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Abstract: In multiple regression analysis, the use of ridge regression estimator over the conventional ordinary least squares estimator
was suggested by Hoerl and Kennard in 1970 to beat the problemof multicollinearity that may exist among the independent variables.
Keeping this in mind, in the present study, the authors intend to develop and compare different confidence intervals for regression
coefficients based on ridge regression estimator using bootstrap and jackknife methodology. For comparison, the coverage probabilities
and confidence widths are calculated through a simulation study for the data which suffers from the problem of multicollinearity.
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1 Introduction

In regression analysis, ridge regression estimator (RRE) can be of great use for the estimation of unknown regression

coefficients in presence of multicollinearity among the regressors (Hoerl and Kennard [1]). But apart from its ability to

create good parameter estimates with smaller mean squared error (MSE) than the usual oridnary least squares estimator

(OLSE), it must also provide fine solutions when dealing withmore intricate inference problems like obtaining

confidence intervals. As the distribution of RRE is completely known when the errors are Gaussian, the use of RRE in

finding the confidence intervals for the regression parameters is marred by the fact it may be associated with serious bias

and its distribution, specially for non normal errors, may not be easily characterized. Recently, Firinguetti and Bobadilla

[2] developed asymptotic confidence intervals for the regression coefficients based on RRE and Edgeworth expansion.

Crivelli et. al. [3] proposed the use of a technique that combines the bootstrapand the Edgeworth expansion to obtain an

approximation to the distribution of some ridge regressionestimators and carried out some simulation experiments.

The most commonly used confidence intervals are approximateconfidence intervals which are also known as standard

intervals (or normal theory intervals) having the following general form

θ̂ ± z(α)σ̂ , (1)

whereθ̂ is an estimate of the unknown population parameterθ , σ̂ is the standard error of̂θ , andz(α) is the 100αth

percentile of a normal variate, (for examplez(0.95) = 1.645 etc.). The main drawback of standard intervals is that they

are based on an asymptotic approximation that may not be accurate in practice. There has been considerable progress
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on developing better confidence intervals techniques for improving the standard interval, involving bias correctionsand

parameter transformations. These methods produce approximate confidence intervals that have better coverage accuracy

than the standard one. Some references under this area include Efron [4], Hall [5], DiCiccio and Tibshirani [6]. The

confidence intervals based on the resampling methods like bootstrap and jackknife can be seen as automatic algorithms

for carrying out these improvements. The bootstrap and jackknife are known as the two powerful resampling methods

for variance estimation for complex statistics even for nonnormal errors which is why they could be used for producing

confidence intervals. Next section consists of the model, the estimators and the different forms of confidence intervals

based on bootstrap and jackknife methods.

2 The model, estimators & confidence intervals

Consider the following multiple linear regression model

y= Xβ +u (2)

wherey is ann×1 vector of observations on the variable to be explained,X is ann× p matrix of n observations onp

explanatory variables assumed to be of full column rank,β is a p× 1 vector of regression coefficients associated with

them andu is ann×1 vector of disturbances, the elements of which are assumed to bei.i.d. with

E(u) = 0; Var(u) = σ2I .

The OLSE forβ in model (2) is given by

β̂OLSE= (X′X)−1X′y. (3)

that is well known to be thebest linear unbiased estimator. As stated earlier, OLSE may result in large sampling variances

in the presence of multicollinearity and therefore may produce estimators which are not in tune with the researcher’s prior

belief. To deal with this problem, Hoerl and Kennard [1] proposed the ridge regression estimator by allowing some bias

into the estimator which resulted in smaller MSE. The estimator is given by

β̂RRE= (X′X+ kI)−1X′y= (I − kA−1)β̂OLSE, (4)

wherek≥ 0 andA= X′X+ kI.

Later, in order to reduce the problem of bias associated withRRE, Singhet al. [7] proposed an almost unbiased ridge

estimator using the Jackknife technique that was introduced by Quenouille [8] as a general method for reducing the bias

of an estimator. Later Tukey [9] proposed that this technique may also offer a simple methodto obtain the confidence

intervals for the parameters of interest. The estimator given by Singhet al. [7] is called the jackknifed ridge estimator

(JRE) and it is given by

β̂JRE= [I − (kA−1)2]β̂OLSE (5)

The application of the jackknife technique in this context was also investigated in Nyquist [10], independently for bias

reduction, variance estimation and tracing of influential observations. For recent developments in jackknifed ridge

estimator, see Khuranaet. al.[11].
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Now for bootstrapping, firstly, for the model defined in (2), we fit the least squares regression equation for full sample,

calculate the standardized residuals ˆui and then draw ann sized bootstrap sample with replacement ( ˆu(b)1 , û(b)2 , . . . , û(b)n )

from the residuals ˆui ’s giving 1/n probability to each ˆui . After this, we obtain the bootstrapy values using the resampled

residuals keeping the design matrix fixed as shown below

y(b) = Xβ̂OLSE+ û(b).

