it is C-l.s.c at
each x∈ D.

Remark.(i) If F is l.s.c atx∈ D, then it isC-l.s.c atx∈ D. (ii) If F is single valued andF is (−C)-l.s.c atx∈ D, then it is
C- u.s.c atx∈ D in the sense of Tan and Tinh[13].

Definition 2. For a function f: X →R we denote by dom f its domain, that is dom f= {x∈ X : f (x) ∈R} . We say that f
is upper semicontinuous at x0 ∈ dom f iff, for everyε > 0, there exists a neighborhoodU of x0 such that f(x)≤ f (x0)+ ε
for all x ∈U. The function f is called upper semicontinuous iff it is upper semicontinuous at every point of its domain.

Furthermore, we say that f is lower semicontinuous at x0 ∈ dom f iff, for everyε > 0, there exists a neighborhood U of
x0 such that f(x) ≥ f (x0)− ε for all x ∈U. The function f is called lower semicontinuous iff it is lowersemicontinuous
at every point of its domain.

Definition 3. Let f : X → 2R be a function. Then

(i) f is said to be upper semicontinuous at x0 if and only if

lim
xα→x0

sup f(xα)≤ f (x0),

where{xα} is a net converging to x0.
(ii) f is said to be lower semicontinuous at x0 if and only if

lim
xα→x0

in f f (xα )≥ f (x0),

where{xα} is a net converging to x0.

Definition 4. Let X and Y be topological vector spaces, D⊂ X a convex subset and C⊂Y a convex cone. Let F: D → 2Y

and G: D×D → 2Y be given, then.

(i) F is said to be C-convex if for any x,y∈ D, t ∈ [0,1], we have

tF(x)+ (1− t)F(y)⊂ F(tx+(1− t)y)+C.

(ii) F is said to be C-concave if for any x,y∈ D, t ∈ [0,1], we have

F(tx+(1− t)y)⊂ tF(x)+ (1− t)F(y)+C.
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(iii) G is said to be monotone if for each x,y∈ D, G(x,y)+G(y,x)⊂−C.

Lemma 1. [4] Let D,Y and C be as in definition1 and F : D → 2Y be C-l.s.c on D. Then the set
A= {x∈ D : F(x)⊂Y \ intC} is closed in D.

Lemma 2. [4] Let D,Y and C be as in Lemma1, and F : D → 2Y be given. For any fixed x,y∈ D, let g(t) = T(ty+(1−
t)x), t ∈ [0,1]. Assume that g(t) is (−C)-l.s.c at t= 0 and∀t ∈ (0,1], g(t)⊂Y \ (−intC). Then g(0)⊂Y \ (−intC).

Definition 5. Let D be a nonempty convex subset of a vector space X. A set-valued mapping F: D → 2X is called KKM-
mapping if for each finite subset{x1,x2....xn} ⊂ D, we have

co{x1,x2 · · ·xn} ⊆
n⋃

i=1

F(xi),

where co(E) is a convex hull of a set E.

Lemma 3. (Fan Lemma )[5] Let X be a Hausdorff topological vector space, and let D be a non empty convex subset of
X. Let F : D → 2X be a KKM -mapping. If each F(x) is closed and at least one F(x) is compact, then

⋂

x∈D

F(x) 6= φ .

Now we will work for the following equilibrium problems.

Let X andY be real topological vector spaces,D ⊂ X a nonempty subset andC ⊂ Y a closed, pointed and convex cone
with apex at origin andintC 6= φ . Let G,H : D×D → 2Y be set valued mappings. Then we consider the following
Perturbed vector equilibrium problems:
(PVEP 1) Findx0 ∈ D such thatG(x0,y)+H(x0,y)⊂Y \ (−intC), ∀y∈ D.

(PVEP 2) Findx0 ∈ D such that[G(x0,y)+H(x0,y)]∩ (Y\ (−intC)) 6= φ ,∀y∈ D.

(PVEP 3) Findx0 ∈ D such thatG(x0,y)+H(x0,y)⊂Y \ (−C\ {0}),∀y∈ D.

