(_/
NTMSCI 7, No. 1, 22-31 (2019) BISKA 22

~ NewTrendsinMathemaical Science

http://dx.doi.org/10.20852/ntmsci.2019.336

Some results for the weak convergence of semi-implicit
split-step methods

Burhaneddin Izgi and Berivan Ari

Istanbul Technical University, Department of Mathematisganbul, Turkey

Received: 15 August 2018, Accepted: 7 February 2019
Published online: 6 March 2019.

Abstract: In this paper, we obtain some results for the weak convermefisemi-implicit split-step (SISS) methods which are rdlge

developed to solve a class of nonlinear stochastic diffexeequation with non-Lipschitz drift term. First, we pegg some moment
estimates based on the actual and numerical solutionsdfattic Ginzburg-Landau equations by SISS methods. Theshaw that
our theoretical results are consistent with the numeriesliits that are obtained by performing simulations. Fnale present the
weak convergence rate of SISS methods is approximatelyhlregpect to the numerical results.
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1 Introduction

Recently, there are some crucial improvements for the nigalesolution of nonlinear stochastic differential eqoas of
the form
dX% =a(X)dt+o(X%)dW; 0<t<T, X(0)=Xp.

with non or locally Lipschitz drift term in the literaturet is known that numerical solutions of this kind of stochasti
differential equations with the explicit methods may exjdan finite time [L]. Therefore, some of the scientists focus on
the implicit or semi implicit methods to ensure the stapiind consistency of the numerical solutions. For example,
Tamed-Euler, Truncated Euler, split-step backward Ealed, semi-implicit split-step (SISS) methods are some cfeghe
methods, among others.

The tamed Euler scheme, which is a modified version of therBviduyama method, is introduced by Hutzenthaler et
al. [2]. Then, it is alternative versions are developed by Sabanid Hutzenthaler et al. ir8] and [4], respectively. For
the weak convergence results and some other extensionssah#ihod, one may sed][and the references therein.
Another modified version of the Euler-Maruyama method i¢echthe truncated Euler method. It is suitable for SDEs
with superlinear drift terms under some constraibi§].

The split-step backward Euler (SSBE) method, which is asdribby Mattingly et al in ], preserves the ergodicity
properties of a class of monotone nonlinear SDEs. Althoudias good precisions and is useful for obtaining the
moment bounds of the numerical approximatio8js it may not be good enough in terms of computation time since
some nonlinear scalar/vector equations should be solvexrically at each step. Moreover, in 2006, Schurz discuased
class of implicit and partially implicit methods in his pagd®]. Additionally, Mao and Szpruch analyzed the strong
convergence and stability properties of some implicit nricaé schemes in1[0].
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Furthermore, I1zgi and Cetin first introduced the semi-iipBplit-step (SISS) methods and they showed some moment
results of SISS methods for the scalar case€lif.[In 2018, they also developed and investigated the higredsional
versions of SISS methods for nonlinear SDEs with non-Liggalrift terms in [L2]. After that, in [13], they presented
Milstein type semi-implicit split step (MSISS) methods faonlinear SDE with locally Lipschitz drift terms. They also
work on strong convergence analysis of the SISS and MSIS8adetin fL4] and [15], respectively. According to our
the literature review, there is no study about the weak cgerece analysis of these new methods yet. Therefore, we
study the weak convergence of the semi-implicit split-stegthods in this paper. We especially focus on SISS1 and
SISS3 methods among others and obtain some results for shenfiment of these numerical methods. We also obtain
some moment bounds for the actual solution of the stoch@stizburg-Landau equation. Finally, we achieve to show
that the weak convergence rate of these methods is appretima by performing the simulations for the
Ginzburg-Landau equation. The numerical analysis resisis confirm the consistency of the moment bounds for the
actual and numerical solutions of the equation obtainedIBg$ and SISS3 methods. In addition to these, one may see
[16] for the second moment boundaries and simulation results.

The remainder of the paper is organized as follows. The $mplicit split-step (SISS) methods are represented in this
section. We present some theorems for the moment estimiates 81SS1 and SISS3 methods and actual solution of the
stochastic Ginzburg-Landau equation and prove them in@e2t In Secton 3, we perform simulations with the scalar

version of Ginzburg-Landau SDE and exhibit the partial weakvergence analysis results. The paper concludes in
Section 4.