We then regress these bootstrappedy values on the fixedX to obtain the bootstrap estimates of the regression coefficients.

So, the RRE from the first bootstrap sample is

β̂ ∗
RRE(b1) = (X′X+ kI)−1X′y(b1).

Repeating the above stepsB times, whereB is the number of bootstrap samples, the bootstrap RRE forβ is given by

¯̂β ∗
RRE=

B

∑
r=1

β̂ ∗
RRE(br)/B, (6)

The estimated bias is given by

Biasest=
¯̂β ∗
RRE− β̂OLSE.

The estimated variance of RRE through bootstrap is given as

Varest=
B

∑
r=1

(β̂ ∗
RRE(br)−

¯̂β ∗
RRE)

2/(B−1). (7)

Now, based on these estimates, we construct the confidence intervals for the regression coefficientβ in following

subsection.

2.1 Confidence Intervals for Regression Coefficients using RRE

There are several methods for constructing bootstrap confidence intervals based on the estimate of variance given in (7)

are described briefly below.

2.1.1 Normal theory method

The first method for constructing bootstrap confidence interval is based on the assumption that the sampling distribution

of β̂RRE is normal. A 95% confidence interval forβ based on RRE is

(2β̂RRE− ¯̂β ∗
RRE)− z(1−α/2)

√
Varest< β < (2β̂RRE− ¯̂β ∗

RRE)+ z(1−α/2)
√

Varest,

whereα = 0.05,Varest is the bootstrap estimate of the variance ofβ̂RRE as defined in (7) andz(1−α/2) is the(1−α/2)

quantile of the standard normal distribution.
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2.1.2 Percentile method

Another method for the construction of bootstrap confidenceintervals is the bootstrap percentile method which is the

most popular among all primarily due to its simplicity and natural appeal. In this method, we use the empirical quantiles

of β̂ ∗
RRE to form the confidence interval forβ . A 95% confidence interval for 1000 bootstrap resamples is

β̂ ∗
RRE(25) < β < β̂ ∗

RRE(975),

whereβ̂ ∗
RRE(r) is therth observation in the ordered bootstrap replicates ofβ̂ ∗

RRE.

2.1.3 Studentized-t method

Another method for constructing the bootstrap confidence intervals is the studentized bootstrap, also called the bootstrap-t

method. The studentized-t bootstrap confidence interval takes the same form as the normal confidence interval except that

instead of using the quantiles from a normal distribution, the quantiles are calculated using the bootstrappedt-distribution

(see Davison and Hinkley [12] and Efron and Tibshirani [13]). Bootstrapping a statistical function of the formt = (β̂RRE−
β )/(SE), whereSE is the sample estimate of the standard error ofβ̂RRE results in extra accuracy (see Hall [14]). The

bootstrap form of this is given by

t∗ = (β̂ ∗
RRE− β̂RRE)/(SE)∗,

whereSE∗ is the standard error based on bootstrap distribution. Denote the 100sth bootstrap percentile oft∗ by bs and

consider the statement that(b0.025< t < b0.975) and after substitutingt = (β̂RRE−β )/SE, we get confidence limits forβ
as

β̂RRE− (SE)b0.975< β < β̂RRE− (SE)b0.025.

This interval is known as bootstrap-t based confidence interval forβ at 95% confidence level. The use of studentized

bootstrap is not suitable for some cases mostly where the endpoints of the intervals are too wide or the outliers are

present.

On the other hand, percentile bootstrap endpoints are simple to calculate and can work well, especially if the sampling

distribution is symmetrical but it may not have the correct coverage when the sampling distribution of the statistic is

skewed. Its coverage can be improved by adjusting the endpoints for bias. This method is known as Bias corrected

accelerated (BCa) method which we discuss in the next subsection.

2.1.4 BCa method

If we have a distribution which is skewed, few adjustments are required. One method which is proved to be reliable in

such cases is BCa method, this method will tend to be closer tothe true confidence interval than the percentile method.

For a detailed review on the same, see Efron [4], Hall [5], Efron and Tibshirani [13].

