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Abstract: In this article a functional differential equation known as the high-order delay pantograph-type equation, which contains
a linear functional argument, is considered and a new matrix method based on the Fibonacci polynomials and collocation points is
presented to find the approximate solution of the pantograph equations under the initial conditions. Also, the numerical examples are
given demonstrate the applicability of the technique. In addition, an error analysis technique based on residual function is developed
and applied to some problems to demonstrate the validity of the method.
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1 Introduction

Functional-differential equations with proportional delays are usually referred to as pantograph equations or generalized
equations. The name pantograph originated from the work of Ockendon and Tayler [1] on the collection of current by the
pantograph head of an electric locomotive. These equations arise in many applications such as nonlinear dynamical
systems, electrodynamics, number theory, astrophysics, quantum mechanics and cell growth, among others [2-4]. In
recent years, there has been a growing interest in the numerical treatment of the pantograph equations of the retarded and
the advanced type. A special feature of this type is the existence of compactly supported solutions [5]. This issue was
studied in [6] and has direct applications to approximation theory and to wavelets [7].

Pantograph equations are characterized by the presence of a linear functional argument and play an important role in
explaining many ODEs- based model fail. These equations arise in industrial applications [1, 8] and in studies based on
biology, economy, control and electrodynamics [9, 10].

The different numerical methods have been used to find the approximate solutions of multi-pantograph and generalized
pantograph equations [11-20]. In addition, the Fibonacci method has been used to find the approximate solutions of
differential, integral, integro-differential, difference equations [21-23]. The basic motivation of this work is to apply the
Fibonacci method to the nonhomogenous and the homogenous generalized pantograph equations with variable
coefficients, which are extented of the multi-pantograph equations, in the above mentioned studies. Our aim in this study
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is to develop and to apply the Fibonacci collocation method to the pantograph equation

y(m)(t) =
J

∑
j=0

m−1

∑
k=0

Pjk(t)y(k)(λ jkt +µ jk)+g(t),0 ≤ t ≤ b (1)

with the initial conditions
m−1

∑
k=0

ciky(k)(0) = λi, i = 0,1, ...,m−1. (2)

Here Pjk(t) and g(t) are continuous functions defined in the interval 0 ≤ t ≤ b;cik,λi,λ jk, and µ jk are real or complex
constants. Our purpose is to find an approximate solution of (1) expressed in the truncated Fibonacci series form

y(t) =
N

∑
n=1

anFn(t),0 ≤ t ≤ b (3)

where an,n = 1,2,3, ...,N are the unknown Fibonacci coefficients. Here N is chosen any positive integer such that N ≥ m
and Fn(t),n = 1,2,3, ...,N are the Fibonacci polynomials defined by

Fn(t) =
[(n−1)/2]

∑
j=0

(
n− j−1

j

)
tn−2 j−1,

[(n−1)/2] =

{
(n−2)/2, n even
(n−1)/2, n odd.

2 Fundamental matrix relations

First, we can write the Fibonacci polynomials Fn(t) in the matrix form as follows,

FT (t) =CT T (t)⇔ F(t) = T (t)CT (4)

where F(t) = [F1(t)F2(t)...FN(t)] if
T (t) = [1t . . . tN−1],

N is even,

C =



(
0
0

)
0 0 0 · · · 0

0

(
1
0

)
0 0 · · · 0(

1
1

)
0

(
2
0

)
0 · · · 0

0

(
2
1

)
0

(
3
0

)
· · · 0

...
...

...
...

...
...(

(n−2)/2
(n−2)/2

)
0

(
n/2
(n−4)/2

)
0 · · · 0

0

(
n/2
(n−2)/2

)
0

(
(n+2)/2
(n−4)/2

)
· · ·

(
n−1

0

)


NxN
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if N is odd,

C =



(
0
0

)
0 0 0 · · · 0

0

(
1
0

)
0 0 · · · 0(

1
1

)
0

(
2
0

)
0 · · · 0

0

(
2
1

)
0

(
3
0

)
· · · 0

...
...

...
...

...
...

0

(
(n−1)/2
(n−3)/2

)
0

(
(n+1)/2
(n−5)/2

)
· · · 0(

(n−1)/2
(n−1)/2

)
0

(
(n+1)/2
(n−3)/2

)
· · · · · ·

(
n−1

0

)


NxN .

