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Abstract: This work is devoted to some geometric inverse problems in linear elasticity. The problem considered is the cavities
identification in mechanical structures from the knowledgeof partially overdetermined boundary data, namely the displacement field
and the normal component of the normal stress. We state a uniqueness result from a single pair of data under some geometrical
assumptions. We propose an iterative method based on the coupling of the data completion process through the Steklov-Poincaré
operator to reconstruct the shear stress and of the shape gradient method combined with the level set method to identify cavities.
Numerical simulations highlight the algorithm efficiency.
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1 Introduction

During the past few decades, special attention has been given to inverse problems in linear elasticity framework [12].

These problems can be classified as the detection of defaults(cavities, cracks or inclusions) or the reconstruction of

unreachable boundary data, among others.

On one hand, the identification of flaws in mechanical structures is extremely important in the industry [25,30] since it is

crucial for engineers to assess the reliability of structures and to predict its remaining service life. On the other hand,

overdetermined boundary data are crucial to such a geometrical inverse problem. To the best of our knowledge, all

cavities identification problems in linear elasticity, investigated in the literature, are based on the essential assumption

that overspecified boundary conditions are complete, i.e. both the displacement field and the normal stress are available

for the reconstruction of flaws [5,9,10], expect of recent works [6,22] where overdetermined boundary data are

incomplete.

Let us mention that the data completion problem mentioned above has been widely investigated (see [11] and references

therein). Such a problem can be formulated as follows: giventhe tractions and the displacement fields on the accessible

part of the boundary of the domain of interest, one aims to evaluate the same information on the inaccessible part of the

boundary. Needless to say, this ill-posed problem has already been strongly studied with a lot of methods which can be

grouped as methods based on the minimization of an energy-like functional [1,2] via the Steklov Poincaré operator,

quasi reversibility method [13], iterative methods [18,26,27], iterative regularization methods (namely, relaxation

procedures for alternating iterative algorithms) [28,29] and Tikhonov regularization [16]. We refer the reader to [11].
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In some situations, no information about shear stress (namely the tangential component of the normal stress) is available

and only the displacement field and the normal component of the normal stress are accessible. We refer, here, to a

sub-Cauchy problem, that is partially overdetermined boundary data [6,22], which consists the main motivation of this

paper. Such non-standard situation derives for example from the devices used to compute measurements on the exterior

boundary of the mechanical components.

Motivated by the recent results of [8] obtained to recover lacking boundary data via partially overdetermined boundary

data and results of [5] obtained to identify cavities from overdetermined boundary data; both results obtained in linear

elasticity, we are concerned in this work with a geometricalinverse problem related to the identification of cavities in

mechanical structures from partially overdetermined boundary data.

Problem statement: Let D be a bounded, connected and open set ofR
2 with a Lipschitz boundaryΓ and ω be a

subdomain ofD such thatω ⊂ D . We consider the domainΩ = D \ω as a reference configuration of a homogeneous

and isotropic elastic material and the subdomainω as a void to be recovered. The present topological situationis

depicted in Fig.1. The displacement fieldu satisfies the following direct problem

Fig. 1: The computational domain.











div σ(u) = 0 in Ω ,

u = ug onΓ ,

σ(u)nγ = 0 on γ = ∂ω .

(1)

Here,σ(u) is the Cauchy stress tensor associated with the displacement field u andε(u) is the linearized strain tensor

given by

ε(u) =
1
2

(

∇u+∇ut) .

σ andε are related by the Hooke constitutive law via

σ(u) = λ (tr ε (u)) I +2µ ε (u)

and conversely

ε (u) =
1+ν

E
σ (u)−

ν
E

(tr σ (u)) I .
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Above, tr denotes the trace of matrix,I denotes the identity matrix andλ , µ are the Lamé coefficients related to Young’s

modulusE and Poisson’s ratioν via

µ =
E

2(1+ν)
and λ =

Eν
(1−2ν)(1+ν)

.

nγ denotes the outward unit normal to the boundary ofω on γ.

The geometric inverse problem under consideration can be stated as follows : Given the displacement componentug on

Γ and measuring the normal tractionTm ·n onΓ , identify the shapeγ of ω .

