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Abstract: This paper is concerned with the study of the contact pseudo-slant submanifolds of a cosymplectic manifold. We derive
the integrability conditions of involved distributions inthe definition of a pseudo-slant submanifold. The notion contact parallel and
contact pseudo-slant product is defined and the necessary and sufficient conditions for a submanifold to be contact parallel and contact
pseudo-slant product are given. Also, an non-trivial example is used to demonstrate that the method presented in this paper is effective.
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1 Introduction

B-Y. Chen introduced the concept of slant submanifold through differential points of view as a generalization of complex

and totally real submanifold of an almost Hermitian manifold[2]. After then, Papaghuic initiated the notion of semi-slant

submanifolds as a generalization of slant submanifolds andCR-submanifolds[3].

Furthermore, Carriazo defined pseudo-slant submanifold with the name anti-slant submanifolds as a special class of

bi-slant submanifolds[4]. Also pseudo-slant submanifolds have been studied by Khanet. al. in [5]. Later, U. C. De et. al.

studied and characterized pseudo-slant submanifolds of trans-Sasakian Manifolds[6]

Recently, M. Atceken and S. Dirik also have investigated contact pseudo-slant submanifolds in cosymplectic space forms

and gave some results om mixed-geodesic, totally geodesic and the induced tensor fields to be parallel[7].

2 Preliminaries

An odd-dimensional counterpart of a Kaehler manifold is given by a cosymplectic manifold, which is locally a product

of a Kaehler manifold with a circle or a line.

A (2n+1)-dimensionalC∞-manifoldM̄ is said to be have an almost contact structure if there exist on M̄ a tensor fieldϕ
of type(1,1), a vector fieldξ and 1-formη satisfying;

ϕ2 =−I +η ⊕ ξ , ϕξ = 0, ηoϕ = 0, η(ξ ) = 1. (1)
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There always exists a Riemannian metricg on an almost contact manifold̄M satisfying the following compatibility

condition

g(ϕX,ϕY) = g(X,Y)−η(X)η(Y), η(X) = g(X,ξ ), (2)

whereX andY are vector fields on̄M.

An almost contact structure(ϕ ,ξ ,η) is said to be normal the almost complexJ on the product manifold̄MxR given by

J(X, f
d
dt
) = (ϕX− f ξ ,η(X)

d
dt
), (3)

where f is a differentiable function on̄MxR, has no torsion, i.e.,J is integrable. The condition for normality in terms of

ϕ , ξ , η is [ϕ ,ϕ ] + 2dη ⊕ ξ = 0 on M̄, where[ϕ ,ϕ ] is the Nijenhuis tensor ofϕ . Finally the fundamental 2-formΦ is

defined byg(X,ϕY) = Φ(X,Y). Al almost contact metric structure(ϕ ,ξ ,η ,g) is said to be cosymplectic structure if it is

normal andΦ andη are closed, that is,

(∇̄Xϕ)Y = 0, (4)

for any X,Y ∈ Γ (TM̄), whereΓ (TM̄) is the set of the differentiable vector fields on̄M and∇̄ denotes the Levi-Civita

connection onM̄[8].

A plane sectionπ in TM̄(p) of an almost contact metric manifold̄M is called aϕ-section ifπ⊥ξ andϕ(π) = π . M is of

constantϕ-sectional curvature if sectional curvatureK(π) does not depend on the choice of theϕ-sectionπ of TM̄(p)

and the choice of a pointp∈ M̄. A cosymplectic manifoldM̄ is said to be a cosymplectic space form if theϕ sectional

curvature is constant c alonḡM. A cosymplectic space form will be denoted bȳM(c). Then the Riemannian curvature

tensorR̄on M̄(c) is given by

R̄(X,Y,Z,W) =
c
4
{g(X,W)g(Y,Z)−g(X,Z)g(Y,W)+g(X,ϕW)g(Y,ϕZ)−g(X,ϕZ)g(Y,ϕW)−2g(X,ϕY)g(Z,ϕW)

−g(X,W)η(Y)η(Z)+g(X,Z)η(Y)η(W)−g(Y,Z)η(X)η(W)+g(Y,W)η(X)η(Z)}, (5)

for anyX,Y,Z,W ∈ Γ (TM̄).