We now consider the solution y(t) of Eq. (1) defined by the truncated Fibonacci series (3). Then the finite series (3) can
be written in the matrix form

y(t) = F(t)A, A =
[

a1 a2 · · · aN

]T
,

or from Eq. (4)

y(t) = T (t)CT A. (5)

On the other hand, it is clearly seen from [16] that the relation between the matrix T (t) and its derivative T (1)(t) is

T (0)(t) = T (t),T (1)(t) = T (t)BT (6)

where

BT =



0 1 0 · · · 0 0 0
0 0 2 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

...
...

0 0 0 · · · 0 0 N −1
0 0 0 · · · 0 0 0


.

It follows from (6) and (4) that

T (0)(t) = T (t) (7)

T (1)(t) = T (t)BT

T (2)(t) = T (1)(t)BT = T (t)(BT )2

...

T (k)(t) = T (k−1)(t)(BT )k−1 = T (t)(BT )k
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and thus

F(k)(t) = T (k)(t)CT = T (t)(BT )kCT . (8)

From the relations (5), (7) and (8), we have recurrence relations

y(k)(t) = F(k)(t)A (9)

= T (k)(t)CT A

= T (t)(BT )kCT A,k = 0,1,2, ...,m.

Similarly, we obtain the matrix relations as

T (λ jkt +µ jk) = T (t)B(λ jk,µ jk)

y(λ jkt +µ jk) = T (λ jkt +µ jk)CT A
y(k)(λ jkt +µ jk) = T (t)B(λ jk,µ jk)(BT )kCT A

(10)

where for λ jk ̸= 0 and µ jk ̸= 0,

B(λ jk,µ jk) =



(
0
0

)
(λ jk)

0(µ jk)
0

(
1
0

)
(λ jk)

0(µ jk)
1 . . .

(
N −1

0

)
(λ jk)

0(µ jk)
N−1

0

(
1
1

)
(λ jk)

1(µ jk)
0 . . .

(
N −1

1

)
(λ jk)

1(µ jk)
N−2

...
...

. . .
...

0 0 . . .

(
N −1
N −1

)
(λ jk)

N−1(µ jk)
0


and for λ jk ̸= 0 and µ jk = 0,

B(λ jk,0) =


(λ jk)

0 0 . . . 0
0 (λ jk)

1 . . . 0
...

...
. . .

...
0 0 . . . (λ jk)

N−1

 .

3 Method of solution

We can construct the fundamental matrix equation for Eq.(1) now. For this aim, we substitute the matrix relations (9) and
(10) into Eq. (1) and obtain the matrix equation

T (t)(BT )mCT A =
J

∑
j=0

m−1

∑
k=0

Pjk(t)T (t)B(λ jk,µ jk)(BT )
k
CT A+g(t). (11)

The collocation points ti are defined as

ti =
b

N −1
(i−1), i = 1,2, ...,N. (12)

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 90-102 (2015) / www.ntmsci.com 94

By substituting (12) in Eq. (11), we obtain the system of the matrix equations

T (ti)(BT )mCT A =
J

∑
j=0

m−1

∑
k=0

Pjk(ti)T (ti)B(λ jk,µ jk)(BT )
k
CT A+g(ti), i = 1,2, ...,N

or shortly the fundamental matrix equation{
T (BT )

m
CT −

J

∑
j=0

m−1

∑
k=0

PjkT B(λ jk,µ jk)(BT )
k
CT

}
A = G (13)

where Pjk =


Pjk(t1) 0 · · · 0

0 Pjk(t2) · · · 0
...

...
. . . 0

0 0 · · · Pjk(tN)

, G =


g(t1)
g(t2)

...
g(tN)

, T =


T (t1)
T (t2)

M
T (tN)

=


1 t1 · · · tN−1

1
1 t2 · · · tN−1

2
...

...
. . .

...
1 tN · · · tN−1

N

 .

Hence, the fundamental matrix equation (13) for Eq. (1) can be written in the form

WA = G or [W ;G] (14)

where

W = T (BT )mCT −
J

∑
j=0

m−1

∑
k=0

PjkT B(λ jk,µ jk)(BT )
k
CT ,

W = [wi j] i, j = 1,2, ...,N.

Here, Eq. (14) corresponds to a system of N linear algebraic equations with unknown Fibonacci coefficients a1,a2, ...,aN .
By means of the relation (9), for the conditions (2), we can obtain the matrix forms

m−1

∑
k=0

cikT (0)(BT )
k
CT A = [λi], i = 1,2,3, ...,m.