If G andH are single valued mappings, then the problems (PVEP 1) and (PVEP 2) both collapse to the following VEP
equilibrium problems:

(PVEP 4) Findx0 ∈ D such thatG(x0,y)+H(x0,y) ∈Y \ (−intC), ∀y∈ D.
(PVEP 5) Findx0 ∈ D such thatG(x0,y)+H(x0,y) ∈Y \ (−C\ {0}),∀y∈ D.

The scalar equilibrium problem introduced and studied by Blum and Oettli [2], for sum of two bifunctions
f ,g : K ×K −→ R consists in findingx0 ∈ K such that

f (x0,y)+g(x0,y)≥ 0,∀y∈ K. (EP)

Now we shall recall the original existence results of Fu[10] regarding the set valued vector equilibrium problems (VEP1)
and Blum and Oettli[2] for (EP).

Lemma 4.([4], Lemma 4)Let X and Y be real locally convex Hausdorff topological spaces, D a nonempty closed, convex
subset of X andC⊂Y a pointed, closed convex cone with apex at origin and intC6= φ . Let G,H : D×D→ 2Y be set-valued
mappings satisfing the following conditions:

(i) For all x ∈ D,0∈ G(x,x) ⊂C,0∈ H(x,x)⊂C,
(ii) G is monotone,
(iii) For any fixed x,y∈ D, the mapping g(t) := G(ty+(1− t)x), t ∈ [0,1], is (-C)- l.s.c at t = 0,
(iv) For any fixed x∈ D,G(x, .),H(x, .) : D −→ 2Y are C-convex.

Then the following are equivalent:
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(I) There exists x∗ ∈ D, G(y,x∗)−H(x∗,y)⊂Y \ (intC), ∀y∈ D,

(II) There exists x∗ ∈ D, G(x∗,y)+H(x∗,y)⊂Y \ (−intC), ∀y∈ D.

Theorem 1.([4], Lemma 5) Let K be a nonempty compact subset of X and G,H : K×K → 2Y be a set-valued mappings
such that:

(i) For all x ∈ K,0∈ G(x,x) ⊂C,0∈ H(x,x) ⊂C,
(ii) G is monotone,
(iii) For any fixed x,y∈ K, the mapping g(t) := G(ty+(1− t)x),t ∈ [0,1], is (-C)-l.s.c at t=0,
(iv) For any fixed x∈ K,G(x, .),H(x, .) : K −→ 2Y are C-convex,
(v) For any fixed x∈ K,G(x,y) is C-l.s.c in y, and for any fixed y∈ K,H(x,y) is (−C)-l.s.c in x.

Then, there exists x∗ ∈ K such that

G(x∗,y)+H(x∗,y)⊂Y \ (−intC),∀y∈ K.

Theorem 2.([4], Theorem 2)Let D, C, G and H be as in Lemma4, and let all conditions (i)-(v) of Theorem 10 holds. In
addition, G and H satisfy the following condition:

(vi)there exists a nonempty compact convex subset K⊂ D such that,∀x∈ D\K, ∃a∈ K,

G(a,x)−H(x,a) 6⊂Y \ intC,

Then, there exists x∗ ∈ K such that

G(x∗,y)+H(x∗,y)⊂Y \ (−intC),∀y∈ D.

If C satisfies the condition(∆), then

G(x∗,y)+H(x∗,y)⊂Y \ (−C\ {0}),∀y∈ D.

Lemma 5.[2] Let X be a real topological vector spaces and K⊂X be a compact convex nonempty set. Let g,h : K×K →

R be two functions satisfies following:

(i) For all x ∈ K, g(x,x) = 0,h(x,x) = 0,
(ii) g is monotone,
(iii) For all x,y∈ K, the mapping t∈ [0,1] 7→ g(ty+(1− t)x,y), is u.s.c at t= 0, (hemicontinuity)
(iv) For all x ∈ K, g(x, .),h(x, .) : K −→R, are convex.

