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Abstract: In this study, we first show that the system of Frenet-like differential equation characterizing spacelike curves of constant
breadth is equivalent to a third order, linear, differential equation with variable coefficients. Then, by using a rational approximation
based on Bernstein polynomials, we obtain the set of solution of the mentioned differential equation under the given initial conditions.
Furthermore, we discuss that the obtained results are useable to determine spacelike curves of constant breadth in Minkowski 3-space
E3

1.
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1 Introduction

The curves of constant breadth firstly were introduced by Euler in 1778 [5]. Reuleaux gave some methods of obtaining

curves of constant breadth in 1971, which led to the use of these curves in kinematic of machinery [15]. So far, many

scientists working on geometry have obtained only the geometrical properties of curves of constant breadth in plane, but

little work has been done on space curves of constant breadth. [1, 2, 11, 12]. A number of interesting properties of these

curves in plane are included in the works of Mellish [13]. Fujivara obtains a problem to determine whether there exist

“space curve of constant breadth” or not and he defines “breadth” for space curves and obtains these curves on a surface

of constant breadth [6]. By using the basic concepts concerned with the space curves of constant breadth [11], an integral

characterization of these curves [4, 17] is obtained and a criterion for these curves is determined [16]. The curves of

constant breadth are extended to E4- space and some characterizations are obtained [12]. In addition, Akdoğan and

Mağden [1] extend to En-space this kind of curves and they obtain some characterizations. Also Aydın [2] obtains

differential equation characterizing curves of constant breadth in En and then she obtains approximate solutions of this

equation using Taylor matrix collocation method. Studies in different spaces [14, 18] on these curves are going on

nowadays, currently. These curves are used in the kinematics of machinary, engineering and com design.

In this study, our first aim is to establish differential equation discribing a spacelike curve of constant breadth in
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Minkowski 3-space. The second aim is to find an approximate solution based on Bernstein polynomials of this

differential equation [3, 9]. In this study we also analyze the role of the obtained solution in determining these curves.

2 Preliminaries

Bernstein polynomials of nth-degree are defined by

Bk,n (x) =
(n

k

) xk(R− x)n−k

Rn , k= 0,1, . . . ,n

where R is the maximum range of the interval[0,R] over which the polynomials are defined to form a complete basis [3].

(R− x)n−k =
n−k

∑
i=0

(

n− k

i

)

(−1)iRn−k−ixi

If the above expression is used in the definition, the following equation occurs.

Bk,n (x) =
n−k

∑
i=0

(

n

k

)(

n− k

i

)

(−1)i

Rk−i
xk+i

The Minkowski 3-space is real vector spaceR3provided with the standart flat metric given by

g=−dx2
1+dx2

2+dx2
3

where(x1,x2, x3) is a rectangular coordinate system of Minkowski 3-spaceE3
1. An arbitrary vector−→v = (v1,v2, v3) in

E3
1 can be spacelike ifg(−→v ,−→v ) > 0 or−→v = 0. Similarly, an arbitrary curve−→α = −→α (s) locally be spacelike if all of its

velocity−→α
′

(s) are spacelike [14].

Furthermore, for an arbitrary spacelike curve−→α (s) in spaceE3
1, the following Frenet formulas are given











−→
T

′

−→
N

′

−→
B

′











=









0 k1 0

−εk1 0 k2

0 k2 0

















−→
T
−→
N
−→
B









whereg
(−→

T ,
−→
T
)

= 1, g
(−→

N ,
−→
N
)

= ε =±1, g
(−→

B ,
−→
B
)

=−ε, g
(−→

T ,
−→
N
)

= g
(−→

T ,
−→
B
)

= g
(−→

N ,
−→
B
)

= 0 andk1 andk2

are the curvature and torsion of a spacelike curve−→α , respectively [18].

