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1 Introduction

Ganchev et al. [3] defined the odd-dimensional version of almost complex manifolds with Norden metric [8,4,2] known

as the almost contact manifolds withB-metric (Norden metric). Later, Ivanov et al. [5] introduced a new class of almost

contact manifolds withB-metric namely Sasaki-like almost contact Complex Riemannian manifolds withB-metric,

which is analogue to indefinite Sasakian manifold.

Tanno [9] proved the following result for an almost Hermitian manifold (M2n,g,J) to reduce to a space of constant

holomorphic sectional curvature.

Theorem 1.[9] Let dimension(2n≥ 4), assume that almost Hermitian manifold(M2n,g,J) satisfies

R(JX,JY,JZ,JX) = R(X,Y,Z,X), (1)

for every tangent vectors X,Y and Z. Then(M2n,g,J) is of constant holomorphic sectional curvature at x, if and only if,

R(X,JX)X is proportional to JX, (2)

for every tangent vector X at x in M.

Tanno [9] also extended the above Theorem1 for the Sasakian manifolds as follows.

Theorem 2. [9] A Sasakian manifold(M2n+1,φ ,η ,ξ ,g) of dimension≥ 5, is of constantφ -sectional curvature if and

only if

R(X,φX)X is proportional to φX (3)

for every vector field X such that g(X,ξ ) = 0, whereξ is a characteristic vector field of M.
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Further, Nagaich [7] generalized the Theorem1 for an indefinite almost Hermitian manifoldand provided the following

characterization.

Theorem 3.Let (M2n,g,J) of dimension2n, where(n ≥ 2) be an indefinite almost Hermitian manifold satisfying(1).

Then M is of constant holomorphic sectional curvature at p, if and only if,

R(X,JX)X is proportional to JX, (4)

for every tangent vector X at p∈ M.

And later, Kumar et al.[6] proved the generalized version of the Theorem2 for anindefinite Sasakian manifoldas follows.

Theorem 4. Let (M2n+1,φ ,η ,ξ ,g) (2n ≥ 4) be an indefinite Sasakian manifold. Then M is of constantφ -sectional

curvature if and only if

R(X,φX)X is proportional to φX (5)

for every tangent vector field X such that g(X,ξ ) = 0, whereξ is a characteristic vector field of M.

Recently, we have generalized the Theorem3 to the setting of analmost complex manifold with Norden metricas

Theorem 5.[1] Let(M2n
,g,J) (2n≥ 4) be an indefinite almost complex manifold with Norden metric satisfying (1). Then

(M2n,g,J) is of constant holomorphic sectional curvature at p if and only if

R(X,JX)X is proportional to αX+βJX, (6)

whereα andβ are the functions of holomorphic sectional curvature H(X), for every tangent vector X at p∈ M.

In this paper, we have extended the Theorem5 to the setting of a Sasaki-like almost contact manifold withB-metric to

reduce to a space of constantϕ-holomorphic sectional curvature.

Theorem 6.Let(M̄2n+1,ϕ ,ζ ,η) be an indefinite Sasaki-like almost contact manifold with B-metric. ThenM̄ is of constant

ϕ-holomorphic sectional curvature if and only if

R(X,ϕX)X is proportional to γX+ δϕX, (7)

where γ and δ are the functions ofϕ-holomorphic sectional curvature H(X), for every tangent vector X such that

g(X,ζ ) = 0, whereζ is a characteristic vector field of̄M.

2 Preliminaries

2.1 Almost contact manifold with B-metric

Let (M̄2n+1,ϕ ,ζ ,η) be an almost contact manifold withB-metric ḡ, i.e., M̄ is a (2n+1)-dimensional smooth manifold

endowed with an almost contact structure(ϕ ,ζ ,η) and equipped with a pseudo-Riemannian metric ¯g, such that the

following relations are satisfied [3],

ϕζ = 0, η(ζ ) = 1, (8)

η(X) = ḡ(X,ζ ), η(ϕX) = 0, (9)
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ḡ(ϕX,ϕY) =−ḡ(X,Y)+η(X)η(Y), (10)

ḡ(ϕX,Y) = ḡ(X,ϕY), (11)

¯̃g(X,Y) = ḡ(ϕX,Y)+η(X)η(Y), (12)

for arbitrary tangent vector fieldsX,Y ∈ TM̄, where¯̃g is called the associated metric of ¯g on M̄ and is also aB-metric on

M̄. Moreover, the manifold(M̄,ϕ ,ζ ,η , ¯̃g) is also called an almost contact manifold withB-metric. Infact, both ¯g and ¯̃g

are indefinite metrics having signature(n+1,n).