Then the fillowing are equivalent:
(I) There exists x0 ∈ K,g(y,x0)−h(x0,y)≤ 0,∀y∈ K,

(II)There exists x0 ∈ K,g(x0,y)+h(x0,y)≥ 0,∀y∈ K,

Theorem 3. [2] Let X be a real topological vector spaces and K⊂ X be a compact convex nonempty set. Let g,h :
K×K →R be two functions satisfies following:

(i) For all x ∈ K, g(x,x) = 0,h(x,x) = 0,
(ii) g is monotone,
(iii) For all x,y∈ K, the mapping t∈ [0,1] 7→ g(ty+(1− t)x,y), is u.s.c at t= 0 (hemicontinuity),
(iv) For all x ∈ K, g(x, .),h(x, .) : K −→R, are convex,
(v) For all x ∈ K, g(x, .) is l.s.c and for all y∈ K, h(.,y), is u.s.c.

Then, there exists x0 ∈ K such that
g(x0,y)+h(x0,y)≥ 0, ∀y∈ K.
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Theorem 4.[2] Let X be a real topological vector spaces and K⊂ X be a closed, convex nonempty set. Let g,h : K×K →

R be two functions satisfies following:

(i) For all x ∈ K, g(x,x) = 0,h(x,x) = 0,
(ii) g is monotone,
(iii) For all x,y∈ K, the mapping t∈ [0,1] 7→ g(ty+(1− t)x,y), is u.s.c at t= 0,
(iv) For all x ∈ K, g(x, .),h(x, .) : K −→R, are convex,
(v) For all x ∈ K, g(x, .) is l.s.c and for all y∈ K, h(.,y), is u.s.c,
(vi) There exists a nonempty compact convex set B⊂ K such that for any x∈ K \B, there exists a∈ B with

g(x,a)+h(x,a)< 0.

Then, there exists x0 ∈ B such that
g(x0,y)+h(x0,y)≥ 0, ∀y∈ K.

Self-segment dense set.Let X be a Hausdorff topological vector space. We will use following notations for the open,
respectively closed, line segments inX with the endpoints x and y

(x,y) = {z∈ X : z= x+ t(y− x), t ∈ (0,1)},

[0,1] = {z∈ X : z= x+ t(y− x), t ∈ [0,1]}.

In [10], Definition 4, The Luc has introduced the notion of a so-called segment-dense set. LetV ⊆ X be a convex set. One
says that the setU ⊆V is segment-densein V if for eachx∈V there can be foundy∈U such thatx is a cluster point of
the set[x,y]∩U.

Laszlo and Viorel[9] presented a denseness notion which is slightly different from the concept of the Luc[10] presented
above.

Consider the setsU ⊆ V ⊆ X and assume thatV is convex. We say thatU is self-segment-densein V if U is dense inV
and

∀x,y∈U, the set[x,y]∩U is dense in[x,y].

3 Self-segment-dense set and vector equilibrium problems

Lemma 6. ([8], Lemma 1) Let X be a Hausdroff locally convex topological vector space, let V ⊆ X be a convex set and
let U ⊆V a self-segment-dense in V. Than for all finite subset{u1,u2 · · ·un} ⊆U one has

cl(co{u1,u2 · · ·un}∩D) = co{u1,u2 · · ·un}.

Theorem 5. Let X be a Hausdroff locally convex topological vector space, and let K be a nonempty convex, compact
subset of X, let D⊆ K be a self-segment-dense, and let G,H : K×K → 2Y be set-valued mappings satisfying:

(i) For all x ∈ D,0∈ G(x,x) ⊂C,0∈ H(x,x)⊂C,
(ii) G is monotone,
(iii) For any fixed x,y∈ D, the mapping g(t) = G(ty+(1− t)x,y), t ∈ [0,1], is (−C)− l.s.c at t=0,
(iv) For any fixed x∈ D,G(x, .),H(x, .) : D → 2Y are C-convex,
(v) For any fixed x∈ D,G(x,y) is C-l.s.c in y on K and for any fixed y∈ D,H(x,y) is (−C)-l.s.c in x on K,
(vi) For any fixed y∈ K,G(x,y) is C-l.s.c in x on K\D, for any fixed x∈ K,H(x,y) is (−C)-l.s.c in y on K\D.
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Then, there exists x∗ ∈ K such that

G(x∗,y)+H(x∗,y)⊂Y \ (−intC), ∀y∈ K.