1.1 Semi implicit split-step methods for Ginzburg-Landquagion
We consider the scalar version of the generalized stoch@gtizburg-Landau equation
dX(t) = (AX(t) — 0X"(t))dt+ o(X(t))dW(t), 0<t <T, 1)

for an odd positive integer > 3, and constantd > 0, A € R with X(0) = xg, whereag(.) satisfies the linear growth
condition. Then, we know that the first step of the split-dtapkward Euler method]J for this scalar SDE reduces to

y=X+A(Ay— ).

On the other hand, Izgi and Cetin presented the approximé#aiothe drift terma(y) = Ay— dy" with p1(x,y) = Ay—
SyX 1, or with po(x,y) = Ax— 8yx ~1in [11,12] when they introduced SISS method. If we solwe x+ p1(x,y)A and
y = X+ p2(X,y)A for y, respectively, then we obtain the following expressions

By XAy A
) =1 a@e 1oa) a0 = 1= 7a a0 1
and
Ao (1+AA)X Y a(x)
9" () =1 A1 Whilea™ () = 1750

wheref4 (x) = x+ Aa? (x) andg? (x) = x+ Aa? (x) with the corresponding® (X).

By using the above approximations, the four SISS methodghndre introduced by 1zgi and Cetii1,12], are in the
following forms for a generalized version of the stocha&inzburg-Landau equation:
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The first SISS method (SISSTL)For f4(x) = m

Xir1 = F2(X) + 0 (X ) AWk, 1, )

The second SISS method (SISS2for the samé# (x) above andr® (x) = o (f4(x)),

Xicr1 = 2 (X) + 02 (X) AW 1.

The third SISS method (SISS3)Forg? (x) = 11880

Xer1 = 0" (%) + 0 (Xi) AW 1. @A)

The fourth SISS method (SISS4)For the same® (x) above,

Xir1 = g% (%) + (0 (X)) AWr1.
whereA = At =T /nandAW, 1 = Wik 1)ar — Wkat for eachk =0,1,2,...n.

RemarkBy Lemma 1 and Theorem 1 i1 8], we know that we have all moments of the actual solution,ahchoments
of the numerical solutions of equatiob) (obtained by SISS methods exist for sufficiently sndall

2 Some moment bounds for the SISS Methods

In this section, we obtain some moments bounds for the SISBade based on the stochastic Ginzburg-Landau equation
for r = 3 while the diffusion term isr(X) = gX. We especially focus on SISS1 and SISS3 methods. Althoughlthe
moments of the numerical solutions need to be investigatethé weak convergence analysis of SISS methods, as a first
step for this analysis, we work on the first moment bounds e§¢hmethods. Note that similar theoretical results may
obtain easily for SISS2 and SISS4 methods using their oglghiip with SISS1 and SISS3 methods, respectively.

Theorem 1.The iterations X using the first SISS metho) o solve the equatiorij for r = 3 and o(X) = gX satisfy
the following:

(i) The upper bound for the first moment of the iterations white 0,A € R is

Xo

E[Xkr1) < (I Ad)T

forallk =0,1,2,....,n and sufficiently smad < A < T.

Ao
while 1 — AAp > 0 then the lower bound for the first moment of the iterations

1 . 5A 72(k+l)xo
(1—AA)KT 1-AA

(i) There is sufficiently smally > 0 such that X < | /14 2,/1282 . (1 — AAg)"

EXra] >

holds for all k=0,1,2,...,nand0 < A < Ag while d > 0,A€ R.
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Proof. (i) If we take the expectation of the iterations for the first SI8&hodX,,1 = f4(X) + 0 (X )AW, 1 then we
haveE [Xi;1] = E [f4(X¢)] using the fact thafo (X)) AW, 1 = 0XAW, 1,k > 0} is a martingale by above Remark, and

basic stochastic calculus rules. Then, we have the follgwéssults after some iterations féf (x) = er—LA) with
r = 3 which is given in @) for equation {).
X« E[X]
E =E <
el [1— (A—6XE)A} “1-AA
then we have
Xo
<
EXi]<i—m
E[Xy] Xo
< <
Bl <1 = (1-AA)2
Xo
E[Xkt1] Sm-
(ii) If we use similar approaches in (i), then we have
X X
E =E|f4 =E|-———————|=E|——= 4
where u=1—AA and m= 6A. Now, let's definey(x) as ;1. then
1 X m
9 =3 (m) letN=1
1 X 1-AA
>> [ ————— |whilex< {/1+2
~u ( (1+ \/N)Z) oA