On the other hand, we can write the matrix form for the conditions as

UiA = [λi] or [Ui;λi] , i = 1,2,3, ...,m (15)

where

Ui =
m−1

∑
k=0

cikT (0)(BT )
k
CT = [ui1ui2ui3...uiN ], i = 1,2,3, ...,m.
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To obtain the solution of Eq. (1) under conditions (2) by replacing the row matrices (15) by the last mrows of the matrix
(14), we have the new augmented matrix [15, 16],

[W̃ ; G̃] =



w11 w12 · · · w1N ; g(t1)
w21 w22 · · · w2N ; g(t2)

...
...

...
... ;

...
w(N−m)1 w(N−m)2 · · · w(N−m)N ; g(tN−m)

u11 u12 · · · u1N ; λ1

u21 u22 · · · u2N ; λ2
...

...
...

... ;
...

um1 um2 · · · umN ; λm


. (16)

If rankW̃ = rank[W̃ ; G̃] = N, we can writeA = (W̃ )−1G̃. Thus, we uniquely determine the matrix A (thereby the
coefficientsa1,a2, ...,aN). Therefore, Eq. (1) with conditions (2) has a unique solution which is given by Fibonacci series
solution (3). On the other hand, when

∣∣W̃ ∣∣ = 0, that is if rank W̃ = rank[W̃ ; G̃] ≤ N, we can find a particular solution.
Otherwise if rankW̃ ̸= rank[W̃ ; G̃]≤ N, then there is no solution.

4 Error analysis based on residual function

In this section, we will give an efficient error estimation for the Fibonacci polynomial approximation and also a technique
to obtain the corrected solution of the problem (1) and (2) by using the residual correction method [24-28]. For our
purpose, we define the residual function for the present method as

RN (t) = yN
(m)(t)−

J

∑
j=0

m−1

∑
k=0

Pjk(t)yN
(k)(λ jkt +µ jk)−g(t) (17)

where yN (t) is the approximate solution of the problem (1) and (2). Thus, yN (t)satisfies the problem

yN
(m)(t)−

J
∑
j=0

m−1
∑

k=0
Pjk(t)yN

(k)(λ jkt +µ jk) = g(t)+RN(t)

m−1
∑

k=0
ciky(k)(0) = λi.

(18)

Also, the error function eN (t) can be defined as

eN (t) = y(t)− yN (t) (19)

where y(t)is the exact solution of the problem (1) and (2). Substituting (19) into (1) and (2) and using (17) and (18), we
have the error differential equation with the homogenous conditions

eN
(m)(t)−

J
∑
j=0

m−1
∑

k=0
Pjk(t)eN

(k)(λ jkt +µ jk) =−RN(t),

m−1
∑

k=0
cikeN

(k)(0) = 0, i = 0,1, ...,m−1.
(20)

Solving the problem (20) in the same way as in Section 3, we get the approximation eN,M (t) toeN (t), M > Nwhich is the
error function based on the residual functionRN (t).
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Consequently, by means of the Fibonacci polynomials yN (t)and eN,M (t), we obtain the corrected exponential solution

yN,M (t) = yN (t)+ eN,M (t) .

Also, we construct the Fibonacci error function eN (t) = y(t)− yN (t), and the corrected Fibonacci error function

eN (t) = y(t)− yN (t) ,
EN,M (t) = eN (t)− eN,M (t) .

5 Numerical examples

Example 1. [12] With the exact solutiony(t) = t2, let us first consider the pantograph equation of the second order

y′′(t) =
3
4

y(t)+ y(t/2)− t2 +2,y(0) = 0,y′(0) = 0,0 ≤ t ≤ 1. (21)

We assume that the problem has a Fibonacci polynomial solution in the form

y(t) =
N

∑
n=1

anFn(t)

where N = 3,P00(t) = 3/4,P10(t) = 1,g(t) =−t2 +2, λ00 = 1,µ00 = 0,λ10 = 1/2,µ10 = 0.