Proof.DefineF : D → 2K by

F(y) = {x∈ K : G(y,x)−H(x,y)⊂Y \ (intC)} , ∀y∈ D.

Since for fixedy∈ D,G(y, .)−H(.,y) is C− l .s.c onD, soF(y) is closed inK and hence compact.

Claim: F is aKKM mapping. i.e For any{y1,y2 · · ·yn} ⊂ D, we have

co{y1,y2 · · ·yn}∩D ⊆
n⋃

i=1

F(yi).

Suppose not, then there exists{y1,y2 · · ·yn} ⊂ D and t1, t2 · · · tn with ∑n
i=1 ti = 1 and z = ∑n

i=1 tiyi ∈ D such that
z /∈

⋃n
i=1F(yi)

⇒ z /∈ F(yi),∀i = 1,2, · · · ,n.

⇒ G(yi ,z)−H(z,yi) 6⊂Y \ intC,∀i = 1, ..,n.

⇒ G(yi ,z)−H(z,yi)⊂ intC,∀i = 1, ..,n.

This implies that there existsai ∈ G(yi ,z),bi ∈ H(z,yi) such thatai −bi ∈ intC, ∀i = 1, ..,n.

⇒
n

∑
i

ti(ai −bi) ∈ intC (1)

SinceG is monotone andC-convex in second argument, it follows that

n

∑
i=1

tiG(yi ,z)⊂−C−
n

∑
i=1

tiG(z,yi)⊂−C−G(z,z)−C⊂−C. (2)

Also H is C-convex in second argument

n

∑
i=1

tiH(z,yi)⊂ H(z,z)+C⊂C+C=C. (3)

From (2) and (3), we get

n

∑
i=1

ti(G(yi ,z)−H(z,yi))⊂−C. (4)

From (1) and (4), we have
n

∑
i=1

(G(yi ,z)−H(z,yi))⊂ (−C)∩ intC= φ ,
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a contradiction. Hence,co{y1,y2 · · ·yn}∩D ⊆
n⋃

i=1

F(yi).

⇒ cl (co{y1,y2 · · ·yn}∩D)⊆ cl(
n⋃

i=1

F(yi)). (5)

By Lemma6, cl (co{y1,y2 · · · ,yn}∩D) = co{y1,y2 · · ·yn} and also we know thatcl(
n⋃

i=1

F(yi)) = (
n⋃

i=1

F(yi))

Hence from (5), we have

co{y1,y2 · · ·yn} ⊆
n⋃

i=1

F(yi).

HenceF is a KKM- mapping, So by Ky-Fan lemma ,

⋂

y∈D

F(y) 6= φ .

i.e. there existsx∗ ∈ K such that

G(y,x∗)−H(x∗,y)⊂ y\ (intC),∀y∈ D. (6)

To complete the proof we have to show that, ⋂

y∈K

F(y) 6= φ .

Suppose there existsy∗ ∈ K \D such that

G(y∗,x)−H(x,y∗) 6⊂Y \ intC.

⇒ G(y∗,x)−H(x,y∗)⊂ intC.

Since intC is a neighborhood ofF(y∗), whereF(y∗) = G(y∗,x)−H(x,y∗), andF is C-l.s.c onK \D, there exists a
neighborhoodU of y∗ such that

F(y)∩ (intC+C) 6= φ ,∀y∈U.

⇒ F(y)∩ (intC) 6= φ ,∀y∈U.

SinceD is dense inK, so there existsy1 ∈U andy1 ∈ D such that

F(y1)∩ intC 6= φ

a contradiction to (6). Hence,
⋂

y∈K

F(y) 6= φ , i.e. there existsx∗ ∈ K such that

G(y,x∗)−H(x∗,y)⊂Y \ (intC),∀y∈ K.

Hence by Lemma4, there existsx∗ ∈ K such that

G(x∗,y)+H(x∗,y)⊂Y \ (−intC),∀y∈ K.