Classical Cauchy problems have been extensively studied bymany authors in order to substantiate the uniqueness of the

inverse problems. Almost all the proofs rely on Holmgren’s type uniqueness theorem. For the first time, it was introduced

by Isakov [21] to prove the uniqueness of a discontinuous conductivity coefficient. Then, this method has been used for

various classes of inverse problems. In our context, we refer to the work of Ang and al. [3] who proved a uniqueness

result for the location and the shape of a cavity with an edge under a non-vanishing traction hypothesis. The same

question has been investigated by Ben Ameur [10]. In this work, the main contribution is the treatment of partially

overspecified boundary data when one seeks an identifiability issue for voids.

The present research aims to develop an iterative method based on coupling the Steklov Poincaré operator and the shape

gradient approach combined with the level set method through the minimization of an energy-like functional [4,5,6,8,

23,22] to numerically solve the inverse problem. However, it should be noted that some results related to the detection of

cracks [7,15] and obstacles [13] for the Laplace problem are achieved through iterative methods in the case of a Cauchy

problem. Indeed, a two-step recovery algorithm, based on least squares fit with an iterated Tikhonov regularization to

extend the available data to the whole external boundary as afirst step and on the reciprocity gap to retrieve the crack as

a second step, was proposed in [15]. While in [7], the recovery procedure was based firstly on building an extension of

the available data to the whole boundary using constructiveapproximation techniques in classes of analytic and

meromorphic functions and secondly on the reciprocity gap technique as it was the case in [15]. The approach proposed

in [13] was based on an iterative procedure which consists in coupling the method of quasi-reversibility [24] and a

simple level set method.

The overview of the paper is as follows. In the upcoming section, we discuss the identifiability issue for the voids

identification problem from an incomplete boundary measurements. In the third section, we introduce the shape gradient

to identify the cavities from complete data. In the fourth section, we investigate the inverse problem of recovering the

shear stress from the knowledge of partially overdetermined boundary data on the external boundary of the domain of

interest. The first issue in the fifth section is a brief presentation of the level set method whilst the second one is devoted

to the description of the algorithm to be implemented. The sixth section concerns the numerical results. Finally, some

concluding remarks and possible future work are reported.

2 Voids Identifiability

In the following, we intend to deal with the more general problem of linear elasticity theory in which the specified

overdetermined boundary data are the values of the displacement and the traction over an arbitrarily portion of the

boundary, using the Muskhelishvili theorem for the plane elasticity and the Almansi lemma for the three-dimensional

elasticity to prove the uniqueness question. In this work, we seek for conditions that guarantee that the difference of two

possible displacement fields satisfying the same partiallyoverspecified boundary data is either the null solution or at

most a rigid body displacement.
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In the recent literature, a non-standard type of problem hasattracted considerable interest because it serves physically an

auxiliary role. Up to our knowledge, the first one who treatedsuch kind of problems is Hedenmalm. Recently, he has

proven a unicity theorem for the bilaplacien operator from partially overdetermined boundary data [20]. For the

sub-Cauchy elasticity problems, the question is still open.

However, on an isotropic half-plane, some insights into thequestion of uniqueness can be gained using a simple calculus,

namely an integral representation [14], such that the sub-Cauchy problem reduces to the Cauchy problem for which the

uniqueness condition, that is, the unique (null) solution of the homogeneous Cauchy problem, is ensured by

Muskhelishvili’s theorem. Remarkably, theorems for the half-plane impose much weaker restrictions on the elasticities

than the corresponding theorems for domains of arbitrarilyshape.

The main result of this section asserts that there is at most one void in the elastic solid which yields the same surface

measurements on an arbitrarily small plane portion of the outer boundary. The key to the proof is the unique continuation

of the isotropic Lamé system [17] and the Muskhelishvili theorem [31].

