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Abstract: In this paper, we obtain some results for the weak convergence of semi-implicit split-step (SISS) methods which are recently
developed to solve a class of nonlinear stochastic differential equation with non-Lipschitz drift term. First, we present some moment
estimates based on the actual and numerical solutions of stochastic Ginzburg-Landau equations by SISS methods. Then, we show that
our theoretical results are consistent with the numerical results that are obtained by performing simulations. Finally, we present the
weak convergence rate of SISS methods is approximately 1 with respect to the numerical results.

Keywords: Split-step methods, semi-implicit split-step method, weak convergence.

1 Introduction

Recently, there are some crucial improvements for the numerical solution of nonlinear stochastic differential equations of

the form

dXt = a(Xt)dt+σ(Xt)dWt ; 0≤ t ≤ T, X(0) = X0.

with non or locally Lipschitz drift term in the literature. It is known that numerical solutions of this kind of stochastic

differential equations with the explicit methods may explode in finite time [1]. Therefore, some of the scientists focus on

the implicit or semi implicit methods to ensure the stability and consistency of the numerical solutions. For example,

Tamed-Euler, Truncated Euler, split-step backward Euler,and semi-implicit split-step (SISS) methods are some of these

methods, among others.

The tamed Euler scheme, which is a modified version of the Euler-Maruyama method, is introduced by Hutzenthaler et

al. [2]. Then, it is alternative versions are developed by Sabanis, and Hutzenthaler et al. in [3] and [4], respectively. For

the weak convergence results and some other extensions of this method, one may see [4] and the references therein.

Another modified version of the Euler-Maruyama method is called the truncated Euler method. It is suitable for SDEs

with superlinear drift terms under some constraints [5,6].

The split-step backward Euler (SSBE) method, which is exhibited by Mattingly et al in [7], preserves the ergodicity

properties of a class of monotone nonlinear SDEs. Although it has good precisions and is useful for obtaining the

moment bounds of the numerical approximations [8], it may not be good enough in terms of computation time since

some nonlinear scalar/vector equations should be solved numerically at each step. Moreover, in 2006, Schurz discusseda

class of implicit and partially implicit methods in his paper [9]. Additionally, Mao and Szpruch analyzed the strong

convergence and stability properties of some implicit numerical schemes in [10].
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Furthermore, Izgi and Cetin first introduced the semi-implicit split-step (SISS) methods and they showed some moment

results of SISS methods for the scalar case in [11]. In 2018, they also developed and investigated the high dimensional

versions of SISS methods for nonlinear SDEs with non-Lipschitz drift terms in [12]. After that, in [13], they presented

Milstein type semi-implicit split step (MSISS) methods fornonlinear SDE with locally Lipschitz drift terms. They also

work on strong convergence analysis of the SISS and MSISS methods in [14] and [15], respectively. According to our

the literature review, there is no study about the weak convergence analysis of these new methods yet. Therefore, we

study the weak convergence of the semi-implicit split-stepmethods in this paper. We especially focus on SISS1 and

SISS3 methods among others and obtain some results for the first moment of these numerical methods. We also obtain

some moment bounds for the actual solution of the stochasticGinzburg-Landau equation. Finally, we achieve to show

that the weak convergence rate of these methods is approximately 1 by performing the simulations for the

Ginzburg-Landau equation. The numerical analysis resultsalso confirm the consistency of the moment bounds for the

actual and numerical solutions of the equation obtained by SISS1 and SISS3 methods. In addition to these, one may see

[16] for the second moment boundaries and simulation results.

The remainder of the paper is organized as follows. The semi-implicit split-step (SISS) methods are represented in this

section. We present some theorems for the moment estimates of the SISS1 and SISS3 methods and actual solution of the

stochastic Ginzburg-Landau equation and prove them in Section 2. In Secton 3, we perform simulations with the scalar

version of Ginzburg-Landau SDE and exhibit the partial weakconvergence analysis results. The paper concludes in

Section 4.

1.1 Semi implicit split-step methods for Ginzburg-Landau equation

We consider the scalar version of the generalized stochastic Ginzburg-Landau equation

dX(t) = (AX(t)− δXr(t))dt+σ(X(t))dW(t), 0< t ≤ T, (1)

for an odd positive integerr ≥ 3, and constantsδ > 0, A ∈ R with X(0) = x0, whereσ(.) satisfies the linear growth

condition. Then, we know that the first step of the split-stepbackward Euler method [8] for this scalar SDE reduces to

y= x+∆(Ay− δyr).