Thus, we have(x) > h(x) whereh(x) = 1 (m) . By the condition orXy and the result in (i) above it is clear that
the monotonicitye [g(Xk)] > E[h(X)] holds for allk. Now if we use this fact in4), then we have the following after some

iterations:

E[Xk+1]

Y

i ()=
u_12<m> E[Xk-1]

v

1 1
=z UKL ((1+ \/N)Z(kJrl)) Xo

) 1 ) A —2(k+1)
~(a=aars) (Mo %

Theorem 2.The iterations X using the third SISS metho8) (o solve the equatiorl] forr =3 ando(X) = oX satisfy
the following:
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(i) The upper bound for the first moment of the iterations white 0,A € R is

(1+AA)k+1

forallk =0,1,2,....,n and sufficiently smad < A <T.
(i) For sufficiently smallAg > 0, if Xo < , /14 —2

-(1— AAp) " then the lower bound for the first moment of the

/84
iterations ( )k+1
1+AA
E L S
[Xk+l] = (\/5_A+1)2(k+1)

holds for all k=0,1,2,...,nand0 < A < Ag while d > 0,A € R.

Proof. (i) The proof can be done by using the similar steps that age usthe proof of Theorer for the third SISS
methodXy.1 = g2 (X) + 0XAWk, 1 while g2 (X) = -2E24% with r = 3. Then we have

Y !
—E[P(X)] = W}
ElXal = Elg* () =€ | 05
After some iterations, we have
_Xo(1+A4)
Ebal = 1+0AXZ
_ 2_ %o
E[Xz] <(1+AA)E[X] = (1+AA) 100
k+1 Xo
EXera] <1+ AL s
(i) Itis clear that we have the following for SISS3 method
=l _ X _ X«
Bl = E [ 000] =€ | s | (1 A0) = | 1 | (e 0) ®
where m= 8A. In this step, if we defina(x) as - then
h(x) = X > X _gwhiex< (/14—
~ (Vmxt 12— 2ymx " (Ymr L2 O NETY
Use the monotonicity dfi(x) > g(x) in (5) and iterate it, then we obtain
E 14+ AA k+1 1+AA k+1

(VM+1)2 = (/m+ 1)2k+1) (V34 + 1)2(k+1
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Corollary 1. The terminal value, X satisfies EX,] < Xoe T while using the SISS1 and SISS3 methods to solve the
equation () forr =3 andog(X) = oX whend > 0,A € R and sufficiently smab < A <T.

Theorem 3.The actual solution of equatiod)for r = 3anda(X) = oX is given in equationd) has the following upper
and lower boundaries:

E[X(t)] <Xoe™ (6)
(A—3 02t
EX (1) 222 e( ) (7)
25 2( 2A+02 tfl)
\/ L e

while the model parameters> 0, A € R with X(0) = Xo.

Proof. If we take the expected value of the actual solution ity = e(29°~At-9W(t) then we have the following for
the upper bound of the actual solution:

t
EX(1)] =E[F (1) (7 +25 [ F2(g)ds) 7
0

<E[F(t)]Xo, by the expectation of the geometric Brownian motions,

<Ko

Similarly, we start with

then, by Jensen’s inequality, we obtain

1

XoeA~3 o)t

E [eC’W“) \/1+ 26X§_} Fz(s)ds|
0

EX(t)] >

Now, if we use Cauchy-Schwarz inequality with Fubini’s thexo then we have

(A2t A i
E[X(t)] > e -— ’
= - 2(a(2A+02)t _
\/e“Tt{lJr 26X020f E[el2A-0)s+20W(s)]dls} \/1Jr = (§A++02 :

after some calculations.

Corollary 2. The expected value of the actual solution of equatijrfdr r = 3 and g(X) = oX at the terminal time
E[X(T)] is bounded above by#"T.
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3 Simulation results

In this section, we perform simulations via SISS methoddlierstochastic Ginzburg-Landau equation, whose explicit
solution is known, and present some extensive nhumericdysinaesults. Especially, we investigate the consistesfcy
our theoretical results, which can be used at the furthesréiieal frameworks for the weak convergence analysis of
these methods, obtained for SISS1 and SISS3 methods. Mdanwle analyze their empirical rates of weak
convergence.

