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Abstract: In this paper we obtain the Hermite-Hadamard Inequality forMϕ A-strongly convex function. Using thisMϕ A−strongly
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1 Introduction

In recent years, several integral inequalities related to various classes of convex functions. Convex functions have played

an important role in the development of various fields in pureand applied sciences. A significant class of convex

functions is strongly convex functions. The strongly convex functions also play an important role in optimization theory

and mathematical economics.

In [1], Noor et. al. gave the following definition.

Definition 1. Let I ⊆ R be an interval and c be a positive number. A function f: I = [a,b] ⊂ R → R is called strongly

convex with modulus c> 0, if

f ((1− t)x+ ty)≤ (1− t) f (x)+ t f (y)− ct(1− t)‖y− x‖2 ∈ I

for ∀x,y∈ I and t∈ [0,1] .

In [7] N. Merentes and K. Nikodem implied Hermite-Hadamard Inequality for strongly convex function as follow:

Theorem 1.I a function f : I →R is strongly convex with modulus c then

f

(

a+b
2

)

+
c

12
(a−b)2 ≤

1
b−a

b
∫

a

f (x)dx≤
f (a)+ f (b)

2
−

c
6
(a−b)2

, (1)

for all a,b∈ I,a< b.

Conversely, if f is continuous and satisfies the left of righthand side of (1) for all a,b∈ I,a< b, then it is strongly convex

with modulus c.

In [2], Turhan et. al. revealed the new definition as follow:
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Definition 2. Let I be a interval,ϕ : I →R be a continuous and strictly monotonic function. f: I →R is said to be MϕA−

convex, if

f
(

ϕ−1 (tϕ (x)+ (1− t)ϕ (y))
)

≤ t f (x)+ (1− t) f (y) ,

for every x,y∈ I and t∈ [0,1]. If this inequality is reversed, then f is said to be MϕA− concave function.

In [2], Turhan et. al. proved the new theorem forMϕ A− convex function as follow:

Theorem 2.Let f : I ⊂ (0,∞) → R be a Mϕ A− convex function andϕ : I → R be a continuous and strictly monotonic

function and a,b∈ I with a< b. If f ,ϕ ∈ L [a,b] then the following inequality is satisfied almost everywhere:

f

(

ϕ−1
(

ϕ (a)+ϕ(b)
2

))

≤
1

ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ (x)dx≤

f (a)+ f (b)
2

This inequality known as Hermite-Hadamard inequality for Mϕ A− convex function.

Many authors have studied the work aboutMϕA−convex and strongly convex function, see [1-10]. In this paper, we

firstly list several definitions. Then, we have discussed some properties ofMϕA− strongly convex functions and obtained

Hermite Hadamard inequality for stronglyMϕA− convex.

2 Main results

In this section, we derive Hermite-Hadamard inequalities for stronglyMϕA−convex function.

Definition 3. Let I be a interval,ϕ : I →R be a continuous and strictly monotonic function. f: I →R is said to be MϕA−

strongly convex with modulus c> 0, if

f
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)

≤ (1− t) f (x)+ t f (y)− ct(1− t)‖ϕ (y)−ϕ (x)‖2

for all x,y∈ I ve t∈ [0,1] .

Proposition 1.

(1) If we takeϕ : I →R,ϕ (x) = x, then we se that Mϕ A−strongly convexity reduces to ordinary strongly convexityon I.

(2) If we takeϕ : I → R,ϕ (x) = x−1
, then we see that Mϕ A−strongly convexity reduces to strongly harmonic convexity

on I.

(3) If we takeϕ : I → (0,∞),ϕ (x) = lnx, we see that MϕA−strongly convexity reduces to GA strongly convexity on I.

Lemma 1.A function f: I = [a,b]⊂ R\{0}→R is Mϕ A− strongly convex with modulus c> 0, if and only if, the function

g(x) = f (x)− c‖ϕ (x)‖2 is MϕA− convex.

Proof.Assume thatf is MϕA strongly convex with modulusc> 0. Using properties of the inner product, we have

g
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)

= f
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)

− c
∥

∥ϕ
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)∥

∥

2

≤ (1− t) f (x)+ t f (y)− ct(1− t)‖ϕ (y)−ϕ (x)‖2− c‖tϕ (y)+ (1− t)ϕ (x)‖2

≤ (1− t) f (x)+ t f (y)− c
(

t (1− t)‖ϕ (y)‖2−2t (1− t)ϕ (y)ϕ (x)+ t (1− t)‖ϕ (x)‖2

+ t2‖ϕ (y)‖2+2t (1− t)ϕ (y)ϕ (x)+ (1− t)2‖ϕ (x)‖2
)