Theorem 1.Letω1 andω2 be two voids such thatω1∩ω2 6= /0 with C1-smooth boundaryγ1,2 = ∂ω1,2. For i = 1,2, let ui

be the solution of the problem (1) defined inΩ i = D \ω i such thatu1 ∈
[

H2(Ω1)
]2

. Then, ifω1 andω2 both lead to the

same measured normal traction on an open plane portion M of the outer boundaryΓ , namelyn ·σ(u1)n = n ·σ(u2)n =

Tm ·n on M, we haveω1 = ω2.

Proof.Let Ωe ⊂ D be the external connected component ofΩ1∩Ω2 such that∂Ωe ⊂ γ1∪ γ2∪Γ (the one having M as

part of its boundary). Letw := u1−u2 be the solution of the following problem











div σ(w) = 0 in Ωe,

n ·σ(w)n = 0 on M,

w = 0 on M.

SinceΩe is connected,w vanishes in the whole domainΩe by the Muskhelishvili theorem. Then

u1 = u2 in Ωe.

Now, we prove by contradiction thatω1 = ω2. Let us so suppose thatω1 6= ω2. Since numerous possibilities exist for

the void, see Fig.2 for one particular situation, we assume thatO is one of the connected components ofΩ1 \Ω2.

Subsequently, we have that∂O is a union of a finite number of openC1-smooth curves. So, for allx∈ ∂O, there are only

two cases to happen

(1) x∈ γ1.

(2) x∈ ∂Ωe∩ (γ2\ (γ1∪Γ )).

In the first case, we have

σ(u1)nγ1 = 0 on γ1, (2)

wherenγ1 denotes the outward unit normal to the boundaryγ1.

In the second case, we have by the regularity assumptions

u1(x) = u2(x) and so σ(u1(x)) = σ(u2(x)).
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Fig. 2: The connected components ofΩ1 \Ω2.

Sincex∈ ∂Ωe∩ (γ2\ (γ1∪Γ )⊂ γ2), we have

σ(u2)nγ2 = 0 on γ2, (3)

wherenγ2 denotes the outward unit normal to the boundaryγ2.

By (2) and (3), we get thatu1 is the solution of the following problem in the open setO

{

div σ(u1) = 0 in O,

σ(u1)nγ = 0 on ∂O.

From the Green formula, we get

∫

O
σ(u1) : ε(u1) dx=

∫

∂O
σ(u1)nγ ·u1 ds= 0.

We conclude thatu1 is a rigid displacement inO. By the unique continuation theorem, we deduce thatu1 is a rigid

displacement in the whole domainΩ1 which is in contradiction with the hypothesis of the load which is not identically

equal to zero(Tm ·n 6= 0). Hence,ω1 = ω2.

Remark.For the case of disjoint voids, the proof has the same spirit as the one presented above and for the case of

monotonous cavities the unicity was proved using the energyfunctional [22].

3 Voids Identification

In this part, we only outline briefly the cavities identification method from overdetermined boundary data. We refer to [5]

for a comprehensive analysis. In this section, we aim to recover the voidω , that is to solve the geometrical inverse problem

provided that the shear stress, namelyTm · τ is known onΓ , whereτ is the unit tangent vector toΓ . The reconstruction

problem of the shear stressTm · τ will be addressed in the next section. In order to solve this problem, we follow the

same method investigated in [5]. Indeed, we propose a Dirichlet-Neumann approach by the means of a self-regularization

technique namely the Kohn-Vogelius formulation [5]. More precisely, we introduce two well-posed problems, with a

couple of solutions(σD,uD) and(σN,uN) defined inΩ , each of them satisfying the elasticity equations inΩ as well as
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a homogeneous Neumann boundary condition onγ. We assign to the first problem a Dirichlet condition (4) and to the

second one a Neumann condition (5) both of them on the boundaryΓ as follows



















div σD = 0 in Ω ,

εD = 1+ν
E σD − ν

E (tr σD)I in Ω ,

uD = ug onΓ ,

σDnγ = 0 on γ,

(4)



















div σN = 0 in Ω ,

εN = 1+ν
E σN − ν

E (tr σN)I in Ω ,

σNn = Tm onΓ ,

σNnγ = 0 on γ.