Let ∇̄ and ¯̃∇ be the Levi-Civita connections of ¯g and ¯̃g, respectively onM̄. In [3], the tensor fieldF of type (0,3) is

defined onM̄ as follows

F(X,Y,Z) = ḡ((∇̄Xϕ)Y,Z)

and the following properties hold in general [3] :

F(X,Y,Z) = F(X,Z,Y) = F(X,ϕY,ϕZ)+η(Y)F(X,ζ ,Z)+η(Z)F(X,Y,ζ ), (13)

for anyX,Y,Z ∈ TM̄. The relations ofF with ∇̄ζ and∇̄η are given by :

(∇̄Xη)Y = g(∇̄Xζ ,Y) = F(X,ϕY,ζ ), η(∇̄Xζ ) = 0, ϕ(∇̄Xϕ)ζ = ∇̄Xζ (14)

In [3], Ganchev et al. defined eleven basic classesFi(i = 1,2, ....11) of almost contact manifolds withB-metric and

classified the almost contact manifolds withB-metric in terms of the tensorF . The intersection of these basic classes is

the classF0, which is analogue to Kaehler manifold with Norden metric and is determined by the condition

F(X,Y,Z) = 0(∇̄ϕ = ∇̄η = ∇̄ζ = 0).

Definition 1. [5] An almost contact manifold(M̄,ϕ ,ζ ,η , ḡ) with B- metric is called Sasaki-like if the structure tensors

(ϕ ,ζ ,η , ḡ) satisfy the following equalities

F(X,Y,Z) = F(ζ ,Y,Z) = F(ζ ,ζ ,Z) = 0, (15)

F(X,Y,ζ ) =−ḡ(X,Y). (16)

Also, the covariant derivativē∇ϕ satisfies the following equality

(∇̄Xϕ)Y =−ḡ(X,Y)ζ −η(Y)X+2η(X)η(Y)ζ . (17)

A non-zero tangent vector fieldU is classified in the following types

(i) spacelike ifḡ(U,U)> 0,

(ii) timelike if ḡ(U,U)< 0,

(iii) null (lightlike) if ḡ(U,U) = 0,U 6= 0.
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2.2 Curvature properties

Let the curvature tensorR of ∇̄ onM̄ is given by

R(X,Y)Z = ∇̄X∇̄YZ− ∇̄Y∇̄XZ− ∇̄[X,Y]Z.

The corresponding curvature(0,4)-tensor with respect to ¯g is given by

R(X,Y,Z,W) = ḡ(R(X,Y)Z,W)

and satisfies the following properties

RX,Y,Z,W) =−R(Y,X,Z,W) =−R(X,Y,W,Z),

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W) = 0,

R(X,Y,Z,W) =−R(X,Y,ϕZ,ϕW),

for all tangent vector fieldsX,Y,Z andW onM̄.

The associated curvature tensorR̃of ˜̄∇ on M̄ is defined as

R̃(X,Y,Z,W) = R(X,Y,Z,ϕW).

Thus, for the curvature tensorR, we have

R(X,Y,Z,ϕW) = R(X,Y,ϕZ,W). (18)

Let α denote a non-degenerate 2-plane in the tangent spaceTpM̄. Then the sectional curvature forα with respect to ¯g and

R is given by

K(α, p) =
R(U,V,U,V)

ḡ(U,U)ḡ(V,V)− ḡ(U,V)2 . (19)

where{U,V} is an orthogonal basis ofα andp∈ M̄.