On the other hand, Izgi and Cetin presented the approximation for the drift terma(y) = Ay− δyr with ρ1(x,y) = Ay−
δyxr−1, or with ρ2(x,y) = Ax− δyxr−1 in [11,12] when they introduced SISS method. If we solvey= x+ρ1(x,y)∆ and

y= x+ρ2(x,y)∆ for y, respectively, then we obtain the following expressions

f ∆ (x) =
x

1+∆(δxr−1−A)
while a∆ (x) =

a(x)
1−∆(A− δxr−1)

and

g∆ (x) =
(1+A∆)x
1+∆δxr−1 while a∆ (x) =

a(x)
1+∆δxr−1

where f ∆ (x) = x+∆a∆(x) andg∆ (x) = x+∆a∆(x) with the correspondinga∆ (x).

By using the above approximations, the four SISS methods, which are introduced by Izgi and Cetin [11,12], are in the

following forms for a generalized version of the stochasticGinzburg-Landau equation:
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The first SISS method (SISS1): For f ∆ (x) = x
1+∆ (δxr−1−A)

Xk+1 = f ∆ (Xk)+σ(Xk)∆Wk+1, (2)

The second SISS method (SISS2): For the samef ∆ (x) above andσ∆ (x) = σ( f ∆ (x)),

Xk+1 = f ∆ (Xk)+σ∆ (Xk)∆Wk+1.

The third SISS method (SISS3): Forg∆ (x) = (1+A∆ )x
1+∆δxr−1 ,

Xk+1 = g∆ (Xk)+σ(Xk)∆Wk+1. (3)

The fourth SISS method (SISS4): For the sameg∆ (x) above,

Xk+1 = g∆ (Xk)+σ(g∆(Xk))∆Wk+1.

where∆ = ∆ t = T/n and∆Wk+1 =W(k+1)∆ t −Wk∆ t for eachk= 0,1,2, ...n.

Remark.By Lemma 1 and Theorem 1 in [12], we know that we have all moments of the actual solution, andall moments

of the numerical solutions of equation (1) obtained by SISS methods exist for sufficiently small∆ .

2 Some moment bounds for the SISS Methods

In this section, we obtain some moments bounds for the SISS methods based on the stochastic Ginzburg-Landau equation

for r = 3 while the diffusion term isσ(X) = σX. We especially focus on SISS1 and SISS3 methods. Although theall

moments of the numerical solutions need to be investigated for the weak convergence analysis of SISS methods, as a first

step for this analysis, we work on the first moment bounds of these methods. Note that similar theoretical results may

obtain easily for SISS2 and SISS4 methods using their relationship with SISS1 and SISS3 methods, respectively.

Theorem 1.The iterations Xk using the first SISS method (2) to solve the equation (1) for r = 3 andσ(X) = σX satisfy

the following:

(i) The upper bound for the first moment of the iterations whileδ > 0,A∈ R is

E[Xk+1]≤
X0

(1−A∆)k+1

for all k = 0,1,2, ...,n and sufficiently small0< ∆ ≤ T.

(ii) There is sufficiently small∆0 > 0 such that X0 <

√

1+2
√

1−A∆0
δ∆0

· (1−A∆0)
n

while 1−A∆0 > 0 then the lower bound for the first moment of the iterations

E[Xk+1]≥
1

(1−A∆)k+1

(

1+

√

δ∆
1−A∆

)−2(k+1)

X0

holds for all k= 0,1,2, ...,n and0< ∆ ≤ ∆0 whileδ > 0,A∈ R.
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Proof. (i) If we take the expectation of the iterations for the first SISSmethodXk+1 = f ∆ (X)+σ(Xk)∆Wk+1 then we

haveE [Xk+1] = E
[

f ∆ (Xk)
]

using the fact that{σ(Xk)∆Wk+1 = σXk∆Wk+1,k≥ 0} is a martingale by above Remark, and

basic stochastic calculus rules. Then, we have the following results after some iterations forf ∆ (x) = x
1+∆ (δxr−1−A)

with

r = 3 which is given in (2) for equation (1).

E[Xk+1] =E

[

Xk

1− (A− δX2
k )∆

]

≤ E[Xk]

1−A∆
,

then we have

E[X1]≤
X0

1−A∆

E[X2]≤
E[X1]

1−A∆
≤ X0

(1−A∆)2 .

...

E[Xk+1]≤
X0

(1−A∆)k+1 .