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 4, 77-86 (2018) /www.ntmsci.com 81

The BCa procedure approximates confidence intervals forβ from the percentiles of the bootstrap histogram.β̂RRE is an

estimate ofβ based on the observed data andβ̂ ∗
RRE is a bootstrap replication of̂βRRE obtained by resampling. Let̂G(c)

be the cumulative distribution function of B bootstrap replications ofβ̂ ∗
RRE,

Ĝ(c) = #{β̂ ∗
RRE< c}/B. (8)

The upper endpoint,̂βRRE(BCa)[α] of the one-sided confidence interval atα level i.e.β ∈ (−∞, β̂RRE(BCa)[α]) is defined in

terms ofĜ and two parametersz0, the bias correction anda, the acceleration. The BCa endpoint is given by

β̂RRE(BCa)[α] = Ĝ−1Φ
(

z0+
z0+ z(α)

1−a(z0+ z(α))

)

. (9)

HereΦ is the standard normal distribution function, withz(α) = Φ−1(α). The central 90% BCa confidence interval is

given by (β̂RRE(BCa)[0.05], β̂RRE(BCa)[.95]). In (9), if a and z0 are zero, thenβ̂RRE(BCa)[α] = Ĝ−1(α), the 100αth

percentile of the bootstrap replications. Also, ifĜ is normal, thenβ̂RRE(BCa)[α] = β̂RRE+ z(α)σ̂ , the standard interval

endpoint. In general, (9) makes three different corrections to the standard intervals, improving their coverage accuracy.

The BCa algorithm estimatesz0 by

ẑ0 = Φ−1
{

#{β̂ ∗
RRE(b)< β̂RRE}

B

}

,

The accelerationa is estimated as

â=
1
6

∑n
i=1U3

i

(∑n
i=1U2

i )
3/2

.

For calculatingUi , we can use the following jackknife influence function (see Hinkley [15]) in (10)

Ui = (n−1)(β̂RRE− β̂RRE(i)), (10)

whereβ̂RRE(i) is the estimate ofβ based on the reduced data set by removing theith observation from the data.

Another method known as the ABC (approximate bootstrap confidence intervals) method was proposed by Efron[4], that

gives analytic adjustment to BCa method for smoothly definedparameters in exponential families. They are touted in the

literature as improvements for common parametric and non-parametric BCa procedures, and may be preferred in order to

avoid the BCa’s Monte Carlo calculations (see DiCiccio and Efron [16]; Efron and Tibshirani [13]; DiCiccio and Efron

[17]). The authors adopted this method in the linear model setup, however did not notice any significant improvement in

its performance over the BCa method. Hence, this method has not been not pursued in the numerical investigations

carried out.
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2.1.5 Jackknife method

Jackknife technique is generally used to reduce the bias of parameter estimates and to estimate the variance. A 95%

jackknife confidence interval forβ based on RRE is

β̂JRE− t

(

1− α
2

;n− p

)√
vii < β < β̂JRE+ t

(

1− α
2

;n− p

)√
vii , (11)

whereα = 0.05, t

(

1− α
2 ;n− p

)

is the upperα2 × 100% point of the Studentst-distribution with (n− p) degrees of

freedom andvii is theith diagonal element of the following variance estimate of RRE.

ˆVarJ(β̂RRE) =
1

n(n− p)

n

∑
i=1

(Qi − β̂JRE)(Qi − β̂JRE)
′

whereQi
′sare the pseudo values defined as

Qi = β̂RRE+n(1−wi)(β̂RRE− β̂RRE(−i))

(12)

whereβ̂RRE(−i) is RRE calculated by deleting theith row from the data andwi = xi
′A−1xi whereA is as defined earlier

andx′i is theith row of X matrix.

In order to compare these methods of constructing asymptotic confidence intervals based on RRE and OLSE, coverage

probabilities which is defined as the proportion that the confidence interval includes the true parameter, under repeated

sampling from the same underlying population and confidencewidth which is the difference between the upper and

lower confidence endpoints have been calculated. In the nextsection, a simulation study to obtain the confidence widths

and coverage probabilities based on the confidence intervals developed using RRE and OLSE has been carried out.