3 Differential equations characterizing spacelike curves of constant breadth in E3
1

In this section, we establish differential equations characterizing the spacelike curves of constant breadth. This study is

based on the concepts presented by Köse [10, 11] and Sezer [16, 17] for space curves of constant breadth.
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Let (C) be a unit speed spacelike curve of the class C3 having parallel tangentsT andT∗ in opposite directions at the

opposite pointsα andα∗ of the curve. If the chord joining the opposite points of (C) is a double-normal, then (C) has

constant breadth, and conversely, if (C) is a spacelike curve of constant breadth, then every normal of (C) is a

double-normal. A simple closed spacelike curve (C) of constant breadth having parallel tangents in opposite directions at

opposite points may be represented by the equation

−→α ∗
(s) =−→α (s)+m1(s)

−→
T (s)+m2(s)

−→
N (s)+m3(s)

−→
B (s) (1)

whereα andα∗ are opposite points, and
−→
T ,

−→
N ,

−→
B denote the unite tangent, principal normal, binormal at a generic

pointα, respectively.sdenotes the arc length of (C) andmi (s) , (1≤ i ≤ 3) are the differentiable functions of s. If Eq.(1)

is derived according to the s parameter and Frenet formulas defined for spacelike curves are used in this derivative, the

following equation is obtained.

d−→α ∗

ds
=
−→
T

∗ ds∗

ds
=

(

1+
dm1

ds
− εk1m2

)

−→
T +

(

m1k1+
dm2

ds
+m3k2

)

−→
N +(m2k2+

dm3

ds
)
−→
B

Since
−→
T =−

−→
T

∗
at corresponding points of (C), the following system is obtained.

1+
dm1

ds
− εk1m2 =−

ds∗

ds

m1k1+
dm2

ds
+m3k2 = 0

m2k2+
dm3

ds
= 0.

The first curvature of the spacelike curves is defined as follows.

lim
∆s→0

∆ϕ
∆s

=
dϕ
ds

= k1(s)

where∆ϕ is the angle of contengency.ϕ denotes the angle between tangent of the curve (C) at the point α(s) and a given

fixed direction. Also it is clear that

ϕ (s) =
∫ s

0
k1(s)ds.

The distance d between the opposite pointsα∗ (s) andα (s) of the curve is the breadth of the curve and it is constant, that

is

d2 = ‖d‖2 = ‖α∗−α‖2 = m2
1+ εm2

2− εm2
3 = const.

On the other hand, the coefficientsm1, m2 andm3 may be obtained by the system (2)

m1
′
= εm2− f (ϕ)

m2
′
=−ρk2m3−m1, (2)

m3
′
=−ρk2m2
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which is the system describing the spacelike curves of constant breadth.f (ϕ) = ρ +ρ∗ and,

ρ =
1
k1

andρ∗ =
1
k∗2

denote the radii of curvaturesα(s) andα∗(s), respectively. (‘) denotes the derivative according toϕ . Also, the vector
−→
d

is the double normal of the curve (C) of constant breadth. First, it is clear that

m2 =
1
ε

m
′

1+
1
ε

f (ϕ) (3)

On the other hand, by using the second equation of the system (2) the following differential equation is obtained;

m3 =
1

ρk2
m

′

2+
1

ρk2
m

1
(4)

and by using the derivative of the equation (3), the following differential equation is obtained:

m3 =
1

ερk2
m

′′

1+
1

ρk2
m1+

1
ερk2

f
′
(ϕ) (5)

In addition, the following is clear from the third equation of the system (2).

m2 =−
1

ρk2
m3

′
(6)

By using the equality of the equations (3) and (6), the following equation is obtained

m
′

1+
ε

ρk2
m

′

3+ f (ϕ) = 0 (7)

On the other hand, by using derivative of the equation (5), F is obtained as follows.

G=−(ρk2) f
′′
+(ρk2)

′
f
′
− (ρk2)

3 f

Finally, the third order, linear, differential equation with variable coefficient is obtained as follows.

(ρk2)m
′′′

1 − (ρk2)
′
m

′′

1+(ρk2)
(

(ρk2)
2− ε

)

m
′

1+(ερk2)
′
m1 = G (8)

As a result, it is clearly seen the system (2) characterizing the spacelike curves of constant breadth can be reduced to the

linear differential equation (8). Furthermore, we can write this equation in the general form

m

∑
k=0

Pk (s)y
(k) (s) = G(s), m= 2, 3, . . . (9)

wherePk (s) are continuous functions of the expression(ρ(s)k2(s)) .
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4 Bernstein series method

In this section, we will explain Bernstein series solution method for the solution of the differential equations definedas

follows.

m

∑
k=0

Pk (s)y
(k) (s) = G(s),0 6= s 6= R (10)

Let f be a solution of Eq.(10). We wish to approximatef by

pn (s) =
n

∑
k=0

akBk,n (s) , n≥ 1 (11)

such thatpn (s) satisfies Eq.(10) on the nodes 0< si < si+1 < · · · < si+d < R. Putting pn (s) into Eq.(10), we get the

system of linear equations depending ona0, a1, . . . , an.