(ii) If we use similar approaches in (i), then we have

E[Xk+1] = E
[

f ∆ (Xk)
]

= E

[

Xk

1− (A− δX2
k )∆

]

= E

[

Xk

u+mX2
k

]

(4)

where u= 1−A∆ and m= δ∆ . Now, let’s defineg(x) as x
u+mx2

, then

g(x) =
1
u

(

x
1+ m

u x2

)

; let N=
m
u

≥1
u

(

x

(1+
√

N)2

)

while x<

√

1+2

√

1−A∆
δ∆

.

Thus, we haveg(x) ≥ h(x) whereh(x) = 1
u

(

x
(1+

√
N)2

)

. By the condition onX0 and the result in (i) above it is clear that

the monotonicityE[g(Xk)]≥E[h(Xk)] holds for allk. Now if we use this fact in (4), then we have the following after some

iterations:

E[Xk+1]≥
1
u

(

1

(1+
√

N)2

)

E[Xk]

≥ 1
u2

(

1

(1+
√

N)4

)

E[Xk−1]

...

≥ 1
uk+1

(

1

(1+
√

N)2(k+1)

)

X0

=

(

1
(1−A∆)k+1

)

(

1+

√

δ∆
1−A∆

)−2(k+1)

X0

Theorem 2.The iterations Xk using the third SISS method (3) to solve the equation (1) for r = 3 andσ(X) = σX satisfy

the following:
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(i) The upper bound for the first moment of the iterations whileδ > 0,A∈ R is

E[Xk+1]≤
(1+A∆)k+1

1+ δ∆X2
0

X0

for all k = 0,1,2, ...,n and sufficiently small0< ∆ ≤ T.

(ii) For sufficiently small∆0 > 0, if X0 <
√

1+ 2√
δ∆0

· (1−A∆0)
−n then the lower bound for the first moment of the

iterations

E[Xk+1]≥
(1+A∆)k+1

(
√

δ∆ +1)2(k+1)
X0

holds for all k= 0,1,2, ...,n and0< ∆ ≤ ∆0 whileδ > 0,A∈ R.

Proof. (i) The proof can be done by using the similar steps that are used in the proof of Theorem1 for the third SISS

methodXk+1 = g∆ (X)+σXk∆Wk+1 while g∆ (x) = (1+A∆ )x
1+∆δxr−1 with r = 3. Then we have

E[Xk+1] = E[g∆ (Xk)] = E

[

(1+A∆)Xk

1+∆δX2
k

]

.

After some iterations, we have

E[X1] =
X0(1+A∆)

1+ δ∆X2
0

.

E[X2]≤(1+A∆)E[X1] = (1+A∆)2 X0

1+ δ∆X2
0

.

...

E[Xk+1]≤(1+A∆)k+1 X0

1+ δ∆X2
0

.

(ii) It is clear that we have the following for SISS3 method

E[Xk+1] = E
[

g∆ (Xk)
]

= E

[

Xk

1+ δ∆X2
k

]

(1+A∆) = E

[

Xk

1+mX2
k

]

(1+A∆). (5)

where m= δ∆ . In this step, if we defineh(x) as x
1+mx2

then

h(x) =
x

(
√

mx+1)2−2
√

mx
≥ x

(
√

m+1)2 = g(x) while x<

√

1+
2√
δ∆

.

Use the monotonicity ofh(x)≥ g(x) in (5) and iterate it, then we obtain

E[Xk+1]≥ (1+A∆)
E[Xk]

(
√

m+1)2 ≥ (1+A∆)k+1

(
√

m+1)2(k+1)
X0 =

(1+A∆)k+1

(
√

δ∆ +1)2(k+1)
X0.
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Corollary 1. The terminal value, Xn, satisfies E[Xn] ≤ X0eAT while using the SISS1 and SISS3 methods to solve the

equation (1) for r = 3 andσ(X) = σX whenδ > 0,A∈ R and sufficiently small0< ∆ ≤ T.

Theorem 3.The actual solution of equation (1) for r = 3 andσ(X) = σX is given in equation (9) has the following upper

and lower boundaries:

E[X(t)]≤X0eAt (6)

E[X(t)]≥ X0e(A−
3
2σ2)t

√

1+
2δX2

0 (e
(2A+σ2)t−1)

2A+σ2

(7)

while the model parametersδ > 0, A∈ R with X(0) = X0.

Proof. If we take the expected value of the actual solution whereF(t) = e(
1
2σ2−A)t−σW(t) then we have the following for

the upper bound of the actual solution:

E[X(t)] =E[F−1(t){x−2
0 +2δ

t
∫

0

F−2(s)ds}−1/2]

≤E[F−1(t)]X0, by the expectation of the geometric Brownian motions,

≤X0eAt

Similarly, we start with

E[X(t)] = E













F−1(t)
√

x−2
0 +2δ

t
∫

0
F−2(s)ds













then, by Jensen’s inequality, we obtain

E[X(t)]≥ X0e(A−
1
2σ2)t

E

[

e−σW(t)

√

1+2δX2
0

t
∫

0
F−2(s)ds

] .