Now, letM be a submanifold of an almost contact metric manifoldM̄, we denote the induced connections onM and the

normal bundleT⊥M by ∇ and∇⊥, respectively, then the Gauss and Weingarten formulas are given by

∇̄XY = ∇XY+h(X,Y) (6)

and

∇̄XV =−AVX+∇⊥
XV, (7)

for anyX,Y ∈ Γ (TM), V ∈ Γ (T⊥M), whereh is the second fundamental form andAV is the Weingarten map associated

with V as

g(AVX,Y) = g(h(X,Y),V). (8)
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We denote the Riemannian curvature tensor ofM by R, then the Gauss equation and Weingarten formulas imply

R̄(X,Y)Z = R(X,Y)Z−Ah(Y,Z)X+Ah(X,Z)Y+(∇Xh)(Y,Z)− (∇Yh)(X,Z), (9)

for anyX,Y,Z ∈ Γ (TM). Taking the normal component of (9), we reach at equation of Codazzi

(R̄(X,Y)Z)⊥ = (∇Xh)(Y,Z)− (∇Yh)(X,Z). (10)

If (R̄(X,Y)Z)⊥ = 0, then submanifold is said to be curvature-invariant.

Next we define the curvature tensorR⊥ of the normal bundle ofM by

g(R⊥(X,Y)V,U) = g(R̄(X,Y)U,V)−g([AV,AU ]X,Y), (11)

for anyX,Y ∈ Γ (TM) andU,V ∈ Γ (T⊥M). If R⊥ = 0, then normal connection ofM is said to be flat.

Definition 1.If the normal curvature tensor R⊥ of M satisfies

R⊥(X,Y)V = 2g( f X,Y)V,

for any X,Y ∈ (ϕ2Γ (TM)) and V∈ Γ (T⊥M), then the normal connection of M is said to be contact flat.

Furthermore, for anyX ∈ Γ (TM), we can write

ϕX = f X+ωX, (12)

where f X andωX denote the tangential and normal components ofϕX, respectively. Similarly, forV ∈ Γ (T⊥M), ϕV

also can be written

ϕV = BV+CV, (13)

whereBV andCV denote, respectively, the tangential and normal components of ϕV. By using (1), (12), (13) and taking

into account ofξ being tangent toM, we get

f 2+Bω =−I +η ⊗ ξ , ω f +Cω = 0, (14)

and

f B+BC= 0, ωB+C2 =−I . (15)

Here the covariant derivations of tensor fieldsf ,ω , B andC are defined by

(∇X f )Y = ∇X fY− f ∇XY, (16)

(∇̄Xω)Y = ∇X
⊥ωY−ω∇X

⊥Y, (17)

(∇̄XB)V = ∇XBV−B∇⊥
XV, (18)

(∇̄XC)Y = ∇⊥
XCV−C∇⊥

XV, (19)
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for anyX,Y ∈ Γ (TM) andV ∈ Γ (T⊥M). By using (4), (6), (7) and (12), we can easily to see that

(∇X f )Y = AωYX+Bh(X,Y), (20)

(∇Xω)Y =−h(X, fY)+Ch(X,Y), (21)

(∇XC)V =−ωAVX−h(X,BV) (22)

and

(∇XB)V = ACVX− f AVX, (23)

for anyX,Y ∈ Γ (TM) andV ∈ Γ (T⊥M). By using (21) and (23), we can easily to see that

g((∇Xω)Y,V) =−g((∇XB)V,Y), (24)

3 Contact slant submanifolds of a cosymplectic manifold

Let M be a submanifold of an almost contact metric manifold(M̄,ϕ ,ξ ,η ,g). Then M is said to be a contact slant

submanifold if the angleθ (X) betweenϕX andTM(p) is constant at any pointp∈ M for anyX linearly independent of

ξ . Thus the invariant and anti-invariant submanifolds are special class of slant submanifolds with slant anglesθ = 0 and

θ = π
2 , respectively. If the slant angleθ is neither zero norπ2 , then slant submanifold is said to be proper contact slant

submanifold. The slant submanifolds of an almost contact metric manifold, the following theorem is well known.

Theorem 1.Let M be a submanifold of an almost contact metric manifoldM̄ such thatξ ∈ Γ (TM). M is a contact slant

submanifold if and only if there exists a constantλ ∈ (0,1) such that

f 2 = λ (−I +η ⊗ ξ ). (25)

Furthermore, ifθ is slant angle of M, then it satisfiesλ = cos2 θ .