3 A simulation study

After getting into some theoretical aspects of each method to construct confidence intervals, the methods are applied on

simulated data and their performance is compared based on the coverage probabilities and confidence widths. The model

is

y= Xβ +u (13)

whereu∼ N(0,1). Hereβ is taken as the normalized eigen vector corresponding to thelargest eigen value ofX′X. The

explanatory variables are generated from the following equation

xi j = (1−ρ2)
1
2 wi j +ρwip, i = 1,2. . . . ,n; j = 1,2, . . . , p.

wherewi j are independent standard normal pseudo-random numbers andρ2 is the correlation between the two explanatory

variables forj, j ′ < p and j 6= j ′. When j or j ′ = p, the correlation will beρ . Two different values ofρ are taken asρ = 0.9

and 0.99 to investigate the effects of different degrees of collinearity with sample sizesn= 25, 50 and 100. The feasible

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 4, 77-86 (2018) /www.ntmsci.com 83

value ofk is obtained by the optimal formulak= pσ2

β ′β as given by Hoerlet al. [18], so that

k̂=
pσ̂2

β̂ ′
OLSEβ̂OLSE

,

where

σ̂2 =
(y−Xβ̂OLSE)

′(y−Xβ̂OLSE)

n− p
.

For calculating different bootstrap confidence intervals like Normal, Percentile, Studentized and BCa, the function called

‘boot.ci’ in R is used. The confidence limits through jackknife are calculated using (11). The coverage probabilities and

average confidence width using 1999 bootstrap resamples arecalculated and the experiment is repeated 1000 times. The

coverage probability, say CP is calculated using the following formula

CP=
#(β̂L < β < β̂U)

N
,

and the average confidence width, say CW is calculated by

CW=
∑N

i=1(β̂U − β̂L)

N
,

whereN is the simulation size,̂βL andβ̂U are lower and upper confidence interval endpoints respectively. The results for

coverage probability and average confidence width at 95% and99% confidence levels with different values ofn andρ
are summarized in Table1-Table4. Note that in all the tables, column namely OLSE gives the coverage probability and

confidence width based on the confidence intervals throughβ̂OLSE usingt-distribution.

From Tables1 and2, it is found that the coverage probabilities of all the intervals improve with the increasing value ofn

and become close to each other which is due to the consistencyof the estimators. It is evident from Tables3 and4 that

the confidence intervals based on RRE have shorter widths in comparison to the width of the interval based on OLSE.

It is interesting to note that the coverage probabilities and confidence widths through OLSE and through jackknife are

very close to each other. Also, from Tables3 and 4, it can be seen that with the increasing collinearity between the

dependent variables, the difference between the confidencewidth of interval based on OLSE and intervals based on RRE

is increasing. Also, with the increasing value of sample size, the confidence width of all the intervals is decreasing.

According to Tables1 and 2, all the bootstrap methods are generally conservative in terms coverage probabilities,

however jackknife method seems to give coverage probabilities closer to the target. In terms of confidence width,

resampling methods have smaller confidence width than the OLSE; jackknife method having larger confidence width

than bootstrap methods. In noting that bootstrap methods are conservative with smaller confidence width, they seem to

have an advantage over the jackknife method.

4 Conclusion

In the present study, the use of different confidence intervals based on bootstrap and jackknife resampling methods is

illustrated. We computed the coverage probabilities and confidence width based on RRE using different bootstrap and
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jackknife methods based on a simulation study and compared it with that of OLSE which we computed usingt-intervals.

The shorter confidence widths obtained through RRE show its superiority over OLSE in the case of multicollinearity.

Bootstrap methods produces intervals having shorter widththan that of intervals produced by jackknife. This shows that

the bootstrap method has a slight edge over the jackknife method.

Table 1: Coverage Probabilities through different methods at 95% confidence level

n ρ OLSE Normal Percentile Studentized BCa Jackknife
25 0.9 0.952 0.966 0.974 0.978 0.970 0.940

0.964 0.966 0.960 0.976 0.964 0.922
0.962 0.972 0.978 0.986 0.976 0.944

0.99 0.952 0.970 0.980 0.986 0.972 0.940
0.964 0.964 0.964 0.984 0.966 0.920
0.964 0.986 0.986 0.994 0.990 0.936

50 0.9 0.950 0.974 0.972 0.980 0.970 0.948
0.952 0.968 0.976 0.984 0.976 0.936
0.948 0.988 0.986 0.990 0.990 0.964

0.99 0.950 0.984 0.984 0.986 0.984 0.948
0.952 0.986 0.984 0.990 0.986 0.934
0.948 0.994 0.994 0.996 0.994 0.968

100 0.9 0.958 0.972 0.974 0.978 0.974 0.948
0.962 0.958 0.954 0.956 0.952 0.930
0.940 0.966 0.968 0.968 0.964 0.932