Now, if we use Cauchy-Schwarz inequality with Fubini’s theorem then we have

E[X(t)]≥ X0e(A−
1
2σ2)t

√

e
4σ2

2 t{1+2δX2
0

t
∫

0
E[e(2A−σ2)s+2σW(s)]ds}

=
X0e(A−

3
2σ2)t

√

1+
2δX2

0 (e
(2A+σ2)t−1)

2A+σ2

after some calculations.

Corollary 2. The expected value of the actual solution of equation (1) for r = 3 and σ(X) = σX at the terminal time

E[X(T)] is bounded above by X0eAT.
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3 Simulation results

In this section, we perform simulations via SISS methods forthe stochastic Ginzburg-Landau equation, whose explicit

solution is known, and present some extensive numerical analysis results. Especially, we investigate the consistencyof

our theoretical results, which can be used at the further theoretical frameworks for the weak convergence analysis of

these methods, obtained for SISS1 and SISS3 methods. Meanwhile, we analyze their empirical rates of weak

convergence.

For a numerical example, we consider the following SDE, which is the stochastic Ginzburg-Landau equation forr = 3

with multiplicative noise,

dX(t) = (AX(t)− δX3(t))dt+σX(t)dW(t). (8)

for X(t) = x0 > 0 fixed, and 0≤ t ≤ T. The explicit and unique solution of this equation satisfies the following a.s. positive

process

X(t) = F−1(t){x−2
0 +2δ

t
∫

0

F−2(s)ds}−1/2 (9)

whereF(t) = e(
1
2σ2−A)t−σW(t), satisfying the SDEdF(t) = F(σ2−A)dt−σFdW(t) with F(0) = 1. This can be shown

easily and it’s derivation can be done by applying the Ito’s rule toY(t) = X(t)F(t) with Y(0) = x0.

Moreover, we perform the repeated simulations with theA=−1,δ = 0.1,σ = 1, andx0 = 5 model parameters while the

number of simulations isN = 10.000. Figure1 and Figure2 show that the upper and lower boundaries obtained for

SISS1 and SISS3 methods are consistent with the numerical solutions of the SDE in (8).

Furthermore, Figure3 is generated by using the boundaries, which are given by (6) and (7) in Theorem3, for the actual

solution (9) of Ginzburg-Landau equation. The figures also confirm that these boundaries keep the behavior of the

solution of stochastic Ginzburg-Landau equation. Anotherimportant interpretation of these results is one may use these

boundaries to show the usual rate of weak convergence of these methods in the theoretical proof which is left for a future

project in this paper.

Fig. 1: SISS1: Comparisions of the boundaries with the numerical solutions.
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Fig. 2: SISS3: Comparisions of the boundaries with the numerical solutions.

Fig. 3: Comparisions of the boundaries with the actual solutions.

On the other hand, it is sufficient to consider terminal time values for the weak convergence analysis. Therefore, we

conduct repeated simulations of sizeN = 100.000 for each method with the respective step size,n = 26,27,28 and 29,

in order to investigate the rate of weak convergence of thesemethods empirically. Then, we show these analysis’ results

using the log-log graphs such that the comparisons ofE[X(T)] with E[X(tn)] andE[X2(T)] with E[X2(tn)] are given in

Figure4 and Figure5, respectively. Both figures suggest that the SISS1 and SISS3achieve the usual weak convergence

rate of 1. Moreover, we obtain similar results in Figures4 and5 for the higher moment values (i.e.E[X3(T)],E[X4(T)]

etc.), too.

4 Conclusions

We provide some partial theoretical and numerical results for the weak convergence analysis of the semi-implicit

split-step (SISS) methods based on stochastic Ginzburg-Landau equation under some conditions of the model

parameters. First, we find the first moment bounds for the SISS1 and SISS3 methods and the actual solution of the

equation. Then, we perform simulations and succeed to show that the weak convergence rate of SISS methods is

approximately 1, as it is expected, with respect to the log-log graphs. Finally, we observe that our repeated simulation
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Fig. 4: Log-log graphs for the weak convergence rate of the SISS1 andSISS3 methods.

Fig. 5: Log-log graphs for the weak convergence rate of the SISS1 andSISS3 methods.

experiments show the robustness of the numerical solutionsfor the upper and lower boundaries of the first moment when

∆ is relatively (orn is big enough) small enough.
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