As a consequence of the above Theorem and (14), we have the following relations;

g( f X, fY) =cos2 θ{g(X,Y)−η(X)η(Y)} (26)

g(ωX,ωY) =sin2 θ{g(X,Y)−η(X)η(Y)}, (27)

Bω =sin2 θ (−I +η ⊗ ξ ). (28)

For a slant submanifoldM of an almost contact metric manifold̄M, the normal bundleT⊥M of M is decomposable as

T⊥M = ω(TM)⊕ µ , (29)

whereµ is the invariant normal subbundle with respect toϕ .
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4 Contact Pseudo-slant submanifolds in cosymplectic manifold

Definition 2. Let M be a submanifold of a cosymplectic manifoldM̄(ϕ ,ξ ,η ,g). We say that M is a contact pseudo-slant

submanifold if there exists a pair of orthogonal distributions D⊥ and Dθ on M such that

(i) The distribution D⊥ is totally real, i.e.,ϕ(D⊥)⊆ T⊥M,

(ii) The distribution Dθ is slant with slant angleθ ,

(iii) The tangent space TM admits the orthogonal direct decomposition TM= D⊥⊕Dθ .

If we denote the dimensions ofD⊥ andDθ by p andq, respectively, the we have the following possible cases;

(i) if p= 0, thenM is a slant submanifold,

(ii) if q= 0, thenM is an anti-invariant submanifold,

(iii) if pq 6= 0, θ = 0, thenM is a contact CR-submanifold.

For a pseudo-slant submanifoldM of a cosymplectic manifold̄M, the normal bundleT⊥M of a pseudo-slant submanifold

M is decomposable as

T⊥M = ϕ(D⊥)⊕ω(Dθ )⊕ µ , ϕ(D⊥)⊥ ω(Dθ ). (30)

Example 1.Let us consider the Euclidean spaceR
11 with the cartesian coordinates(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5, t) and

almost contact metric structure

ϕ

(

5

∑
i=1

{

Xi
∂

∂xi
+Yi

∂
∂yi

}

+Z
∂
∂ t

)

=
5

∑
i=1

(

−Yi
∂

∂xi
+Xi

∂
∂xi

)

,

ξ =
∂
∂ t

, η = dt, g= η ⊗η +
5

∑
i=1

(dx2
i +dy2

i ).

It is clear thatR11 is a cosymplectic manifold with usual Euclidean metric tensor. LetM be a submanifold ofR11 defined

by

χ(u,v,s, t) = (vcosu,−vsinu,scosu,−ssinu,v+2s,2v− s,−scosu,−ssinu,−vcosu,−vsinu, t)

with non-zerou,v,s, t. Then the tangent space ofM is spanned by the vector fields

e1 =−vsinu
∂

∂x1
− vcosu

∂
∂y1

− ssinu
∂

∂x2
− scosu

∂
∂y2

+ ssinu
∂

∂x4
− scosu

∂
∂y4

+ vsinu
∂

∂x5
− vcosu

∂
∂y5

e2 = cosu
∂

∂x1
− sinu

∂
∂y1

+
∂

∂x3
+2

∂
∂y3

− cosu
∂

∂x5
− sinu

∂
∂y5

e3 = cosu
∂

∂x2
− sinu

∂
∂y2

+2
∂

∂x3
−

∂
∂y3

− cosu
∂

∂x4
− sinu

∂
∂y4

,

e4 = ξ =
d
dt
.
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Furthermore, with respect to complex structure ofR
11, we have

ϕe1 = vcosu
∂

∂x1
− vsinu

∂
∂y1

+ scosu
∂

∂x2
− ssinu

∂
∂y2

+ scosu
∂

∂x4
+ ssinu

∂
∂y4

+ vcosu
∂

∂x5
+ vsinu

∂
∂y5

ϕe2 = cosu
∂

∂x1
+ cosu

∂
∂y1

−2
∂

∂x3
+

∂
∂y3

+ sinu
∂

∂x5
− cosu

∂
∂y5

ϕe3 = sinu
∂

∂x2
+ cosu

∂
∂y2

+
∂

∂x3
−2

∂
∂y3

+ sinu
∂

∂x4
− cosu

∂
∂y4

,

ϕe4 = 0.