(5)

Let us define the following spaces

L2
s(Ω) = {α = (α i j ) ∈

[

L2(Ω)
]4

; α i j = α ji}

and

VD = {v ∈
[

H1(Ω)
]2

; v = 0 onΓ },

the bilinear symmetric forma : L2
s(Ω)×L2

s(Ω)→ R and the bilinear formb : L2
s(Ω)×

[

H1(Ω)
]2

→R by

a(σ ,α) =

∫

Ω

[

1+ν
E

tr(σα)−
ν
E

tr(σ)tr(α)

]

dx and b(α,v) =−

∫

Ω
tr(α∇v) dx.

The variational formulations of the Dirichlet problem (4), respectively the Neumann problem (5) are











Find (σD,uD) ∈ L2
s(Ω)×

[

H1(Ω)
]2

; uD = ug onΓ such that

a(σD,α)+b(α,uD) = 0, ∀α ∈ L2
s(Ω),

b(σD,v) = 0, ∀v ∈VD,

(6)

respectively











Find (σN,uN) ∈ L2
s(Ω)×

[

H1(Ω)
]2

such that

a(σN,α)+b(α,uN) = 0, ∀α ∈ L2
s(Ω),

b(σN,v) =−
∫

Γ Tm ·v, ∀v ∈
[

H1(Ω)
]2
.

(7)

We adopt above the formulation in two fields, namely the Hellinger-Reissner principle [19]. It consists to write separately

the equilibrium equation and the Hooke law in variational form [5].

3.1 Asymptotic expansions

Let U be an open and bounded domain containingΩ and letFt be a perturbation of the identity operator, defined by

Ft = id + th, whereh is a deformation field belonging to the following space

S = {h ∈C1,1(U ,R2); h = 0 on ∂U ∪Γ }.
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The conditionh|Γ = 0 means that the boundaryΓ is clamped during the iterative process(Γ = Ft(Γ )). For sufficiently

small t,Ft is aC1,1 diffeomorphism fromΩ onto its image. Let us define the family of domains{Ωt} and{γt} by

Ωt = Ft(Ω) and γt = Ft(γ),

as well as the following forms

ȧ(σ ,α) =

∫

Ω
divh

[

1+ν
E

tr(σ α)−
ν
E

tr(σ)tr(α)

]

dx

and

ḃ(α ,v) =−

∫

Ω
(divh) tr(α ∇v) dx+

∫

Ω
tr(α(∇ht ∇v)) dx.

Let us consider inL2
s(Ωt)×

[

H1(Ωt)
]2

, (σDt,uDt), respectively(σNt,uNt) the solution of the problem (4), respectively

(5) defined on the perturbed domainΩt where

L2
s(Ωt) = {α = (α i j ) ∈

[

L2(Ωt)
]4

; α i j = α ji}.

The following theorems establish the differentiability oft 7−→ (σ t
D,u

t
D) and t7−→ (σ t

N,u
t
N) where(σ t

D,u
t
D) and(σ t

N,u
t
N)

are the solutions transported to the fixed domainΩ by

ut
D = uDt ◦Ft and σ t

D = σDt ◦Ft

and

ut
N = uNt ◦Ft and σ t

N = σNt ◦Ft.

Theorem 2.[5] The map t7−→ (σ t
D,u

t
D) is continuously differentiable in a neighborhood of 0 and wehave that(σ̇D, u̇D)∈

L2
s(Ω)×

[

H1(Ω)
]2

is the solution of the following variational problem











Find (σ̇D, u̇D) ∈ L2
s(Ω)×

[

H1(Ω)
]2

; u̇D = 0 onΓ such that

a(σ̇D,α)+b(α, u̇D) = LD(α), ∀α ∈ L2
s(Ω),

b(σ̇D,v) =−ḃ(σ D,v), ∀v ∈VD,

where

LD(α) =−ȧ(σD,α)− ḃ(α ,uD).

A similar result can be expected for the Neumann problem.