0.99 0.958 0.984 0.984 0.984 0.984 0.946
0.962 0.974 0.976 0.982 0.974 0.928
0.944 0.978 0.978 0.980 0.978 0.926

Table 2: Coverage Probabilities through different methods at 99% confidence level

n ρ OLSE Normal Percentile Studentized BCa Jackknife
25 0.9 0.992 0.992 0.990 0.994 0.990 0.984

0.990 0.990 0.988 0.994 0.992 0.982
0.996 1.000 0.998 1.000 0.996 0.994

0.99 0.992 0.992 0.990 0.994 0.992 0.984
0.990 0.990 0.992 0.996 0.992 0.978
0.998 0.996 1.000 1.000 0.998 0.992

50 0.9 0.998 0.994 0.994 0.994 0.994 0.988
0.990 0.994 0.996 0.998 0.996 0.990
0.992 0.994 0.996 0.996 0.994 0.994

0.99 0.998 0.994 0.994 0.994 0.994 0.988
0.990 1.000 0.998 1.000 0.998 0.990
0.988 0.998 1.000 1.000 0.998 0.994

100 0.9 0.988 0.992 0.992 0.992 0.992 0.988
0.990 0.988 0.986 0.990 0.988 0.982
0.994 0.990 0.988 0.994 0.986 0.976

0.99 0.988 0.992 0.992 0.994 0.992 0.988
0.990 0.996 0.994 0.998 0.996 0.980
0.992 0.996 0.996 0.996 0.992 0.978
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Table 3: Average confidence width through different methods at 95% confidence level using OLSE and RRE

n ρ OLSE Normal Percentile Studentized BCa Jackknife
25 0.9 2.101518 1.1330 1.1346 1.2801 1.1361 1.6494

1.998510 1.1712 1.1732 1.3216 1.1738 1.6516
2.144994 1.0454 1.0475 1.1809 1.0483 1.5851

0.99 6.493567 2.3355 2.3407 2.6376 2.3437 3.6672
6.175280 2.3954 2.4000 2.7049 2.4008 3.6976
7.994216 2.2116 2.2146 2.5011 2.2178 3.7170

50 0.9 1.407747 0.9846 0.9864 1.0449 0.9868 1.2858
1.258123 0.9225 0.9241 0.9793 0.9245 1.1733
1.188554 0.8173 0.8185 0.8671 0.8191 1.0739

0.99 4.349856 1.7202 1.7245 1.8256 1.7251 2.6731
3.887527 1.7090 1.7124 1.8153 1.7128 2.5918
4.654095 1.5836 1.5854 1.6813 1.5869 2.5555

100 0.9 0.9346568 0.7506 0.7518 0.7732 0.7518 0.8923
0.8637652 0.7042 0.7053 0.7244 0.7057 0.8282
0.9818960 0.7410 0.7423 0.7639 0.7430 0.9207

0.99 2.888035 1.3929 1.3957 1.4355 1.3971 1.9978
2.668984 1.3652 1.3669 1.4057 1.3687 1.9255
3.754617 1.3487 1.3496 1.3918 1.3509 2.1479

Table 4: Average confidence width through different methods at 99% confidence level using OLSE and RRE

n ρ OLSE Normal Percentile Studentized BCa Jackknife
25 0.9 2.856330 1.4890 1.4908 1.7480 1.4960 2.2419

2.716325 1.5392 1.5341 1.8025 1.5378 2.2449
2.915421 1.3739 1.3774 1.6143 1.3819 2.1544

0.99 8.825893 3.0694 3.0764 3.6005 3.0870 4.9844
8.393285 3.1480 3.1353 3.6944 3.1443 5.0257
10.865537 2.9065 2.9123 3.4147 2.9281 5.0521

50 0.9 1.878560 1.2940 1.3010 1.4038 1.3030 1.7159
1.678895 1.2124 1.2190 1.3119 1.2195 1.5658
1.586059 1.0741 1.0794 1.1616 1.0804 1.4331

0.99 5.804641 2.2607 2.2739 2.4573 2.2757 3.5671
5.187688 2.2460 2.2573 2.4294 2.2602 3.4586
6.210630 2.0813 2.0925 2.2534 2.0943 3.4102

100 0.9 1.237342 0.987 0.991 1.029 0.991 1.181
1.143492 0.925 0.931 0.962 0.933 1.096
1.299879 0.974 0.979 1.017 0.979 1.219

0.99 3.823313 1.831 1.839 1.908 1.841 2.645
3.533324 1.794 1.803 1.867 1.810 2.549
4.970534 1.772 1.782 1.853 1.782 2.844
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