Sinceg(ϕe1,e2) = g(ϕe1,e3) = 0, ϕe1 is orthogonal toM and

cosθ =
g(ϕe2,e3)

‖e2‖‖e3‖
=

3
7
,

it is easy to see thatDθ = Sp{e2,e3} is a slant distribution andD⊥ = Sp{e1} is an anti-invariant distribution. ThusM is

a 4-dimensional proper contact pseudo-slant submanifold of R11. It is easy to check that the distributionsD⊥ andDθ are

integrable. We denote the integral manifolds ofD⊥ andDθ by M⊥ andMθ , we can conclude thatM = M⊥xMθ .

Theorem 2.Let M be a contact pseudo-slant submanifold of a cosymplectic manifoldM̄. Then anti-invariant distribution

D⊥ is always integrable.

Proof.For anyY,Z ∈ Γ (D⊥), we have

∇̄ZϕY = ϕ∇̄ZY−AωYZ+∇⊥
Z ωY = ω∇ZY+ f ∇ZY+Bh(Z,Y)+Ch(Z,Y),

which implies that

−AωYZ = f ∇ZY+Bh(Y,Z).

Thus we have

f [Y,Z] = AωZY−AωYZ. (31)

Since the ambient manifold̄M is cosymplectic, we have

g(AωZY−AωYZ,U) = g(h(Y,U),ωZ)−g(h(Z,U),ωY)

= g(h(Y,U),ωZ)−g(∇̄UZ,ωY)

= g(h(Y,U),ωZ)+g(∇̄UϕY,Z)

= g(h(Y,U),ωZ)−g(∇̄UY,ϕZ)

= g(h(Y,U),ωZ)−g(h(U,Y),ωZ) = 0,

for anyU ∈ Γ (TM), that is,

AωZY = AωYZ. (32)

From (31) and (32) we conclude thatf [Y,Z] = 0, i.e.,[Y,Z] ∈ Γ (D⊥). The proof is completes.
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Theorem 3.Let M be contact pseudo-slant submanifold of a cosymplecticmanifoldM̄. Then the slant distribution Dθ is

integrable if and only if

g(ACωYZ+ f AωZY,X) = g(ACωXZ+ f AωZX,Y), (33)

for any X,Y ∈ Γ (Dθ ) and Z∈ Γ (D⊥).

Proof.By using (6), (7) and (27), we have

g([X,Y],Z) = g(∇XY,Z)−g(∇YX,Z)

= g(∇̄YZ,X)−g(∇̄XZ,Y)

= g(∇̄YϕZ,ϕX)−g(∇̄XϕZ,ϕY)

= g(∇̄YϕZ, f X)+g(∇̄YϕZ,ωX)−g(∇̄XϕZ, fY)−g(∇̄XϕZ,ωY)

=−g(AϕZ f X,Y)+g(AϕZ fY,X)+g(∇̄ZX,ϕωY)−g(∇̄YZ,ϕωX)

= g(AϕZ fY,X)−g(AϕZ f X,Y)+g(∇XZ,BωY)−g(∇YZ,BωX)+g(∇̄XZ,CωY)−g(∇̄YZ,CωX)

= g(AϕZ fY+ f AϕZY,X)− sin2 θg(∇XZ,Y)+ sin2 θg(∇YZ,X)+g(h(X,Z),CωY)−g(h(Y,Z),CωX)

= g( f AϕZY+AϕZ fY,X)+ sin2 θg([X,Y],Z)+g(ACωYX−ACωXY,Z),

for anyX,Y ∈ Γ (Dθ ) andZ ∈ Γ (D⊥). Consequently, we reach at

cos2 θg([X,Y],Z) = g( f AϕZY+AϕZ fY,X)+g(ACωYX−ACωXY,Z),

which proves our assertion.

Theorem 4. Let M be a contact pseudo-slant submanifold of a cosymplectic manifold M̄. Then the anti-invariant

distribution D⊥ defines totally geodesic foliation in M if and only if

AωZ f X−Aω f XZ ∈ Γ (Dθ ), (34)

for any X∈ Γ (Dθ ) and Z∈ Γ (D⊥).