From Eq. (12), the collocation points for N = 3 are computed

{t1 = 0, t2 =
1
2
, t3 = 1}

and from Eq. (13), the fundamental matrix equation of the problem is{
T (BT )

2
CT −P00T B(λ00,µ00)(BT )

0
CT −P10T B(λ10,µ10)(BT )

0
CT
}

A = G

where

P00 =

3/4 0 0
0 3/4 0
0 0 3/4

 , P10 =

1 0 0
0 1 0
0 0 1

 , BT =

0 1 0
0 0 2
0 0 0

 ,
CT =

1 0 1
0 1 0
0 0 1

 , T =

1 0 0
1 1/2 1/4
1 1 1

 , G =

 2
7/4
1

 ,
B(λ00,µ00) = B(1,0) =

1 0 0
0 1 0
0 0 1

 B(λ10,µ10) = B(1/2,0) =

1 0 0
0 1/2 0
0 0 1/4

 .
The augmented matrix for this fundamental matrix equation is

[W ;G] =

−7/4 0 1/4 ; 2
−7/4 −5/8 0 ; 7/4
−7/4 −5/4 −3/4 ; 1

 .
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From Eq. (15), the matrix forms for the initial conditions are

U jA = [λ j] or [U j;λ j]; j = 0,1

or clearly
[U0;λ0] =

[
1 0 1 ; 0

]
,

[U1;λ1] =
[

0 1 0 ; 0
]
.

From system (16), the new augmented matrix based on conditions can be written as

[
W̃ ; G̃

]
=

−7/4 0 1/4 ; 2
1 0 1 ; 0
0 1 0 ; 0

 .

Solving this system, the Fibonacci coefficients matrix is obtained as,

A =
[
−1 0 1

]T
.

Hence, by substituting the Fibonacci coefficients matrix into Eq. (3),

y(t) =
N

∑
n=1

anFn(t) = a1F1(t)+a2F2(t)+a3F3(t)= (−1).1+0.t +1.(t2 +1)=t2.

Thus, the solution of the problem for N = 3 becomesy(t) = t2.

Example 2. Consider the following problem [18],

y′(t) =
1
2

e
t/2

y(
t
2
)+

1
2

y(t),y(0) = 1,0 ≤ t ≤ 1. (22)

Note that the exact solution is y(t) = et .

From Eq. (13), the fundamental matrix equation is{
T (BT )CT −P00T B(λ00,µ00)(BT )

0
CT −P10T B(λ10,µ10)(BT )

0
CT
}

A = G

where

P00(t) =
1
2

et/2,P10(t) =
1
2
,g(t) = 0, , λ00 =

1
2
,µ00 = 0,λ10 = 1,µ10 = 0.
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Therefore, we obtain the solution of the problem for N = 13

y(t) = (3.313e−9)t12 +(2.15461e−8)t11 +(2.81237e−7)t10 +(2.74986e−6)t9 +(2.48057e−5)t8

+(1.98411e−4)t7 +(1.38889e−3)t6 +(8.33333e−3)t5 +(4.16667e−2)t4 +(1.66667e−1)t3 +(0.5)t2 + t +1.

In order to estimate the errors for N = 13 we consider the following error problem of (18)

e13
′(t)− 1

2 e
t/2

e13(
t
2 )−

1
2 e13(t) =−R13 (t)

e13 (0) = 0.
(23)

Here the residual function is
R(t) = e13

′(t)− 1
2

e
t/2

e13(
t
2
)− 1

2
e13(t).

By solving the error problem (23) for M = 14 introduced in Section 4, the estimated error function approximation e13,14(t)
is obtained as

e13,14(t) = (2.55591e−10)t13 − (1.52296e−9)t12 +(4.03835e−9)t11 − (6.28288e−9)t10 +(6.36498e−9)t9

−(4.40373e−9)t8 +(2.12132e−9)t7 +(7.11204e−10)t6 +(1.6278e−10)t5 − (2.43206e−11)t4

+(2.16109e−12)t3 − (9.00273e−14)t2 +(4.0e−30)t +(6.0e−38)

Thus, we obtain the corrected exponential solution as

y13,14(t) = y13(t)+ e13,14(t).

In Figure 1, we compare the absolute error |e13 (ti)|with the corrected absolute error|E13,14 (ti)|. The present approximate
solution converges the exact solution as the number of collocation points increases. Table 1 shows the numerical results of
the absolute errors and the corrected absolute errors for N = 12,13 andM = 13,14. It reveals that the residual function will
give more accurate results with the smaller corrected errors. Furthermore, the absolute errors of the solutions obtained by
the other methods [12, 16, 19, 20] are compared with the absolute error of the solutions obtained by presented method for
N = 13 in the Table 2.
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Fig. 1. Comparison of the absolute error with the corrected absolute error for Eq.(21)
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Table 1. Numerical results of the error functions for N = 12,13 and M = 13,14.