Theorem 3.[5] The map t7−→ (σ t
N,u

t
N) is continuously differentiable in a neighborhood of 0 and wehave that(σ̇N, u̇N)∈

L2
s(Ω)×

[

H1(Ω)
]2

is the solution to the following variational problem











Find (σ̇N, u̇N) ∈ L2
s(Ω)×

[

H1(Ω)
]2

such that

a(σ̇N,α)+b(α, u̇N) = LN(α), ∀α ∈ L2
s(Ω),

b(σ̇N,v) =−ḃ(σN,v), ∀v ∈
[

H1(Ω)
]2
,

where

LN(α) =−ȧ(σN,α)− ḃ(α ,uN).
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3.2 Shape gradient

A classical way to solve the voids identification problem is to transform it into a shape optimization problem. Following

the same procedure described in [5], we consider an energy gap functionalJ depending on the domainΩ given by

J (Ω) :=
1
2

∫

Ω
(σD −σN) : (ε(uD)− ε(uN)) dx. (8)

We remark thatJ (Ω) = 0 if and only if there is no misfit between both the Dirichlet and Neumann solutions, that is,

whenσD = σ N anduD = uN. The inverse problem can so be formulated as a shape optimization one as follows







Find Ω such that

J (Ω) = min
Ω̃⊂D

J (Ω̃ ).
(9)

In the perturbed domainΩt, the functionalJ (8) is nothing but

J (Ωt) :=
1
2

∫

Ωt

(σDt −σNt) : (ε(uDt)− ε(uNt)) dx.

Then, the directional Eulerian shape derivative ofJ at Ω in the direction ofh is defined as

J ′(Ω ,h) = lim
t→0

J (Ωt)−J (Ω)

t
.

This derivativeJ is called shape derivative ifJ ′(Ω ,h) exists for allh ∈ S and the mappingh 7→ J ′(Ω ,h) is a

continuous and linear functional inS .

Now, we are able to state the main result.

Theorem 4.[5] The mapping t7−→ J (Ωt) is C1 in a neighborhood of 0 and its derivative at 0 is given by

J ′(Ω ,h) =
∫

γ
G(h ·nγ) ds,

with

G=
1
2
[(σD : ε(uD))− (σN : ε(uN))] . (10)

4 Shear stress reconstruction

This part concerns the recovery of lacking boundary data, namely the shear stressTm · τ = τ · σ(u)n on the exterior

boundary of the domain of interest from the knowledge of partially overdetermined boundary data. The important point

to note here is that, to the best of our knowledge, there are notheoretical studies (existence and uniqueness) regardingthis

problem despite its great importance in applications.

The problem is formulated mathematically as follows: Giventhe displacement componentug on Γ and measuring the

normal tractionTm ·n onΓ .










div σ(u) = 0 in Ω ,

u = ug onΓ ,

n ·σ(u)n = Tm ·n onΓ .

(11)

In order to numerically recover the shear stress, we resort to the same approach proposed in [8] that we briefly present

herein. This part is concerned with the Steklov-Poincaré operator carried out to solve the sub-Cauchy problem (11) which
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is nothing more than a data completion problem. One way to solve such a problem is to decompose it through an unknown

functionη as follows

(PD)











div σD = 0 in Ω ,

uD = ug onΓ ,

uD = η onΓf

(12)

and

(PN)



















div σN = 0 in Ω ,

n ·σNn = Tm ·n onΓ ,

uN · τ = ug · τ onΓ ,

uN = η onΓf ,

(13)

whereη is the virtual control defined on the fictif boundaryΓf as depicted in Fig.3. The solutionsuD anduN are functions

Fig. 3: Γf is a fictif boundary.

of η (uD = uD(η) anduN = uN(η)). The gap between these fieldsuD anduN is subsequently minimized with respect to

the unknown boundary dataη in order to produce the desired expanded elastic fields. The gap used herein is the same

Kohn-Vogelius error functional investigated in the subsection 3.2related to voids identification but in this case depending

on the virtual controlη , that is

J (η) :=
1
2

∫

Ω
(σ D −σN) : (ε(uD)− ε(uN)) dx. (14)

The inverse problem is then formulated via the minimizationof the energy error functionalJ (14) as











Find η such that

J (η) = min
η̃∈[H1/2(Γf )]

2
J (η̃). (15)

The solutionuD respectivelyuN of the problem (12) respectively (13) can be written as

uD = uD +u∗
D respectively uN = uN +u∗

N, (16)
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whereuD anduN depend on the partially overdetermined boundary data(ug,Tm ·n), whilst u∗
D andu∗

