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Abstract: In this paper, we present two conjugate gradient methodeehdor solving unconstrained optimization problems.sThi
attempts is to find suitable choices for parameter of a nealitonjugate gradient method proposed by Dai and Liao base¢de
matrix analysis and using the memoryless BFGS updatingutnNumerical results show that the proposed method isesfti¢or
the unconstrained problems in the CUTEr collection.
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1 Introduction

Conjugate gradient methods are a powerful line search mddthigolving large-scale optimization problems due torthei
simplicity and low memory storage. The first CG-method warppsed by Hestenes and Stiefdlfo solve the system of
linear equations, while a nonlinear method was introdugeeletcher and Reeveg][. Conjugate gradient (CG) methods
have attracted special attention for solving large-scat®astrained optimization problems in the form.

Minkern f (X) (1)

the objective functiorf : R— R" is supposed to be continuously differentiable, boundem toelow, The method generate
a sequence of iterates.
Xk+1:Xk+S(a k:Oalaz (2)

wheres, = axdy, 0k is a suitable step length, addis a search direction computed recursively by:
do = —0o,dk+1 = —Ok+1+ Bk k=0,1,2 3)

wheregk = Of (x)is the gradient of the objective function, afidis a real scalar called conjugate parameter. The good
features of the method attracted many authors to develapdtto design algorithms for solving optimization problems
see the works by Polak and Ribierd | Polyak [{] , Dai and Liao p] , Hager and Zhang§,7] , Babaie-Kafaki and
Ghanbari 8,9,10,11,13], Babaie-Kafaki L2] and Andrei [L4,15].

Usually, the step size, is computed to satisfy some line search conditiobd.[In the convergence analyses and
implementation of conjugate gradient algorithms the sdad&Volfe conditions17,18]

f (X + o) — F (%) < pa gg di (4)
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Ok 10k > 00 dy (5)

wheredy is a descent direction ang < u < g < 1, often have been considered. Also, the strong Wolfe lirseche
conditions consisting of (4) and can be used.
|9k 10| < —ogg (6)

In an attempt to use quasi-Newton techniques in conjugatgigmt algorithms, one of the essential CG parameters has
been proposed by Dai and Lia8|| can be written in the form.

Ok

go- — tngsk

i vk dy i

(7)

whereyy = gk.1 — Ok , and t is a nonnegative parameter which has consideralglet @ifi numerical performance of the
DL method.For general objective functions Dai and Liao jms®d a new version for DL by using Powell's nonnegative
restriction P(Q], that given by

T T
DL+ Ok 1Yk Ok 15k
=ma ,0} —t 8

Dai-Liao conjugate gradient method is one of the most efitc@®njugate method, and is has been widely extended by
optimizing the parameter t in different ways. The searchdlions (7) of the DL method and (3) can be written as:

do=—0o, Ok+1=—Q+10k+1 k=0,1,2 ()]
in which . .
ScYk SS¢

Qup1=1—- -+t =% (10)
" VS Yis

is called the search direction matrix, and the above ma®jix{ay not be symmetric and positive definite, therefore, the
direction generated by (8) does not satisfy the typical ghiasvton condition. But, the direction (7) satisfies Daabi
conjugate condition.

Oy 1 Yk = —t Og, 15 (11)

widely extended by optimizing the parameter t in differeays, Hager and Zhang][presented the following choice for
parametefk.

1
CGHZ _ max( BHZ _ (12)
¢ B TaTmingn o
where . -
gHZ — OraYk o Il GieraS (13)

di i dlvic ol yi

2
The parameteB!'“ is one of the special case BP- with t = Z% . Then, minimizing some different upper bounds of
the spectral and Frobenius condition number of the searelgtéin matrixQy 1, In [8] saman and Gambari, proposed
two choices for the parameter

LSy I ol
« s sl % sd a4

where]|.|| stands for the Euclidean norm. Here, we propose a new twdigdahoices for t in (10), using the memoryless
BFGS updating formulall9]. The structure of the paper is as follows. In Section 2, Basea matrix analysis.
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2 Two new adaptive choicesfor (DL) Dai and Liao

In this part, we present the new adaptive choices for DL fergarameter t in (10) by minimizing the condition number.

2.1 The first adaptive choice for DL:

Here, we suggest the first adaptive choice in the form

lyil®
t1={(1+—=— (15)
( Tk )
where{ > 0 is real parameter. f = 1then this makes the search direction ma@jx 1 given by (10) to be similar to
the memoryless BFGS updating formidg, 1 given by in the form

S T+ T 2 S T
Y 1 Vi +(1+||)_|/_kH ) (16)
S Yk Sk Sk

Hir=1-

WhereHy, 1 is an approximation foﬂzf(ka) . Babaie-Kafaki and Ghanbari in [8], show that the ma®jx 1 given by
(10) hasn — 2 eigenvalues equal to 1, and two other singular valifeandd, satisfying

2
k % Ty (17)
2,42 Isll*  lIscll®llyil®
A 9 =12 + (18)
KoK ()2 (SEv)?
whered, > 1> 4", and we can suggest the following upper bound for the sjexdralition number of 1:
o a7 %+ar?
k =K<k Kk 19
(Qk+l) 0[ = dkidkjL ( )
Now, from (17), (18) and (15), we get
2 2 2 2 2
- sl [EXI RAIEN
KoK ( Yk ) St Yk St Yk Stk StYk
e Iyl o s, Ivd2lsd?
d,2+a+2252 1+ Yk 2 S Yk S (21)
X X ( SIYk) (2 (SIw)?
we put (20) and (21) in (19), we obtain
Iyll®y lIsd® 1 llydl®
k(Qu1) < 4(1+ > (22)
Q) < C0 oy ) gy * T2 +5we
The unique minimizer of the upper bound kfQy. 1) given by (22), can be written
T
7t — IWell sy (23)

sl sEyk + Iyl

© 2018 BISKA Bilisim Technology


www.ntmsci.com

(_/
137 BISKA H. N. Jabbar: New adaptive conjugate gradient methods ebdér unconstrained optimization