≤ (1− t) f (x)+ t f (y)− c
(

t‖ϕ (y)‖2+(1− t)‖ϕ (x)‖2
)

≤ (1− t) f (x)− c(1− t)‖ϕ (x)‖2+ t f (y)− ct‖ϕ (y)‖2

= (1− t)g(x)+ tg(y)
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which gives thatg is MϕA− convex function. Conversely, ifg is MϕA− convex function, then we have

f
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)

= g
(

ϕ−1(tϕ (y)+ (1− t)ϕ (x))
)

+ c
∥

∥ϕ
(

ϕ−1 (tϕ (y)+ (1− t)ϕ (x))
)∥

∥

2

≤ tg(y)+ (1− t)g(x)+ c‖(tϕ (y)+ (1− t)ϕ (x))‖2

≤ tg(y)+ ct‖ϕ (y)‖2+(1− t)g(x)+ c(1− t)‖ϕ (x)‖2

+ ct(1− t)‖ϕ (y)‖2− ct(1− t)‖ϕ (x)‖2+2ct(1− t)ϕ (y)ϕ (x)

= t f (y)+ (1− t) f (x)− ct(1− t)‖ϕ (y)−ϕ (x)‖2

which shows thatf is MϕA strongly convex with modulusc> 0.

Theorem 3. Let f : I = [a,b] ⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be

a continuous and strictly monotonic function such thatϕ−1 : ϕ
(

I0
)

→ I0 continuous differentiable function and∀x,y∈

I , t ∈ [0,1]. If f ∈ L [a,b], then the following inequality is satisfied almost everywhere:

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+
c
12

‖ϕ (b)−ϕ (a)‖2

≤
1

ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ (x)dx≤

f (a)+ f (b)
2

−
c
6
‖ϕ (b)−ϕ (a)‖2 (2)

Proof.Since f : I = [a,b]⊂ R\{0}→ R be aMϕA strongly convex function, we have,

f

(

ϕ−1
(

ϕ (x)+ϕ (y)
2

))

≤
f (x)+ f (y)

2
−

c
4
‖ϕ (y)−ϕ (x)‖2

For everyx,y∈ I , (with t = 1
2 in the inequality (2)). By choosing

x= ϕ−1 (tϕ (b)+ (1− t)ϕ (a)) and y= ϕ−1 (tϕ (a)+ (1− t)ϕ (b)) .

We get

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

≤
f
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

+ f
(

ϕ−1 (tϕ (a)+ (1− t)ϕ (b))
)

2

−
c
4

∥

∥ϕ
(

ϕ−1 (tϕ (a)+ (1− t)ϕ (b))
)

−ϕ
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)∥

∥

2
.

By integrating fort ∈ [0,1], we have

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

≤
1
2

[

∫ 1

0
f
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

dt+
∫ 1

0
f
(

ϕ−1 (tϕ (a)+ (1− t)ϕ (b))
)

dt

]

−
c
4
‖ϕ (b)−ϕ (a)‖2

∫ 1

0
(1−2t)2dt

and so

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+
c

12
‖ϕ (b)−ϕ (a)‖2 ≤

1
ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ (x)dx.

Thus, we get the left hand side of the inequality (2). Furthermore, we observe that for allt ∈ [0,1]

f
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

≤ (1− t) f (a)+ t f (b)− ct(1− t)‖ϕ (b)−ϕ (a)‖2
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By integrating this inequality with respect tot over[0,1], we have the right-hand side of the inequality (2).

≤

∫ 1

0
((1− t) f (a)+ t f (b))dt− c‖ϕ (b)−ϕ (a)‖2

∫ 1

0
t (1− t)dt =

f (a)+ f (b)
2

−
c
6
‖ϕ (b)−ϕ (a)‖2

.

Theorem 4.Let f : I = [a,b] ⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be a

continuous and strictly monotonic function such thatϕ−1 : ϕ
(

I0
)

→ I0 continuous differentiable function and x,y∈ I , t ∈

[0,1]. Then the following inequality is satisfied almost everywhere:

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+
c

12
‖ϕ (b)−ϕ (a)‖2 ≤ φ (x)≤

1
ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ (x)dx

≤ ψ (x)≤
f (a)+ f (b)

2
−

c
6
‖ϕ (b)−ϕ (a)‖2

, (3)

where

φ (x) =
1
2

[

f

(

ϕ−1
(

3ϕ (a)+ϕ (b)
4

))

+ f

(

ϕ−1
(

ϕ (a)+3ϕ (b)
4

))]

+
c
48

‖ϕ (b)−ϕ (a)‖2

ψ (x) =
1
2

[

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+
f (a)+ f (b)

2

]

−
c
24

‖ϕ (b)−ϕ (a)‖2
.