ti Absolute and Corrected error Absolute and Corrected error
|e12 (ti)| |E12,13 (ti)| |e13 (ti)| |E13,14 (ti)|

0 0 0 0 0
0.2 2.97170e-15 6.57501e-17 7.96088e-17 1.60808e-18
0.4 3.71271e-15 3.14207e-17 9.83759e-17 6.58744e-19
0.6 4.55735e-15 5.48645e-17 1.20240e-16 1.66569e-17
0.8 5.83019e-15 2.15545e-16 1.43143e-16 5.83700e-18
1 1.46701e-13 4.50428e-15 3.85733e-15 9.54018e-17

Table 2. Comparison of the absolute errors of Eq. (21)

ti
Spline method [20]

h = 0.001, m = 3,N = 12

Adomain
method with 13

terms[12]
N = 12

Taylor method
[16] N = 12

Variatonal
Method [19]

Present method
N = 13

0.2 1.37e-11 0.00 2.220e-16 2.44e-05 7.96088e-17

0.4 3.27e-11 2.22e-16 1.332e-15 2.28e-04 9.83759e-17

0.6 5.86e-11 2.22e-16 2.189e-13 9.00e-04 1.20240e-16

0.8 9.54e-11 1.33e-15 9.361e-12 2.50e-03 1.43143e-16

1 1.43e-10 4.88e-15 1.729e-10 5.71e-03 3.85733e-15

Example 3. Consider the pantograph equation of first order [16],

y′(t) =−y(t)+µ1(t)y(t/2)+µ2(t)y(t/4),y(0) = 1,0 ≤ t ≤ 1. (24)

with the exact solutiony(t) = e−t cos(t).

Here, µ1(t) = −e−0.5t sin(0.5t),µ2(t) = −2e−0.75t cos(0.5t)sin(0.25t). From Eq. (13), the fundamental matrix equation
of the problem is{

T (BT )
1
CT −P00T B(λ00,µ00)(BT )

0
CT −P10T B(λ10,µ10)(BT )

0
CT −P20T B(λ20,µ20)(BT )

0
CT
}

A = G

Note that P00(t) =−1,P10(t) = µ1(t),P20(t) = µ2(t),g(t) = 0, and

λ00 = 1,µ00 = 0,λ10 = 1/2,µ10 = 0,λ20 = 1/4,µ20 = 0.

Hence, we find the solution of the problem for N = 8

y(t) =−(0.52794e−3)t7 − (0.13344e−2)t6 +(0.34245e−1)t5

− (0.16701)t4 +(0.33340)t3 − (0.59313e−5)t2 − t +1

Table 3 shows a comparison of the numerical results of the absolute errors and the corrected absolute errors for N = 8
and M = 9. In addition, Figure 2 illustrates a comparison of the absolute error |e8 (ti)| with the corrected absolute error
|E8,9 (ti)|and it indicates the significant decrease in the absolute error owing to the error correction by the residual function.

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 90-102 (2015) / www.ntmsci.com 100

In Figure 3, the absolute error and the solution obtained by the present method are compared with the absolute error and
the solution of the Taylor method given in [16]. It is seen from Figure 4 that the results obtained by the present method is
very superior to that obtained by the Taylor method.

Table 3. Numerical results of the error functions forN = 8 and M = 9
ti Absolute error Corrected absolute error

|e8 (ti)|
∣∣E8,9 (ti)

∣∣
0 0 0
0.2 1.45223e-08 5.33333e-10
0.4 1.11496e-08 2.00920e-10

0.6 6.35221e-09 1.07101e-09

0.8 8.88920e-10 1.89453e-09

1 4.61651e-07 3.17734e-08
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Fig. 2. Comparison of the absolute error with the corrected absolute error for Eq. (24)
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6 Conclusions

A new approach using the Fibonacci polynomials to solve numerically the pantograph equations is presented in this study.
The comparison of the results obtained by the present method with other methods reveals that the present method is more
convenient, reliable and effective. An error analysis technique based on residual function is also developed and applied
problems to demonstrate the validity and the applicability of this method. If the exact solution of the problem is not
known, by using this technique it is possible to estimate the error function and also to reduce the error due to the residual
function. It is seen that, the accuracy improves, when N is increased. Tables and figures indicate that as Nincreases, the
errors decrease more rapidly. Another considerable advantage of the method is that Fibonacci coefficients of the solution
are found very easily by using the computer programs.
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