Assume Eq.(10) has a solutionf. Let us consider Eq.(10) and find the matrix forms of each term in the equation. First we

can convert the Bernstein series solutiony= pn(s) defined by (11) and its derivativesy(k)(s) to matrix forms

y(s) = Bn(s)A and y(k) (s) = B(k)
n (s)A (12)

where

Bn (s) =
[

B0,n(s) B1,n(s) . . . Bn,n(s)
]

, A=
[

a0 a1 . . . an

]T
.

On the other hand, it can be written[Bn(s)]
T as[Bn(s)]

T = D(S(s))T or

Bn(s) = S(s)DT (13)

where

D =















d00 d01 · · · d0n

d10 d11 · · · d1n
...

dn0

...

dn1

. . .

· · ·

...

dnn















and di j =







(−1) j−i

Rj

(n
1

)

(

n−i
j−i

)

, i ≤ j

0, i > j

It is clearly seen that the relation between the matrixS(s) and its derivativeS
′
(s) is S

′
(s) = S(s)B, where

B=



















0 1 0 . . . 0

0 0 2 . . . 0
...

...
...

. . . 0

0 0 0 . . . n

0 0 0 . . . 0



















.
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To obtain the matrixS(k)(s) in terms of the matrixS(s), we can use the following procedure:

S
′′
(s) = S

′
(s)B= S(s)B2 nonumber (14)

... (15)

S(k) (s) = S(k−1) (s)B= · · ·= S(s)Bk.

Consequently, we have the following matrix relationship, substituting the matrix forms (13) and (15) in expression (12).

y(k) (s) = S(s)BkDTA (16)

Then, using the matrix relation (16) in Eq.(10), we can easily obtain the following matrix equation.

m

∑
k=0

Pk (s)S(s)BkDTA= G(s) (17)

Using the collocation points defined as{si (i = 0,1, . . . ,n);0≤ s0 < s1 < · · ·< sn ≤ R} in (17), we get the following

system of matrix equations.
m

∑
k=0

Pk (sj)S(sj)BkDTA= G(sj) , j = 0,1, . . . ,n,

Hence, the fundamental matrix equation can be expressed as follows.

m

∑
k=0

PkSBkDTA= G (18)

where

Pk =















Pk (s0) 0 · · · 0

0 Pk (s1) · · · 0
...

0

...

0

...

· · ·

...

Pk (sn)















,G=













g(s0)

g(s1)
...

g(sn)













,

S=













S(s0)

S(s1)
...

S(sn)













=

















1 s0 s2
0

1 s1 s2
1

...

1

...

sn

...

s2
n

. . . sn
0

. . . sn
1

. . .

. . .

...

sn
n

















.

Hence, the fundamental matrix Eq.(18) can be written as follow

WA= G or [W;G] = A, W = [Wkh] , k,h= 0,1, . . . ,n (19)

where

W =
m

∑
k=0

PkSBkDT

and expression (19) corresponds to a system of (n+1) linear algebraic equations with unknown coefficientsa0, a1, . . . ,an.
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Now let us obtain the matrix equation of the conditions by means of the relation (16), as follows

m−1

∑
k=0

(a jk)y
(k)+(b jk)y

(k) = [α j ] , j = 0,1, . . . ,m−1

On the other hand, the matrix forms for the conditions can be written as

U jA= [α j ] or [U j ;α j ] = A, j = 0,1, . . . ,m−1 (20)

where

U j = S(0)BkDT =
[

u j0 u j1 · · · u jn

]

Vj = S(R)BkDT =
[

u j0 u j1 · · · u jn

]

Replacing the row matrices (20) by any m rows of the matrix (19), we get the augmented matrix as

[

W̃;G̃
]

=



































w00 w01 . . .

w10 w11 . . .
...

w(n−m)0

u00

u10
...

u(m−1)0

...

w(n−m)1

u01

u11
...

u(m−1)1

...

· · ·

. . .

. . .
...

· · ·

w0n ; g(s0)

w1n ; g(s1)
...

w(n−m)n

u0n

u1n
...

u(m−1)n

...

;

;

;

;

...

g(sn−m)

α0

α1
...

αm−1



































.

Note thatrankW̃ = rank
[

W̃;G̃
]

= n+1 in the case of the exact solutionf ∈ Cn+1(0,R). As a result we can writeA =

(W̃)
−1G̃ and hence the elementsa0, a1, . . . ,an of A are uniquely determined.