For a numerical example, we consider the following SDE, Whscthe stochastic Ginzburg-Landau equationrfer 3
with multiplicative noise,
dX(t) = (AX(t) — 8X3(t))dt+ X (t)dW(t). (8)

for X(t) = xo > O fixed, and 6< t < T. The explicit and unique solution of this equation satisfiesfollowing a.s. positive
process

t
X(t) = F’l(t){xaer26/F’2(s)ds}’l/2 ©)
0

whereF (t) = elz9°-At-0W() gsatisfying the SDEIF(t) = F (02 — A)dt — oFdW(t) with F(0) = 1. This can be shown
easily and it's derivation can be done by applying the ItaletoY(t) = X(t)F(t) with Y (0) = Xo.

Moreover, we perform the repeated simulations withahe —1,6 = 0.1, 0 = 1, andXy = 5 model parameters while the
number of simulations i&N = 10.000 Figurel and Figure2 show that the upper and lower boundaries obtained for
SISS1 and SISS3 methods are consistent with the numericéiss of the SDE in§).

Furthermore, Figur8 is generated by using the boundaries, which are giverspgr(d (7) in Theorem3, for the actual
solution @) of Ginzburg-Landau equation. The figures also confirm thasé¢ boundaries keep the behavior of the
solution of stochastic Ginzburg-Landau equation. Anothmgrortant interpretation of these results is one may ussethe
boundaries to show the usual rate of weak convergence af thethods in the theoretical proof which is left for a future
project in this paper.

SISS1: Comparisions of the lower and upper boundaries with the numerical solutions while n=256 and T=5
T T T T T T T T T T

lower bound values
— iteration values
-~ upper bound values

E[X(tk)] values

0 0.5 1 15 2 25 3 35 4 45 5
t, values

Fig. 1: SISS1: Comparisions of the boundaries with the numeridatisos.

© 2019 BISKA Bilisim Technology


www.ntmsci.com

(_/
29 BISKA B. Izgi and B. Ari: Some results for the weak convergence ofisenplicit split-step methods

SISS3: Comparisons of the lower and upper boundaries with the numerical solutions while n= 256 and T=5.
T T T T T T T T T T

lower bound values
5 —iteration values
—=—upper bound values

E[X(tk)] values

0 0.5 1 15 2 25 3 35 4 45 5
t values

Fig. 2: SISS3: Comparisions of the boundaries with the numeridatisas.

Comparisions of the lower and upper boundaries with the actual solutions while n=256 and T=5
B T T T T T T T T T T

lower bound values
—actual values
—=—upper bound values

0 05 1 15 2 25 3 35 4 45 5
tvalues

Fig. 3: Comparisions of the boundaries with the actual solutions.

On the other hand, it is sufficient to consider terminal tinadues for the weak convergence analysis. Therefore, we
conduct repeated simulations of siXe= 100.000 for each method with the respective step size, 26, 27,28 and 2,

in order to investigate the rate of weak convergence of thetbods empirically. Then, we show these analysis’ results
using the log-log graphs such that the comparisor&[Xf(T)] with E[X(tn)] andE[X?(T)] with E[X?(t,)] are given in
Figure4 and Figureb, respectively. Both figures suggest that the SISS1 and S48Ki8ve the usual weak convergence
rate of 1 Moreover, we obtain similar results in Figurésind5 for the higher moment values (i.E]X3(T)], E[X*(T)]
etc.), too.

4 Conclusions

We provide some partial theoretical and numerical resutstlie weak convergence analysis of the semi-implicit
split-step (SISS) methods based on stochastic Ginzbungldia equation under some conditions of the model
parameters. First, we find the first moment bounds for the BI&® SISS3 methods and the actual solution of the
equation. Then, we perform simulations and succeed to shaivthe weak convergence rate of SISS methods is
approximately 1, as it is expected, with respect to the tmggraphs. Finally, we observe that our repeated simulation
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Weak Convergence: Log-log graph for 51551 and SISS3 methods
T T T T T T

-5 T
—— 5IS81
—&—8IS83
— - reference line with slope 1

-9.5 -9 8.5 -8 -5 -7 6.5 -5 -5.5
Iogz(;\lj

Fig. 4: Log-log graphs for the weak convergence rate of the SISSE#83 methods.

Weak Convergence: Log-log graph for SISS1 and SISS3 methods
-5 T T T T T T T
| [—# SISS1
—5- 8ISS3

— 4 reference line with slope 1

9.5 -9 8.5 -8 7.5 -7 8.5 -6 5.5
\ogz(-_\l)

Fig. 5: Log-log graphs for the weak convergence rate of the SISSE#83 methods.

experiments show the robustness of the numerical solutiorike upper and lower boundaries of the first moment when
A is relatively (orn is big enough) small enough.
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