Proof.For anyX ∈ Γ (Dθ ) andY,Z ∈ Γ (D⊥), we have

g(∇YZ,X) = g(∇̄YϕZ,ϕX) = g(∇̄YϕZ,ωX)+g(∇̄YϕZ, f X)

=−g(AϕZ f X,Y)−g(∇̄YZ,BωX)−g(∇̄YZ,CωX)

=−g(AϕZ f X,Y)+ sin2 θg(∇YZ,X−η(X)ξ )+g(Aω f XY,Z),

that is,

cos2 θg(∇YZ,X) = g(Aω f XZ−AϕZ f X,Y). (35)

This proves our assertion.

Theorem 5.Let M be a contact pseudo-slant submanifold of a csoymplectic manifoldM̄. The slant distribution Dθ defines

totally geodesic foliation in M is if and only if

AϕZ fY−Aω fYZ ∈ Γ (D⊥), (36)
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for any Y∈ Γ (Dθ ) and Z∈ Γ (D⊥).

Proof.By using, (2), (6) and (7), we have

g(∇XY,Z) =−g(∇̄XZ,Y) =−g(∇XϕZ,ϕY)

=−g(∇̄XϕZ, fY)−g(∇̄XϕZ,ωY)

= g(AϕZ fY,X)+g(∇̄XZ,BωY)+g(∇̄XZ,CωY)

= g(AϕZ fY,X)− sin2 θg(∇̄XZ,Y−η(Y)ξ )+g(ACωYX,Z),

for anyX,Y ∈ Γ (Dθ ) andZ ∈ Γ (D⊥). This implies that

cos2 θg(∇XY,Z) = g(AϕZ fY−g(ACωYZ,X).

Let M be a contact pseudo-slant submanifold of a cosymplectic manifold M̄. M is said to be contact pseudo-slant product

if the distributionsD⊥ andDθ are totally geodesic inM.

From Theorems4 and5, we have the following statement.

Proposition 1.Let M be a contact proper pseudo-slant submanifold of a cosymplectic manifoldM̄. Then M is a contact

pseudo-slant product if and only if and only if the shape operator of M satisfies

AϕD⊥ f (Dθ ) = Aω f Dθ D⊥
. (37)

Definition 3. If the second fundamental form h of M satisfies

(∇̄Xh)(Y,Z) = g( f X,Y)ωZ+g( f X,Z)ωY, (38)

for any X,Y,Z ∈ ϕ2(Γ (TM)) = Γ (TM− ξ ), then h is said to be contact parallel.

Theorem 6.Let M be a contact pseudo-slant submanifold of a cosymplectic space formM̄(c). If the second fundamental

form h of M is contact parallel, then M is either invariant or anti-invariant.

Proof.From (38), we have

∇̄Yh)(X,Z)− ∇̄Xh)(Y,Z) = g( fY,X)ωZ+g( fY,Z)ωX−g( f X,Y)ωZ−g( f X,Z)ωY

= 2g( fY,X)ωZ+g( fY,Z)ωX−g( f X,Z)ωY, (39)

for anyX,Y,Z ∈ Γ ϕ2(Γ M) = Γ (TM− ξ ). Corresponding (5), (9) and (39), we reach at

(
c
4
−1){2g( fY,X)ωZ+g( fY,Z)ωX−g( f X,Z)ωY}= 0. (40)

SettingY = Z in (40), we conclude that

3
(c

4
−1
)

g( fY,X)ωY = 0,

which proves our assertion.

Theorem 7.Let M be a proper contact pseudo-slant submanifold of a cosymplectic manifoldM̄. If the tensor field B is

parallel, then M is a contact pseudo-slant product.
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Proof.SinceB is parallel, from (23), we have

f AωZU = 0, U ∈ Γ (TM), Z ∈ Γ (D⊥).

This implies thatAϕZU ∈ Γ (D⊥) andBh(U,Z) = 0. The proof is completes.

Theorem 8.Let M be a contact pseudo-slant submanifold of a cosymplectic space formM̄(c). M is either anti-invariant

submanifold orM̄ is flat if ω is parallel.

Proof.Sinceω is parallel, we can easily to see that

h( f X,Y) =Ch(X,Y) = h(X, fY),

which is equivalent to

f AVX+AV f X = 0, (41)

for anyX,Y ∈ Γ (TM) andV ∈ Γ (T⊥M). From (41), we have

g(AV f X,BU) = g(AVX, f BU) =−g(AVX,BCU) =−g(ωAVX,CU) = 0, (42)

for any vector fieldsU,V normal toM. Taking the covariant derivative of (42), for Y ∈ Γ (TM), we obtain

g(∇̄YAV f X,BU)+g(AV f X, ∇̄YBU) = 0.

