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Abstract: In this study, some families of starlike and convex functions for which the image domain has special geometric property
were considered in the study. The Hadamard product created by these functions has been formed and these functions has been redefined
using Hadamard multiplication.
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1 Introduction

First of all we begin our study with the definition of complex differentiable.

Definition 1. If function f(z) = z+ ∑
k≥2

akzk and function g(z) = z+ ∑
k≥2

bkzk are analytic in|z| < 1, where f(0) = 0 and

f ′(0) = 1, g(0) = 0 and g′(0) = 1, f(z) and g(z) are univalent function.

Theorem 1.

(i) If the function f(z) and g(z) are convex within the unit disk|z|< 1. Then for each|z0|< 1

z

[

f (z)− f (z0)

z− z0

]2

is a function starlike.

(ii) If ℜ
(

z f′(z)
f (z)

)

>
1
2. Then function f(z) is graded1

2 starlike function in|z|< 1 [4,5].

If ℜ
(

zg′(z)
g(z)

)

>
1
2. Then function g(z) is graded1

2 starlike function in|z|< 1 [4,5].

Theorem 2.Provide the following conditon for the function f(z) to be starlike the order12 of the starlike function

Re

(

f (z1)− f (z2)

z1− z2

z2

f (z2)

)

>
1
2
,

where|z1|< 1 and|z2|< 1 [3].

Definition 2. The multiplication of analytic and univalent function f(z) and g(z) in the unit disk|z| < 1 is defined as

follows

( f ∗g)(z) = z+ ∑
k≥2

akbkz
k
.
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where f(z) = z+ ∑
k≥2

akzk and g(z) = z+ ∑
k≥2

bkzk. This is multiplication of geometric functions by the following.[1]

(i) If the function f(z) and function g(z) are convex. Then the product function f(z)∗g(z) is convex.

(ii) This multiplication function f(z)∗g(z) is univalent [2].

Definition 3.

(i) The function f(z) is required and sufficient conditon to be a starlike functionwithin the unit disk|z|< 1.

Re

(

z f′(z)
f (z)

)

> 0.

(ii) The function g(z) is required and sufficient condition to be a convex function within the unit disk|z|< 1.

Re

(

1+
z f′′(z)
f ′(z)

)

> 0,

where f
′
(z) 6= 0.

Lemma 1. If f(z) is a function that has been normalized. Then

(i) If Re
(

1+ z f′′(z)
f ′(z)

)

> α then function f(z) for inequality isα grade convex function.

(ii) If ℜ
(

z f′(z)
f (z)

)

> α then function f(z) for inequality isα grade starlike function. Where if|z| ≤ R< 1 and f(0) = 0,

f
′
(0) = 1. Then f(z) is normalized. For each of these classes is to find a function g(z) that satisfies the requirement

for Hadamard multiplication.

Theorem 3. F(z) and G(z) functions get12 order of starlike. If these functions meet the following requirements, the

multiplication is almost convex.

(i) ℜ
(

z f′(z)
F(z)

)

> 0,

(ii) Re
(

z(G∗z f)′

F∗G

)

> 0 where|z|< 1.

Theorem 4.A function f(z) is said to b convex of order12. If and only if

(i) 1
z

[

f ∗
z+ u+α

1−α z2

(1−z)3

]

6= 0 where|z| ≤ R< 1 .

(ii) A function f(z) is to be starlike of order12. If and only if 1
z

[

f ∗
z+ u+2α−1

2−2α z2

(1−z)2

]

6= 0 where|z| ≤ R< 1 [6].

Theorem 5.A function f(z) is to be convex of order2−r . If and only if

1
z2

[

f ∗
z+ u+2−r

1−2−r z2

(1− z)3

]

6= 0

where|z| ≤ R< 1 , |u|= 1 , u=−1 and r is positive integer.

Proof.A necessary and sufficient condition for a functionf (z) to be convex of order 2−r in |z|< R in that

ℜ
(

z f′′(z)
f ′(z)

)

> 2−r

wherer is positive integer. Whenz= 0 we easily see thatz f′′(z)
f ′(z) = 1. In this case, inequality is equivalent to

[z f′(z)]
′

f ′(z) −2−r

1−2−r 6=
u−1
u+1

.
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Hence

(1+u)

[

[

z f
′
(z)
]′
+
(

1−2−r)−u

]

f
′
(z) 6= 0.

If we take f (z) = z+ ∑
k≥2

akzk. Then

[

z f
′
(z)
]′
= 1+ ∑

k≥2

k2akz
k−1 = f

′
(z)∗

(

∑
k=1

kzk−1

)

= f
′
(z)∗

1

(1− z)2
.

This last equality is to the left side of Theorem 4.

f
′
(z)∗

[

∑
k=1

(

1−21−r −u+(1+u)k
)

]

zk−1 = f (z)∗

[

1−21−r −u
1− z

+
1+u

(1− z)2

]

= f
′
(z)∗

[

2−21−r +(u+21−r −1)z

(1− z)2

]

.

Hence this is equivalent to

1
z



z f
′
(z)∗

z+ u+21−r−1
2−21−r z2

(1− z)2



 6= 0.

Sincez f
′
(z)∗g(z) = f (z)∗ zg

′
(z), we may rewrite express as follows

1
z

[

f (z)∗
z+ u+2−r

1−2−r z2

(1− z)3

]

6= 0.

Theorem 6.A function f(z) is said to be starlike of order2−r if and only if

1
z

[

f (z)∗
z+ u+2−r−1

2−21−r

(1− z)3

]

6= 0,

where|z| ≤ R< 1, |u|= 1, u 6=−1.

Proof.A necessary and sufficient condition for a functionf (z) to be convex of order 2−r in |z|< R is thatg(z) =
z
∫

0

f (ζ )
ζ dζ

in starlike of order 2−r in |z|< R≤ 1. Then we have

1
z

[

g(z)∗
z+ u+2−r

1−2−r z2

(1− z)3

]

=
1
z



 f (z)∗
z+ u+21−r

2−21−r z2

(1− z)2



 .
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