Definition 2. A 2-planeα = {U,ϕU}, where U is orthonormal toζ is known asϕ-holomorphic section (respectively, a

ζ -section) ifα = ϕα (respectively,ζ ∈ α) and the curvature associated with this is said to beϕ-holomorphic sectional

curvature, denoted by H(U) and given as

H(U) =
R(U,ϕU,U,ϕU)

ḡ(U,U)ḡ(ϕU,ϕU)− ḡ(U,ϕU)2 . (20)

Moreover, ifH(U) is always constant with respect to every unit tangent vectorU ∈ TM̄, thenM̄ is said to be of constant

ϕ-holomorphic sectional curvature or a Sasakian space form.

2.3 Sasaki-like almost contact manifold with B-metric

In [5], Ivanov defined the odd dimensional version of an indefiniteKaehler manifold known as Sasaki-like almost contact

manifold withB-metric and proved the following result.
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Lemma 1. [5] For a Sasaki-like almost contact manifold(M̄,ϕ ,ζ ,η , ḡ) with B-metric the next formula holds

R(X,Y,ϕZ,ϕU)−R(X,Y,Z,ϕU) = {ḡ(Y,Z)−2η(Y)η(Z)}ḡ(X,ϕU)+ {ḡ(Y,U)−2η(Y)η(U)}ḡ(X,ϕZ)

−{ḡ(X,Z)−2η(X)η(Z)}ḡ(Y,ϕU)−{ḡ(X,U)−2η(X)η(U)}ḡ(Y,ϕZ). (21)

In particular, we have

R(X,Y)ζ = η(Y)X−η(X)Y (22)

and

R(ζ ,X)ζ =−X

The equation(21) further implies

R(X,Y)ϕZ =ϕR(X,Y)Z−2ϕη(Z)R(X,Y)ζ − ḡ(X,Z)ϕY+ ḡ(X,ϕZ)Y

− ḡ(Y,ϕZ)X+2{ḡ(Y,ϕZ)η(X)− ḡ(X,ϕZ)η(Y)}ζ . (23)

ReplacingY by ϕX andZ by ϕX in above equation(23) and use of(22) yields,

R(X,ϕX)X =−{R(X,ϕX)ϕX+(η(X))2ϕX+2ḡ(X,ϕX)X+2ḡ(ϕX,ϕX)ϕX−3ḡ(X,ϕX)η(X)}ζ} (24)

3 Constancy ofϕ-holomorphic sectional curvature

Now we will prove the main result.

Proof.Initially assume thatM̄ be an indefinite Sasaki-like almost contact manifold withB-metric, then using formula (20),

we obtain

R(X,ϕX)X =−H(X)ρX+H(X)ϕX. (25)

where X denotes a unit tangent vector such that ¯g(X,ϕX) = ρ(6= 0). By using the fact thatM̄ is having constant

ϕ-holomorphic sectional curvature and the equation(25), the necessity of the assertion follows. To prove the converse

part, the following two cases have been considered.

Case I. For the space-like,or in other words, ¯g(X,X) = ḡ(Y,Y). Let {X,Y} denote an orthonormal pair of vectors in̄M

such that

ḡ(X,X) =−ḡ(ϕX,ϕX) = 1,

ḡ(Y,Y) =−ḡ(ϕY,ϕY) = 1,

ḡ(X,ϕX) = ḡ(Y,ϕY) = ρ(6= 0)

and

ḡ(X,ϕY) = ḡ(ϕX,Y) = 0.

In this case,X∗∗ andZ∗∗ be defined by

X∗∗ = cosθX+ sinθY

and

Z∗∗ =−sinθX+ cosθY.

© 2018 BISKA Bilisim Technology

www.ntmsci.com


92 A. Devgan and R. K. Nagaich: Constancy ofϕ-holomorphic sectional curvature of an indefinite Sasaki...

Clearly,{X∗∗,Z∗∗} also form an orthonormal pair of vectors in̄M and using the above relation (7), we have

R(X∗∗
,ϕX∗∗)X∗∗ ∼ γX∗∗+ δϕX∗∗

.

Taking inner product of above equation withϕZ∗∗, we have

R(X∗∗
,ϕX∗∗

,X∗∗
,ϕZ∗∗) = 0.