Theorem 6.Let D⊆ K be a self-segment dense set and K is a compact subset of X. Letg,h : K ×K → R be two single
valued functions satisfying following conditions:

(i) For all x ∈ D,g(x,x) = 0,h(x,x) = 0,
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(ii) g is monotone,
(iii) For all x,y∈ D, the mapping t∈ [0,1] 7→ g(ty+(1− t)x,y), is u.s.c at t=0.
(iv) For all x ∈ D,g(x, .),h(x, .) : K −→ R, are convex,
(v) For all x ∈ D, g(x, .) is l.s.c on K and for all y∈ D,h(.,y), is u.s.c on K,
(vi) For all y ∈ K, g(.,y), is l.s.c on K\D and for all x∈ K,h(x, .) is u.s.c on K\D.

Then, there exists x0 ∈ K such that
g(x0,y)+h(x0,y)≥ 0,∀y∈ K.

Proof.Define a set-valued mapF : D −→ 2K by

F(y) := {x∈ K : g(y,x)−h(x,y)≤ 0} ,∀y∈ D.

Since for fixedy∈ D, g(y, .)−h(.,y) l.s.c onD, F(y) is closed inK andK is compact and henceF(y) is compact ,∀y∈ D.

Claim: F is aKKM−map. i.e. For any finite set{y1,y2, · · ·yn} ⊂ D, we have

co{y1,y2, ...,yn}
⋂

D ⊆
n⋃

i=1

F(yi)

Suppose not, then there exists{y1,y2, · · ·yn} ⊂ D andt1, t2, .., tn with
n

∑
i=1

ti = 1 andz=
n

∑
i=1

tiyi ∈ D such thatz /∈
n⋃

i=1

F(yi)

⇒ z /∈ F(yi),∀i = 1,2, · · ·n.

⇒ g(yi ,z)−h(z,yi)> 0,∀i = 1,2, · · ·n.

⇒ g(yi ,z)> h(z,yi),∀i = 1,2, · · ·n.

⇒
n

∑
i=1

µig(yi ,z)>
n

∑
i=1

µih(z,yi). (7)

Sinceg is monotone and convex in second argument, we have

n

∑
i=1

µig(yi,z) ≤
n

∑
i=1

n

∑
j=1

µiµ jg(y j ,yi)≤
1
2

n

∑
i=1

µiµ j(g(yi ,y j)+g(y j ,yi))≤ 0. (8)

Sinceh is C−convex in second argument

0= h(z,z) ≤
n

∑
i=1

µih(z,yi). (9)

From (8) and (9), we have
n

∑
i=1

µig(yi ,z)≤ 0≤
n

∑
i=1

µih(z,yi)

a contradiction to (7). Hence,co({y1,y2, ...,yn})
⋂

D ⊆
n⋃

i=1

F(yi)

⇒ cl(co({y1,y2, · · · ,yn})
⋂

D)⊆ cl(
n⋃

i=1

F(yi)). (10)
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By Lemma6, cl(co({y1,y2, · · ·n})
⋂

D) = co({y1,y2, · · ·yn}) and we also know that

cl(
n⋃

i=1

F(yi)) =
n⋃

i=1

F(yi)

Thus, from (10), we have

co({y1,y2, · · · ,yn})⊆
n⋃

i=1

F(yi).

Hence,F is aKKM−map. So, by Fan Lemma, we have

⋂

y∈D

F(y) 6= φ ,

i.e., there existsx0 ∈ K such that
g(y,x0)−h(x0,y)≤ 0,∀y∈ D.

To complete the poof we need to show that, ⋂

y∈K

F(y) 6= φ .

i.e., there existsx0 ∈ K such that
g(y,x0)−h(x0,y)≤ 0,∀y∈ K.

Suppose there existsy∈ K \D, SinceD is dense inK, there exists a net{yα} ⊂ D such thatyα −→ y.
SinceK(.) = g(.,x0)−h(x0, .) is l.s.c inK \D andyα −→ y, so

0≥ lim
yα−→y

in f K(yα)≥ K(y) = g(y,x0)−h(x0,y)

Hence, ⋂

y∈K

F(y) 6= φ .

i.e., there existsx0 ∈ K such that
g(y,x0)−h(x0,y)≤ 0,∀y∈ K.