N depend onη as

follows

(P∗
D)











div σ∗
D = 0 in Ω ,

u∗
D = 0 onΓ ,

u∗
D = η onΓf ,

(PD)











div σD = 0 in Ω ,

uD = ug onΓ ,

uD = 0 onΓf

and

(P∗
N)



















div σ∗
N = 0 in Ω ,

n ·σ∗
Nn = 0 onΓ ,

u∗
N · τ = 0 onΓ ,

u∗
N = η onΓf ,

(PN)



















div σN = 0 in Ω ,

n ·σNn = Tm ·n onΓ ,

uN · τ = ug · τ onΓ ,

uN = 0 onΓf .

The solution of the problem (15) is recovered if

σD n f = σN n f onΓf . (17)

According to (16), the condition (17) leads to the boundary equation

σ∗
Dn f −σ∗

Nn f = σNn f −σDn f onΓf . (18)

Let us introduce some notations useful in the sequel

SDη = σ∗
Dn f , SNη = σ∗

Nn f and ξ =−(σDn f −σNn f ).

Then, one can rewrite the equation (18) as

Sη = (SD −SN)η = ξ onΓf , (19)

whereS is the Steklov-Poincaré operator well known in the domain decomposition theory [34].

5 Numerical analysis

5.1 Voids identification

This part aims to develop an algorithm to numerically solve the shape optimization problem (9). Indeed, the theorem 4

suggests the implementation of a numerical minimization algorithm using the gradient method. We consider for t≥ 0 and

kth iteration, the deformation ofγ, like it was the case in the subsection 3.1

γk
t := Ft(γ) = {x+ th(x); x∈ γ}, (20)

whereh is chosen as follows

h ∈ S such that h|γ =−Gnγ , (21)

G is given by (10). This descent direction (21) guarantees the minimization of the shape functionalJ (8). To numerically

implement this iterative procedure, we resort to the level set method. It is a numerical technique for tracking shapes,

developed in 1988 by Osher and Sethian [33]. During the past few decades, this method has been applied in various fields

[32], since it provides a practical way to follow shapest hat change topologies. Let us consider the evolution of a boundary
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γt (namely a domainΩt ⊂ U ⊂ R
2) under the velocity fieldh (21) related to the sensitivity of the energy error functional

J (8). The basic idea of the level set method is to construct a linkbetween the boundaryγt (20) and a continuous function

Φ defined on the whole domainU . More precisely, the boundaryγt can be implicitly represented using the level curve of

a functionΦ as follows

γt = {x∈ U ; Φ(x, t) = 0}.

During the process, the cavities to recover will be identified by change in level set function values, with respect to fictitious

time t. This change is related to the shape derivative of the functionalJ . Indeed, the derivation of the equationΦ(x, t) = 0

with respect to t leads to the transport equation

∂tΦ +h ·∇Φ = 0.

Since the normal vector toγt is given bynγ = ∇Φ
|∇Φ | [32], the evolution ofΦ is then governed by the Hamilton-Jacobi

equation

∂tΦ +hn |∇Φ|= 0,

wherehn is the normal velocity. Or, we have chosenh=−Gnγ =−G ∇Φ
|∇Φ | . As a consequence, the evolution ofγt (namely

the evolution ofΦ) is governed by the so-called level set equation

{

∂tΦ −G|∇Φ| = 0 in U ×R+,

Φ(·,0) = Φ0,
(22)

whereΦ0 is the initial data chosen as the signed distance function toγ0. Hence, moving the level-set lines along the

descent gradient directionh (21) is equivalent to evolving the functionΦ by solving the level set equation (22).