Proof.By applying the inequality (2) on each of the intervals
[

a,ϕ−1
(

ϕ(a)+ϕ(b)
2

)]

and
[

ϕ−1
(

ϕ(a)+ϕ(b)
2

)

,b
]

, we have

f

(

ϕ−1
(

3ϕ (a)+ϕ (b)
4

))

+
c
48

‖ϕ (b)−ϕ (a)‖2 ≤
2

ϕ (b)−ϕ (a)

∫ ϕ−1
(

ϕ(a)+ϕ(b)
2

)

a
f (x)ϕ−1 (x)dx (4)

≤
1
2

[

f (a)+ f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))]

−
c
24

‖ϕ (b)−ϕ (a)‖2

and

f

(

ϕ−1
(

ϕ (a)+3ϕ (b)
4

))

+
c
48

‖ϕ (b)−ϕ (a)‖2 ≤
2

ϕ (b)−ϕ (a)

∫ b

ϕ−1
(

ϕ(a)+ϕ(b)
2

) f (x)ϕ−1 (x)dx

≤
1
2

[

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+ f (b)

]

−
c

24
‖ϕ (b)−ϕ (a)‖2 (5)

respectively. Summing up side by side, we obtain

φ (x) =
1
2

[

f

(

ϕ−1
(

3ϕ (a)+ϕ (b)
4

))

+ f

(

ϕ−1
(

ϕ (a)+3ϕ (b)
4

))]

+
c
48

‖ϕ (b)−ϕ (a)‖2

≤
1

ϕ (b)−ϕ (a)

∫ b

a
f (x)ϕ (x)dx

≤
1
2

[

f

(

ϕ−1
(

ϕ (a)+ϕ (b)
2

))

+
f (a)+ f (b)

2

]

−
c
24

‖ϕ (b)−ϕ (a)‖2

≤
1
2

[

f (a)+ f (b)
2

+
f (a)+ f (b)

2
−

c
4
‖ϕ (b)−ϕ (a)‖2

]

−
c
24

‖ϕ (b)−ϕ (a)‖2

≤
f (a)+ f (b)

2
−

c
6
‖ϕ (b)−ϕ (a)‖2

. (6)

Theorem 5.Let f,g : I = [a,b] ⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be

a continuous and strictly monotonic function such thatϕ−1 : ϕ
(

I0
)

→ I0 continuous differentiable function and x,y ∈
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I , t ∈ [0,1]. If f ,g∈ L [a,b], then the following inequality is satisfied almost everywhere:

1
ϕ (b)−ϕ (a)

∫ b

a
f (x)g

(

ϕ−1 (ϕ (a)+ϕ (b)−ϕ (x))
)

ϕ (x)dx

≤
1
6

M (a,b)+
1
3

N (a,b)−
c
12

‖ϕ (b)−ϕ (a)‖2S(a,b)−
c2

30
‖ϕ (b)−ϕ (a)‖4

where

M (a,b) = f (a)g(a)+ f (b)g(b) , (7)

N(a,b) = f (a)g(b)+ f (b)g(a) , (8)

S(a,b) = f (a)+ f (b)+g(a)+g(b) . (9)

Proof.Let f ,g beMϕA− strongly convex functions with modulusc> 0. Then

1
ϕ (b)−ϕ (a)

∫ b

a

{

f (x)g
(

ϕ−1 (ϕ (a)+ϕ (b)−ϕ (x))
)}

ϕ (x)dx

=
∫ 1

0
f
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

g
(

ϕ−1 (tϕ (a)+ (1− t)ϕ (b))
)

dt

≤

∫ 1

0

[

(1− t) f (a)+ t f (b)− ct(1− t)‖ϕ (b)−ϕ (a)‖2
]

[

tg(a)+ (1− t)g(b)− ct(1− t)‖ϕ (b)−ϕ (a)‖2
]

dt

= f (a)g(b)
∫ 1

0
(1− t)2dt+ f (b)g(a)

∫ 1

0
t2dt

+[ f (a)g(a)+ f (b)g(b)]
∫ 1

0
t (1− t)dt

− c‖ϕ (b)−ϕ (a)‖2 [ f (a)+g(b)]
∫ 1

0
t(1− t)2dt− c‖ϕ (b)−ϕ (a)‖2

[ f (b)+g(a)]
∫ 1

0
t2 (1− t)dt− c2‖ϕ (b)−ϕ (a)‖4

∫ 1

0
t2(1− t)2dt

=
f (a)g(b)+ f (b)g(a)

3
+

f (a)g(a)+ f (b)g(b)
6

−
c

12
‖ϕ (b)−ϕ (a)‖2 [ f (a)+ f (b)+g(a)+g(b)]−

c2

30
‖ϕ (b)−ϕ (a)‖4

=
1
6

M (a,b)+
1
3

N (a,b)−
c
12

‖ϕ (b)−ϕ (a)‖2S(a,b)−
c2

30
‖ϕ (b)−ϕ (a)‖4

.