Hence by Lemma5, there existsx0 ∈ K such that

g(x0,y)+h(x0,y)≥ 0,∀y∈ K.

This complete the proof.

4 Set-valued vector equilibrium problems without compactness assumptions

Theorem 7.Let K be a nonempty convex closed subset of X, let D⊆K be a self-segment-dense, and let G,H : K×K → 2Y

be set-valued mappings satisfying:

(i) For all x ∈ D, 0∈ G(x,x)⊂C,0∈ H(x,x)⊂C,
(ii) G is monotone,
(iii) For any fixed x,y∈ D, the mapping g(t) := G(ty+(1− t)x,y), t ∈ [0,1], is (−C)− l.s.c at t=0,
(iv) For any fixed x∈ D,G(x, .),H(x, .) : D → 2Y are C−convex,
(v) For any fixed x∈ D,G(x,y) is C-l.s.c in y on K and for any fixed y∈ D,H(x,y) is (−C)-l.s.c in x on K,
(vi) For any fixed y∈ K,G(x,y) is C-l.s.c in x on K\D and for any fixed x∈ K,H(x,y) is (−C)-l.s.c in y on K\D,
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(vii) There exists a compact set K0 ⊆ D and y0 ∈ D∩K0. such that G(y0,x)−H(x,y0) 6⊂ Y \ intC, ∀x ∈ K \K0. Then,
there exists x∗ ∈ K0 such that

G(x∗,y)+H(x∗,y)⊂Y \ (−intC),∀y∈ K.

Proof.Define a set-valued mapF : D → 2K by

F(y) = {x∈ K : G(y,x)−H(x,y)⊂Y \ (intC)} ,∀y∈ D.

According to the proof of Theorem5, F(y) is closed inK, for all y∈ D.

Next we shall show thatF(y0) is compact, and the rest of the proof is similar to the proof ofTheorem5. For this it is
enough to show thatF(y0)⊆ K0. SupposeF(y0) 6⊆ K0, then there existsz∈ F(y0) such thatz /∈ K0.
Now, z∈ F(y0), soG(y0,z)−H(z,y0)⊂Y \ intC, which is a contradiction to (vii).

Theorem 8.Let D⊆ K be a self-segment dense set and K is nonempty closed convex subset of X. Let g,h : K×K →R be
two single valued functions satisfying following conditions:

(i) For all x ∈ D, g(x,x) = 0,h(x,x) = 0,
(ii) g is monotone,
(iii) For all x,y∈ D, the mapping t∈ [0,1]−→ g(ty+(1− t)x,y), is u.s.c at t= 0,
(iv) For all x ∈ D,g(x, .),h(x, .) : K −→ R are convex,
(v) For all x ∈ D, g(x, .), is l.s.c on K and for all y∈ D,h(.,y) is u.s.c on K,
(vi) For all y ∈ K,g(.,y) is l.s.c on K\D and for all x∈ D,h(x, .) is u.s.c on K\D,

(vii) There exists a compact set K0 ⊆ D such that for all y∈ D∩K0, s.t. g(y0,x)−h(x,y0)> 0, for all x ∈ K \K0,

Then, there exists x0 ∈ K0 such that
g(x0,y)+h(x0,y)≥ 0, ∀y∈ K.

Proof.Define a set-valued mapF : D → 2K

F(y) = {x∈ K : g(y,x)−h(x,y)≤ 0} ,∀y∈ D.

According to the proof of Theorem6 , F(y) is closed inK, ∀y∈ D.

Next we shall show thatF(y0) is compact, and then the rest of the proof is similar to the proof of Theorem6, For this it is
enough to show thatF(y0)⊆ K0. SupposeF(y0) 6⊆ K0, then∃z∈ F(y0) such thatz /∈ K0.

Now, z∈ F(y0), sog(y0,z)−h(z,y0)≤ 0, which is a contradiction to (vii).
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