This means that

g((∇YA)V f X+A∇⊥
YV f X+AV∇Y f X,BU)+g(AV f X,(∇YB)U +B∇⊥

YU) = 0.

Taking into account (24) and (42), we reach at

g((∇YA)V f X+AV{(∇Y f )X+ f ∇YX},BU) = 0,

from which

g((∇YA)V f X,BU)+g(AV{AωXY+Bh(X,Y)},BU) = 0,

or,

g((∇YA)V f X,BU)+g(AVBU,AωXY)+g(AVBU,Bh(X,Y)) = 0.

This implies that

g((∇ fYh)( f X,BU),V) = g((∇ fYA)V f X,BU) =−g(AVBU,AωX fY)−g(AVBU,Bh( fY,X)).
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Thus we conclude that

g((∇ f Xh)( fY,BU)− (∇ fYh)( f X,BU),V) = g(AVBU,AωX fY)−g(AVBU,AωY f X)

= g(AVBU,AωX fY+ f AωYX)

= g(AVAωX fY,BU)−g(AV f AωYX,BU)

= g(AV f AωXY,BU) = 0. (43)

On the other hand, form the Codazzi equation, we have

g((∇ fXh)( fY,BU)− (∇ fYh)( f X,BU),V) =
c
4
{g( f 2Y,BV)g(ωX,U)−g( f 2X,BV)g(ωY,U)+2g( f X, f 2Y)g(ωBV,U)}

=−cos2θ
c
4
{g(Y,BV)g(ωX,U)−g(X,BV)g(ωY,U)+2g( f X,Y)g(ωBV,U)}. (44)

In (44), takingX,Y ∈ Γ (Dθ ) andU =V = ωZ ∈ Γ (T⊥M) for Z ∈ Γ (D⊥), and corresponding (43) and (44), we get

cos2 θ
c
2

g( f X,Y)g(Z,Z) = 0.

This proves our assertion.

Theorem 9.Let M be a contact pseudo-slant curvature-invariant submanifold of a cosymplectic space form̄M(c). Then

M is a either anti-invariant submanifold or̄M is flat space form.

Proof. If M is a contact pseudo-slant curvature-invariant submanifold, then from (5) and (10), we conclude

c
4
{g(ϕY,Z)ωX−g(ϕX,Z)+2g(X,ϕY)ωZ}= 0,

for anyX,Y,Z ∈ Γ (TM). This implies that

3
c
4

g( fY,X)ωY = 0,

from which, we obtain

3
c
4

cos2 θg{(Y,Y)−η2(Y)}ωY = 0.

The proof is completes.

Theorem 10.Let M be a invariant submanifold of a cosymplectic space formM̄(c) such that the normal connection of M

is contact flat. Then M is totally geodesic submanifold if andonly if M̄ is flat space.

Proof.

g([AV ,AU ]X,Y)+g(R⊥(X,Y)U,V) =
c
4
{g(ϕY,U)g(ϕX,V)−g(ϕX,U)g(ϕY,V)+2g(X,ϕY)g(ϕU,V)},

for anyX,Y ∈ Γ (TM) andU,V ∈ Γ (T⊥M). Since the normal connection is contact flat, we get

g([AV ,AU ]X,Y) =−
c
2

g( f X,Y)g(ϕU,V)−2g( f X,Y)g(U,V). (45)

In (45), takingV = ϕU , we reach

g([AϕU ,AU ]X,Y) =−
c
2

g( f X,Y)g(ϕU,ϕU). (46)
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SinceM is an invariant submanifold, we can derive

AϕUY = ϕAUY =−AU fY.

Thus we have

g(AϕUAUX−AUAϕUX,Y) =g(AϕUY,AUX)−g(AUY,AϕU X)

=g(ϕAUY,AUX)−g(AUY,ϕAUX)

=2g(AUY,AU f X)

=−
c
2

g( f X,Y)g(ϕU,ϕU),

from which

g(AUY,AUY) =−
c
4

g(Y,Y)g(U,U). (47)

Sinceg is a positive definite, this tell us thatM is totally geodesic submanifold if and only ifc= 0.
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