In this condition, we takef = g in Theorem 2.3, then it reduces to the following result:

Corollary 1. Let f : I = [a,b] ⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be a

continuous and strictly monotonic function and x,y∈ I, t ∈ [0,1]. If f ∈ L [a,b], then the following inequality is satisfied

almost everywhere:

1
ϕ (b)−ϕ (a)

∫ b

a
f (x) f

(

ϕ−1 (ϕ (a)+ϕ (b)−ϕ (x))
)

ϕ (x)dx

≤
2[ f (a) f (b)]

3
+

f 2 (a)+ f 2(b)
6

−
c
6
‖ϕ (b)−ϕ (a)‖2 [ f (a)+ f (b)]−

c2

30
‖ϕ (b)−ϕ (a)‖4

.

Theorem 6.Let f,g : I = [a,b]⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be a

continuous and strictly monotonic function and x,y∈ I , t ∈ [0,1]. If f g∈ L [a,b], then the following inequality is satisfied

© 2018 BISKA Bilisim Technology
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almost everywhere:

1
ϕ (b)−ϕ (a)

∫ b

a
{ f (x)g(x)}ϕ (x)dx≤

1
3

M (a,b)+
1
6

N (a,b)−
c
12

‖ϕ (b)−ϕ (a)‖2S(a,b)−
c2

30
‖ϕ (b)−ϕ (a)‖4

,

where M(a,b) , N (a,b) and S(a,b) are given by(7),(8) and(9) respectively.

Proof. Let f ,g beMϕA strongly convex functions with modulusc > 0. In this case, the following inequality is satisfied

almost everywhere:

1
ϕ (b)−ϕ (a)

∫ b

a
{ f (x)g(x)}ϕ (x)dx=

∫ 1

0
f
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

g
(

ϕ−1 (tϕ (b)+ (1− t)ϕ (a))
)

dt

≤

∫ 1

0

[

(1− t) f (a)+ t f (b)− ct(1− t)‖ϕ (b)−ϕ (a)‖2
]

[

(1− t)g(a)+ tg(b)− ct(1− t)‖ϕ (b)−ϕ (a)‖2
]

dt

= f (a)g(a)
∫ 1

0
(1− t)2dt+ f (b)g(b)

∫ 1

0
t2dt

+[ f (a)g(b)+ f (b)g(a)]
∫ 1

0
t (1− t)dt

− c‖ϕ (b)−ϕ (a)‖2 [ f (a)+g(a)]
∫ 1

0
t(1− t)2dt

− c‖ϕ (b)−ϕ (a)‖2 [ f (b)+g(b)]
∫ 1

0
t2 (1− t)dt

− c2‖ϕ (b)−ϕ (a)‖4
∫ 1

0
t2(1− t)2dt

=
f (a)g(a)+ f (b)g(b)

3
+

f (a)g(b)+ f (b)g(a)
6

−
c
12

‖ϕ (b)−ϕ (a)‖2 [ f (a)+ f (b)+g(a)+g(b)]−
c2

30
‖ϕ (b)−ϕ (a)‖4

=
1
3

M (a,b)+
1
6

N (a,b)−
c
12

‖ϕ (b)−ϕ (a)‖2S(a,b)−
c2

30
‖ϕ (b)−ϕ (a)‖4

.

We takef = g in Theorem 2.4, then it reduces to the following result.

Corollary 2. Let f : I = [a,b] ⊂ R\{0} → R be a MϕA− strongly convex function with modulus c> 0, ϕ : I → R be a

continuous and strictly monotonic function and x,y∈ I , t ∈ [0,1]. If f ∈ L [a,b], then the following inequality is satisfied

almost everywhere:

1
ϕ (b)−ϕ (a)

∫ b

a

{

f 2 (x)
}

ϕ (x)dx≤
[ f (a) f (b)]

3
+

f 2 (a)+ f 2 (b)
3

−
c
6
‖ϕ (b)−ϕ (a)‖2 [ f (a)+ f (b)]

−
c2

30
‖ϕ (b)−ϕ (a)‖4

.
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[2] Turhan, S., İşcan, İ., Kunt, M. (2016). Hermite - Hadamard type inequalities for Mϕ A convex functions. Doi:

10.13140/RG.2.2.14526.28486.
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