Now, from (23) and (15), we get

T 2
S (Y S R o
= s Syt v T Sy

2.2 The second adaptive choice for DL:
We suggest the second adaptive choice in the form

yill?
th=(1+¢ (25)
(1+9) Ty
where > 0 is real parameter. f = 1, then this makes the search direction ma®jx 1 given by (10) to be similar to
the search direction that proposed by Hager and Zhang intiequd3),If { = 0, then this makes the search direction
matrix Q.1 given by (10) to be similar to the search direction that gibgi{16).

Now, from (17), (18) and (25), we get

Iyicl® lisell® _ Ilt® sll® o Iyl fisdl® - liviel® fisl®

o, 9 = (1+ = 26
cdc=1+0) StV Sk SIYk S Yk SoYk Sk SEYk Yk (26)
e [yll*Isell* | [yill?lisel® Iyl 2 sl vl Pllsell®
_2 2 Yl ISk Yk~ ISk 2 Ykl “y2 11 Yk~ ISk
O +aF = (1+2)? =7(1 27
R = I T A R E N AN TN @
we put (26) and (27) in (19), we obtain
ylZlsell® | 2 [yl sl + (sEyi)®
k < - +cC 28
Wherec; is a constant and an independenfofAfter some algebraic manipulations, we can get
(SEYK)?
32 =1+ K (29)
“ sl

Is the unique minimizer of the upper bound of #{€) 1) that given by (28) Now, we put (29) in (25), it can be seen that

() ]Ilykllz

2 =t, = [1+/1+ .
: [ 2T STy

(30)

3 Convergence analysis

In this part, we discuss the global convergence of the DL oy using the choices (24) and (30) for the paranteter
We need to make the following standard assumptions on theetig function.

3.1 Assumptions

() The objective function is bounded on the bounded leveSse {x € R": f(x) < f(x1)}.
(i) In some neighborhool of S, is continuously differentiable and its gradient is Lipgzlcontinuousi.e3d a constant
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O0<L<1 suchthat
l9(x) =gyl <L[x=yll Yxy€eN (31)

is satisfies.
Under the above assumptions brthere exist a constagt> 0 such that
lax)|| <y, forall xeS (32)

Now, if the search directiody is descent in the iterative method (2) with standard linecke@t), then{x }x>0 C S. Based
on eigenvalue analysis, Babaie-Kafaki and Ghanlalighow that if

1 lvl? sty
1 _ , 33
2 gy TSP (33)

thendy of the DL method satisfy the descent condition. Directly, seen, both; given by (24) and, given by (30)
satisfies (33). Therefore, the DL method wiitha t1,t; owns the descent condition. The uniform convexity of thesotiye
function f ensures that there exists a positive constasitich that

st vk > plsdll?, (34)

As seen, the equation (34) which together with (31) yields

(35)

tH2 =t <(1+\/1+“—2)L—2 (36)

thus,t =t3,t, are bounded for uniformly convex objective function. In titeer hand it's consequently if the step size
ay is computed to satisfy some line search conditions (stronff ¥éndition) (4) and (6), then the theorem 3.3 8},[
achieve the global convergence of the DL method with (24) @) for general objective function, even with uniform
objective function.

and

4 Numerical results

The numerical results of the two new adaptive with-t;, t, are displayed in this section. We selected a number of
75 large-scale unconstrained optimization test functiorgeneralized or extended form, presentedafti,[ where the
vast majority of problems are taken from CUTET collecti@g][ For each test function we have considered 10 numerical
experiments with the number of variables increasing as nG; 200, ..., 1000. Therefore, the numerical experiments
include a set of 750 unconstrained optimization test fumatiof different structures and complexities with the stogp
condition ||Of ()]l < 1076 . The new algorithms were implemented Fortran 77 applyin®t+ method with the
different formulas (14), (24) and (30). so we denote the tew proposed choices in (24) and (30) by DLT1 and DLT2
respectively, we compare the new algorithms (DLT1 and DIM&¥sus DLK1 and DLK2 that showed in (14). All codes
are written in Fortran 77 on PC, Intel(R) Core(TM) 2 Duo CPU4ATB @ 2.00GHz (2 CPUs), RAM 4.00 GB. Fig. 1
presents the Dolan and Moréad performance profile of DLT1 and DLT2 versus DLK1 DLK2 in nustof iterations.
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Fig. 2 show that the performance profile of DLT1 and DLT2 verBWLK1 DLK2 in number of function and gradient
evaluation. Fig. 3 show that the performance profile of DLl ®LT2 versus DLK1 DLK2 in the CPU time.
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Fig. 1. Total number of iteration performance profiles
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Fig. 2: Total number of function and gradient evaluation perforoggprofiles

5 Conclusion

The new algorithms presented a new choiceBbf conjugate gradient with descent property and global casrere
with the Wolfe line search. The new algorithms DLT1 and DLTZga good result compares with the other algorithms.
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