Also, by using the linear properties of Riemannian curvature tensorR, we obtain

cosθsinθ{−cos2θR(X,ϕX,X,ϕX)+ sin2θR(Y,ϕY,Y,ϕY)+ (cos2θ − sin2θ )R(Y,ϕY,X,ϕX)}= 0. (26)

Consideringθ = π
4 yields,

H(X) = H(Y).

If {Z,W} is aϕ-holomorphic section thenϕZ= pZ+qZ, for any scalarsp andq. Thus,{Z,ϕZ}= {Z, pZ+qZ}= {Z,W}

and similarly{W,ϕW}= {Z,W}. therefore{Z,ϕZ}= {W,ϕW} and henceH(Z) = H(W).

On the contrary if{Z,W} is not aϕ-holomorphic section then there must exist unit vectorsX ∈ {Z,ϕZ}⊥ andY ∈

{W,ϕW}⊥ that determine aϕ-holomorphic section{X,Y} and thus, we have

H(Z) = H(X) = H(Y) = H(W),

which proves that anyϕ-holomorphic section has the sameϕ-holomorphic sectional curvature.

Now, let thedim(M̄) = 5 and using the properties of curvature tensorR, the following relations hold.

R(X,ϕX)X =H(X){−ρX+ϕX} (27)

R(X,ϕX)Y =
1

1+ρ2{R(X,ϕX,Y,ϕY)(ρY−ϕY)}

R(X,ϕY)X =
1

1+ρ2{R(X,ϕY,X,Y)(Y+ρϕY)+R(X,ϕY,X,ϕY)(ρY−ϕY)}

R(Y,ϕX)X =
1

1+ρ2{R(Y,ϕX,X,Y)(Y+ρϕY)+R(Y,ϕX,X,ϕY)(ρY−ϕY)}

R(X,ϕY)Y =
1

1+ρ2{R(X,ϕY,Y,X)(X+ρϕX)+R(X,ϕY,Y,ϕX)(ρX−ϕX)}

R(Y,ϕX)Y =
1

1+ρ2{R(Y,ϕX,Y,X)(X+ρϕX)+R(Y,ϕX,Y,ϕX)(ρX−ϕX)}

R(Y,ϕY)X =
1

1+ρ2{R(Y,ϕY,X,ϕX)(ρX−ϕX)}

R(Y,ϕY)Y =H(Y){−ρY+ϕY}. (28)

Now, defineX∗∗ = dX+eY whered2+e2 = 1, then making use of the above algebraic relations(28), we have

R(X∗∗
,ϕX∗∗)X∗∗ = E1X+E2Y+E3ϕX+E4ϕY, (29)

where

E3 = d3H(X)−
de2

(1+ρ2)
E5, E4 = e3H(X)−

d2e
(1+ρ2)

E5,
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and

E5 = R(X,ϕY,Y,ϕX)+R(Y,ϕX,Y,ϕX)+R(Y,ϕY,X,ϕX).

On the other hand, equation(27) yields,

R(X∗∗
,ϕX∗∗)X∗∗ = H(X∗∗){−ρX∗∗+ϕX∗∗}= H(X∗∗){ρdX+ρeY−dϕX−eϕY}. (30)

Comparing the equations(29) and(30), we obtain

d2H(X)−
e2

(1+ρ2)
E5 = H(X∗∗), e2H(X)−

d2

(1+ρ2)
E5 = H(X∗∗),

upon solving the above equations, we have

E5 =−(1+ρ2)H(X)

and hence consequently

H(X∗∗) = (d2+e2)H(X) = H(X).

Similarly, on the parallel lines, we prove that

H(Y∗∗) = H(Y).

Thus, we have proved that the manifold̄M is of constantϕ-holomorphic sectional curvature.

Case II: When the metric is timelike, or in other words, ¯g(X,X) = −ḡ(Y,Y), where eitherX andY are spacelike and

timelike vectors, respectively or vice versa. Let{X,Y} denote a pair of orthonormal vectors in̄M such that

ḡ(X,X) =−ḡ(ϕX,ϕX) = 1,

ḡ(Y,Y) =−ḡ(ϕY,ϕY) =−1,

ḡ(X,ϕX) =−ḡ(Y,ϕY) = ρ(6= 0)

and

ḡ(X,ϕY) = ḡ(ϕX,Y) = 0.