5.2 Shear stress reconstruction

Going back to the resolution of the linear system of equations (19), one can use an iterative preconditioned gradient

algorithm which appears to be very efficient. Indeed, at k iteration, one can reinitializeη as

ηk = ηk−1+ρ M(Sηk−1− ξ)

and the key point, here, relies on choosing the preconditionerM = S−1
D . Above,ρ is a relaxation coefficient. Hence, each

iteration of the algorithm, to be implemented in order to reconstruct the shear stress onΓ , involves the solution of both

problems (12) and (13), to getSη and the solution of the following problem















div σ(w) = 0 in Ω ,

σ(w)n f = Sη − ξ onΓf ,

w = 0 onΓ ,

(23)

needed to solve the systemSDχ = Sη − ξ ( χ = w onΓf ).

5.3 Algorithm

Herein, we outline the algorithm to be implemented in order to solve the inverse problem, that is to retrieve the void

ω from the partially overdetermined boundary data(ug,Tm · n) available onΓ . Let Ω true be a domain containing a

cavity (or multiple cavities) whose location and shape are to be retrieved from boundary measurements. The partially
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overdetermined boundary data, namely the displacementug and the normal component of the normal stressTm · n are

issued from a numerical computation of a direct problem overthe domainΩ true containing the cavity(ies) to recover

(synthetic data) as follows.

GivenTg ∈
[

H− 1
2 (Γ )

]2
, we solve the direct problem















div σ(u) = 0 in Ω true,

σ(u)n = Tg onΓ ,

σ(u)nγ = 0 on γ,

up to a constant. Then, we take(ug,Tm·n) = (u|Γ ,(Tg ·n)|Γ ). Since the partially overdeterminedboundary data(ug,Tm·n)
are overspecified, the numerical procedure could be represented in the following algorithm stages. Let us assume that we

know the interfaceγk and a level set functionΦk associated toγk.

(1) Shear stress reconstruction
(a) Choose an initial dataη0.

(b) Solve the problems (12) and (13) in the domainΩk, whereΩk = D \ωk.

(c) Solve the problem (23) and getw.

(d) Let ηk = ηk−1+ρ w.

(e) Go back to the first step (a) until the stopping condition:

‖uD−uN‖[L2(Ω)]
2 ≤ ε is reached (ε is a given tolerance level; in the following section, we willchooseε = 10−2).

(2) Voids identification
(a) Compute the solutions(σ D,uD) and(σN,uN) of the problems (4) and (5) in the domainΩk.

(b) Compute the velocity functionG on γk, given by (10).

(c) Update the level set functionΦk by solving the level set equation (22) and get a new functionΦk+1.

(d) Go back to the first step (1 a) until the stopping criterionis fulfilled.

It should be noted that the stopping criterion of the algorithm exposed above is

dH

(

γk,γk−1
)

<C(δx)2,

whereC is a constant independent of the grid parameterδx. dH denotes the Hausdorff distance defined for two sets

A,B⊂ R
2 by

dH (A,B) = max

(

sup
a∈A

d (a,B) , sup
b∈B

d (A,b)

)

where

d (a,B) = inf
b∈B

|a−b|.

6 Results

The purpose of this section is to present numerical results.The domainU is the square[−1,1]× [−1,1] and we consider

the inverse problem of the identification of two cavities. Indeed, we consider disconnected cavities: the union of the two

disjointed circles of radius 0.15 centred at(−0.35,0) and(0.35,0) and a connected initial guess: the circle of radius 0.65

centred at the origin. The initial guess is sufficiently big to include the unknown cavities. The results reported in Fig.4 are

in good agreement with the exact ones and show the flexibilityof the proposed methodology to recover multiple cavities

even from partially overdetermined boundary data.
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Fig. 4: Γ the exterior boundary (the dashed green line),γ the exact solution (the black line), the evolution of the boundary
γk (the red line) fork= 1,300,434,448,449 (left to right, top to bottom).

7 Conclusion

This paper introduces an iterative method for solving a geometrical inverse problem in linear elasticity. The problem

consists in recovering voids from partially overspecified boundary data. The approach proposed combines the resolution

of a data completion problem and a cavities identification one. While transforming these both problems into optimization

ones, the same energy gap-cost functional is introduced. Numerical simulations have highlighted the efficiency of the
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method. Some open questions such as the existence and the uniqueness of solution concerning the shear stress

reconstruction problem deserve an answer. An extension to non-linear elasticity framework could be an interesting future

direction of the investigation.
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