5 The solution of differential equations characterizing the spacelike curves of constant breadth

in E3
1

(ρ(s)k2(s)) = t(s)

P0 = εt
′
, P1 =−εt + t3, P2 =−t

′
, P3 = t andy= m1.

Using the above equations we can rewrite the Eq.(8) characterizing the spacelike curves of constant breadth as fallows;

m

∑
k=0

Pk (s)y
(k) (s) = G(s) , m= 3, 0≤ s≤ 2π (21)

Let f be a solution of Eq.(21). We wish to approximatef by

pn (s) =
n

∑
k=0

akBk,n (s) , n= 4 (22)
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such thatpn (s) satisfies Eq.(21) on the nodes 0≤ s0 < s1 < · · · < s4 ≤ 2π . We take n = 4 for simplicity. Puttingpn (s)

into Eq.(21), we get the system of linear equations depending ona0, a1, . . . , a4. Let us consider the Eq.(21) and find the

matrix forms of each term in the equation. First we can convert the Bernstein series solutiony = pn (s) defined by (22)

and its derivativesy(k)(s) to matrix forms, forn= 4 andk= 0,1,2,3

y(s) = B4(s)A and y(k) (s) = B(k)
4 (s)A (23)

where

B4 (s) =















B0,0(s) B1,0(s)

B0,1(s) B1,1(s)

· · ·

· · ·

B4,0(s)

B4,1(s)

...
...

. . .
...

B0,4(s) B1,4(s) · · · B4,4(s)















, A=
[

a0 a1 . . . a4

]T

On the other hand, it can be written[B4(s)]
T as[B4(s)]

T = D(S(s))T or

B4(s) = S(s)DT (24)

The matrix D is calculated as follows

D =



















1

0

0

−2/π
2/π
0

3/2π2 −1/2π3 1/16π4

−3/π2 3/2π3 −1/4π4

3/2π2 −3/2π3 3/8π4

0 0 0 1/2π3 −1/4π4

0 0 0 0 1/16π4



















To obtain the matrixS(k) (s) (k = 0,1,2) in terms of the matrixS(s) =
[

1 s s2 s3 s4
]

, we can use the following

procedure:

S
′
(s) = S(s)B

S
′′
(s) = S

′
(s)B= S(s)B2 (25)

S
′′′
(s) = S

′′
(s)B= · · ·= S(s)B3

where

B2 =



















0 0 2 0 0

0 0 0 6 0

0 0 0 0 12

0 0 0 0 0

0 0 0 0 0


















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and

B3 =



















0 0 0 6 0

0 0 0 0 24

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



















Consequently, by substituting the matrix forms (24) and (25) into (23), we have the matrix relation.

y(s) = S(s)DTA

y
′
(s) = S(s)BDTA (26)

y
′′
(s) = S(s)B2DTA

y
′′′
(s) = S(s)B3DTA

Substituting the matrix relation (26) into (21) and then simplifying, we obtain the matrix equation

m

∑
k=0

Pk (s)S(s)BkDTA= G(s) (27)

Using the nodes{si ; i = 0,1, . . . ,4;0≤ s0 < s1 < · · ·< s4 ≤ 2π} in (27) we get the system of matrix equations

m=3

∑
k=0

Pk (si)S(si)BkDTA= G(si) , i = 0,1, . . . , 4

where s0= 0, s1=
π
2 , s2=π , s3=

3π
2 , s4= 2π and

Pk (si) =

















Pk (0)

0

0

0

0

0

Pk (π/2)

0

0

0

0

0

Pk (π)
0

0

0

0

0

Pk (3π/2)

0

0

0

0

0

Pk (2π)

















S(si) =

















1

1

1

1

1

0

(π/2)

(π)
(3π/2)

(2π)

0

(π/2)2

(π)2

(3π/2)2

(2π)2

0

(π/2)3

(π)3

(3π/2)3

(2π)3

0

(π/2)4

(π)4

(3π/2)4

(2π)4

















,G(si) =

















g(0)

g(π/2)

g(π)
g(π/2)

g(2π)

















The fundamental matrix equation can be written briefly as

m

∑
k=0

PkSBkDTA= G (28)

Hence, the fundamental matrix Eq.(28) corresponding to (22) can be written in the form