Further, we defineX
′′

andZ
′′

by

X
′′
= coshθX+ sinhθY

and

Z
′′
=−sinhθϕX+ coshθϕY

thenX
′′
,Z

′′
form an orthonormal pair of vectors in̄M and therefore making use of the relation(7), we have

R(X
′′
,ϕX

′′
)X

′′
∼ γX

′′
+ δϕX

′′
.

Taking inner product of above equation withZ
′′
, we obtain,

R(X
′′
,ϕX

′′
,X

′′
,Z

′′
) = 0,

further, using the linearity properties of curvature tensor, we have

coshθsinhθ{cos2hθH(X)− sin2hθH(Y)− (cos2hθ − sin2hθ )R(X,ϕX,Y,ϕY)}= 0. (31)
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Consideringθ = iπ
4 , we get

H(X) = H(Y).

Further, using the same argument given inCase I, we obtain that any holomorphic section has same sectional curvature.

Now, assuming thedim(M̄) = 5 and using the curvature properties of curvature tensorR, we have the following relations

R(X,ϕX)X =−H(X){ρX−ϕX} (32)

R(X,ϕX)Y =
1

1+ρ2{R(X,ϕX,Y,ϕY)(−ρY+ϕY)}

R(X,ϕY)X =
1

1+ρ2{R(X,ϕX,Y,ϕY)(−ρY+ϕY)}

R(X,ϕY)X =
1

1+ρ2{R(X,ϕY,X,Y)(−Y−ρϕY)+R(X,ϕY,X,ϕY)(−ρY+ϕY)}

R(Y,ϕX)X =
1

1+ρ2{R(Y,ϕX,X,Y)(−Y−ρϕY)+R(Y,ϕX,X,ϕY)(−ρY+ϕY)}

R(X,ϕY)Y =
1

1+ρ2{R(X,ϕY,Y,X)(X+ρϕX)+R(X,ϕY,Y,ϕX)(ρX−ϕX)}

R(Y,ϕX)Y =
1

1+ρ2{R(Y,ϕX,Y,X)(X+ρϕX)+R(Y,ϕX,Y,ϕX)(ρX−ϕX)}

R(Y,ϕY)X =
1

1+ρ2{R(Y,ϕY,X,ϕX)(ρX−ϕX)}

R(Y,ϕY)Y =−H(Y){−ρY+ϕY}. (33)

Now, defineX
′′
= dX+eYwith d2−e2 = 1, then using the above relations, we have

R(X
′′
,ϕX

′′
)X

′′
= E1X+E2Y+E3ϕX+E4ϕY, (34)

where

E3 = d3H(X)(1+ρ2)−
de2

(1+ρ2)
E5, E4 =−e3H(X)(1+ρ2)+

d2e
(1+ρ2)

E5,

andE5 = R(X,ϕY,Y,ϕX)+R(Y,ϕX,Y,ϕX)+R(Y,ϕY,X,ϕX). On the other hand, using (32), we have

R(X
′′
,ϕX

′′
)X

′′
=−H(X

′′
){ρdX+ρeY−dϕX−eϕY}. (35)

Comparing(34) and(35), we obtain

d2H(X)−
e2

(1+ρ2)
E5 = H(X

′′
), −e2H(X)+

d2

(1+ρ2)
E5 = H(X

′′
),

on solving these equations, we obtain

E5 = (1+ρ2)H(X)

and consequently

H(X
′′
) = (d2−e2)H(X) = H(X).

Similarly, we can prove

H(Y
′′
) = H(Y).

Thus, the manifoldM̄ is of constantϕ-holomorphic sectional curvature.

© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 4, 87-95 (2018) /www.ntmsci.com 95

Hence, we conclude that Theorem2 can be derived by consideringg(X,ϕX) = ρ = 0, in Theorem6.

Similarly, by takingg(X,ϕX) = ρ = 0, in Theorem6, the constancy ofϕ-holomorphic sectional curvature can be

derived for an indefinite almost Sasakian manifold with someminor changes and thus, Theorem6 provides a

generalization of Theorem4.
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