WA= G or [W;G] = A, W = [Wkh] , k,h= 0,1, . . . ,4 (29)
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The Eq. (29) corresponds to a matrix of type (5x5). Now let us obtain the matrix equation of the conditions by means of

the relation (26). Firstly, the matrix forms for the conditions can be written as

UkA= [αk] or [Uk ;αk ] = A, k= 0,1,2 (30)

where for

U0 =
[

1 0 0 0 0
]

U1 =
[

−2/π 2/π 0 0 0
]

U2 =
[

12/π2 −6/π2 3/π2 0 0
]

Replacing the row matrices (30) by any m rows of the matrix (29), we get the augmented matrix as

[

W̃;G̃
]

=

















w00 w01 w02 w03 w04 ; g(0)

w10 w11 w12 w13 w14 ; g(π/2)

u00

u10

u20

u01

u11

u21

u02

u12

u22

u03

u13

u23

u04

u14

u24

;

;

;

α0

α1

α2

















where,wi j (i = 0,1 j = 0,1, . . . ,4) obtained as follows;

w00 = εt
′
(0)−

2
π
[−εt (0)+ t3(0)]+

3
π2 [−t

′
(0)]−

3
π3 t (0)

w01=
2
π
[

−εt (0)+ t3(0)
]

−
6

π2

[

−t
′
(0)
]

+
9

π3 t (0)

w02=
3

π2

[

−t
′
(0)
]

−
9

π3 t (0) , w03 =
3

π3 t (0) , w04 = 0,

w10 =
81
256

εt
′
(π

2

)

−
27

32π

[

−εt
(π

2

)

+ t3
(π

2

)]

+
27

16π2 [−t
′
(π

2

)

]−
9

4π3t
(π

2

)

w11 =
27
64

εt
′
(π

2

)

−
9

4π2 [−t
′
(π

2

)

]+
6

π3 t
(π

2

)

w12 =
27
128

εt
′
(π

2

)

+
9

16π

[

−εt
(π

2

)

+ t3
(π

2

)]

−
3

8π2 [−t
′
(π

2

)

]−
9

2π3 t
(π

2

)

w13 =
3
64

εt
′
(π

2

)

+
1

4π

[

−εt
(π

2

)

+ t3
(π

2

)]

+
3

4π2 [−t
′
(π

2

)

]
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w14 =
1

256
εt

′
(π

2

)

+
1

32π

[

−εt
(π

2

)

+ t3
(π

2

)]

+
3

16π2 [−t
′
(π

2

)

]+
3

4π3t
(π

2

)

As a result we can write

A= (W̃)
−1G̃=



















0 0 1 0 0

0 0 1 π/2 0

0

R

Y

0

0

Z

−2 π π2/3

T K V

Q L C



































g(0)

g(π/2)

α0

α1

α2

















where

R= 1/w03,T = 2w02−w00−w01/w03,K =−π(w01+2w02)/2w03

V =−π2w02/3w03,Y =−w13/w03w14,Z = 1/w14

Q=−w13(w10+w11−2w12)+w13(w00+w01−2w02)/w03w14

L =−πw03(w11+w12)+πw13(w01+2w02)/2w03w14

C= π2 (w13w02−w03w12)/w03w14

and hence the elementsa0, a1, . . . ,a4 of A are uniquely determined as follow

a0 = α0,a1 = α0+
π
2

α1,a2 =−2α0+πα1+
π2

3
α2

a3 = Rg(0)+Tα0+Kα1+Vα2,

a4 =Yg(0)+Zg
(π

2

)

+Qα
0
+Lα1+Cα2.

If we put thisa4 unknowns in Eq.(22), we obtain Bernstein series solutiony= pn(s) = m1 of the Eq.(21).

6 Analyse of Differential Equations Characterizing Spacelike Curves of Constant Breadth in

E3
1

We found that the expression is y= m1 coefficient which is determined the spacelike curves of constant breadth inE3
1.

Also m2 coefficient is finded with method similar under the same initial conditions. For this first, it is clear that in the

second equation of the system (2).

m1 =−ρk2m3−m2
′

(31)

We used where the first equation of the system (2), the derivative of the equation (31)

−m2
′′
− (ρk2)

′
m3− (ρk2)m

′

3 = εm2− f (32)
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Also, it is clear that in the second equation of the system (2)

m3=
−m2

′
−m1

ρk2
(33)

By using the third equation of the system (2) and the equation (33) in the equation (32), we obtain the following differential

equation:

ρk2m2
′′
+(ρk2)

′
m2

′
+[(ρk2)

3−ερk2]m2+(ρk2)
′
m1+ρk2 f = 0

m1 is conjugated and then by using derivative of the expressionobtained, we obtain the following differential equation;

m1
′
=−

ρk2

(ρk2)
′ m2

′′′
−





(

ρk2

(ρk2)
′

)′

+1



m2
′′
−

[

(ρk2)
3− ερk2

(ρk2)
′

]

m2
′

−

[

(ρk2)
3− ερk2

(ρk2)
′

]′

m2−

(

ρk2

(ρk2)
′

)′

f −
ρk2

(ρk2)
′ f

′
(34)

By using the equation (34) and the first equation of the system (2) following equation is obtained

ρk2

(ρk2)
′ m2

′′′
+





(

ρk2

(ρk2)
′

)′

+1



m2
′′
+

[

(ρk2)
3− ερk2

(ρk2)
′

]

m2
′
+[(

(ρk2)
3− ερk2

(ρk2)
′ )

′

+ ε]m2

=−[

(

ρk2

(ρk2)
′

)′

+1] f −
ρk2

(ρk2)
′ f

′
(35)

Finally, while(ρ(s)k2(s))= t(s) and F as follows:

F =





(

ρk2

(ρk2)
′

)′

−1



 f +
ρk2

(ρk2)
′ f

′

we obtain the third order, linear, differential equation with variable coefficients as follows

t

t′
m2

′′′
+

[

(

t

t′

)′

+1

]

m2
′′
+

[

t3−εt

t′

]

m2
′
+

[

(

t3−εt

t′

)

′

+ ε

]

m2 = F. (36)

This equation is differential equation with unknownm2 characterizing spacelike curves of constant breadth inE3
1.

Also, m3 coefficient is finded with method similar under the same initial conditions. First, it is clear that in the third

equation of the system (2)

m2=−
1

ρk2
m3

′
(37)

We used where the second equation of the system (2), the derivative of the equation (37).

m1=
1

ρk2
m3

′′
+

(

1
ρk2

)′

m3
′
−(ρk2)m3 (38)
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By using the derivative of the equation (38) in the first equation of the system (2), we obtain the following differential

equation:

1
ρk2

m3
′′′
+2(

1
ρk2

)

′

m3
′′
+





(

−
(ρk2)

′

(ρk2)
2

)′

+
ε

ρk2
−ρk2



m3
′
− (ρk2)

′
m3 =− f (39)

Finally, while(ρk2)= t we obtain the third order, linear, differential equation with variable coefficients as follows:

1
t
m3

′′′
+2(

1
t
)

′

m3
′′
+





(

−
t
′

t2

)′

+
ε
t
− t



m3
′
−t

′
m3 =− f (40)

This equation is differential equation with unknownm3 characterizing the spacelike curves of constant breadth inE3
1.

7 Corollary

By using Bernstein series solution method, the solutions ofthe equations (36) and (40) are approximately obtained. If we

use the coefficientsmi , ( i = 1,2,3), which we have calculated, in equationd2 = m2
1+ εm2

2− εm2
3, we get the constant

value of the breadth of the curve inE3
1.

Thus, we obtain general expression connected with torsion and curvature of a spacelike curve of constant breadth inE3
1.
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[18] Walrave, J. (1995) Curves and Surfacesİn Minkowski Space,Doctoral Thesis,K. U. Leuven, Faculty Of Sciences, Leuven.

© 2018 BISKA Bilisim Technology


	Introduction
	Preliminaries
	Differential equations characterizing spacelike curves of constant breadth in bold0mu mumu EE2005/06/28 ver: 1.3 subfig packageEEEEbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333bold0mu mumu 112005/06/28 ver: 1.3 subfig package1111
	Bernstein series method 
	The solution of differential equations characterizing the spacelike curves of constant breadth in bold0mu mumu EE2005/06/28 ver: 1.3 subfig packageEEEEbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333bold0mu mumu 112005/06/28 ver: 1.3 subfig package1111
	Analyse of Differential Equations Characterizing Spacelike Curves of Constant Breadth in bold0mu mumu EE2005/06/28 ver: 1.3 subfig packageEEEEbold0mu mumu 332005/06/28 ver: 1.3 subfig package3333bold0mu mumu 112005/06/28 ver: 1.3 subfig package1111
	Corollary

