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1 Introduction

A vector metric space is generalization of metric spaces Tinetric is Riesz space valued. A Riesz space is an ordered
vector space and a lattice. LEtbe a Riesz space with the positive cdhe= {x € E : x> 0}. If (a,) is a decreasing
sequence it such that inb, = a, we writea, | a. Actually, both vector metric and cone metric are vector spatued.

One of the differences between definition of vector metrig definition of cone metric is that there exists a cone due to
the natural existence of ordering on Riesz space. The oifferahce is that our definition eliminates the requirenfent

the vector space to have a topological structure.

Recently, many authors have studied on common fixed poiotémes for weakly compatible pair{[[3],[9]). Some of
these works is gived in cone metric spacel,[B],[9],[10],[11], [12]). Cevik and Altun (#],[6]) prove Baire theorem
and Banach fixed point theorem on vector spaces and give dwenesins on point of coincidence and common fixed
points for two self mappings satisfying some general catitra conditions in vector spaces. Generalized contractio
mappings are matter of a lot of work in fixed point theory. #tghe mappings are defined i6][ J. Gornicki and B. E.
Rhoades obtain that common fixed point theorems using géerezt@ontraction mappingsq]).

In this paper, we prove some theorems and a common fixed guorém in vector metric spaces for generalized
contraction mappings and give an example.

2 Preliminaries
We shall require the following definitions in the sequel.
Definition 1. [6] The Riesz space E is said to be Archimededgaif 0 holds for every & E. .

Definition 2. [6] A sequencéby,) is said to order convergent (ar — convergent) to b if there is a sequen@) in E
satisfying & | 0 and| b, — b |< a, for all n and written k — b or o — lim b, = b, where| a |= sup{a, —a} for any ac E.
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Definition 3. [6] A sequencéhy) is said to be order-Cauchy (ar— Cauchy) if there exists a sequer(@g) in such that
an | 0and| by —bnyp|< @y holds for allnand p

Definition 4. [6] The Riesz space E is said to e Cauchy complete if every— Cauchy sequence is— convergent

Definition 5. [6] Let X be a non-empty set and E be a Riesz space. The functignxdX — E is said to be a vector
metric (or E—metric) if it is satisfying the following properties:

(i) d(x,y)=0ifand only if x=y,
(i) d(xy) <d(x,2)+d(y,2)

for all x, y, z€ X. Also the triple(X,d,E) is said to be vector metric space.

For arbitrary elements xy, z, w of a vector metric space, the following statements aresfad.

(@) 0<d(xy);

(b) d(xy) =d(y,X);

(©) [d(x2)—d(y,2) |[<d(xY);

(d) [d(x2)—d(y,w) [<d(xy)+d(ZW).

Definition 6. [6] A sequencéx,) in a vector metric spacgX,d, E) vectorial converges (or Econverges) to somexE,
written X, s x, if there is a sequend@y) in E satisfying a | 0 and d(x»,X) < a, for all n.

Definition 7. [6] A sequencéx,) is called E- Cauchy sequence whenever there exists a sequence E such that
an | 0and d(n,Xn1p) < an holds for allnand p

Remark|[6] A vector metric spacX is calledE—complete if eaclt —Cauchy sequence i, E—converges to a limitin
X.

There are the following properties;

If Xn df X, then

(") The limit x is unique,

(i) Every subsequence ¢f,) E—converges tx,
(i) If alsoyn 25 v, thend (xn,yn) > d (x,Y).

WhenE = R, the concepts of vectorial convergence and convergencetiricraee the same. When al30= E andd is
the concepts of absolute valued vector metric, vectoriavemyence and convergence in order are the same. When
E =R, the concepts oE-Cauchy sequence and Cauchy sequence are the same.

Remark.[6] It is well known thatR? is a Riesz space with coordinatwise ordering definedbayy:) < (X2,¥2) <

x1 < X% andy; <yp for (x1,y1), (X2,¥2) € R2. Again R? is a Riesz space with lexicographical ordering defined by
(x1,¥1) < (X2,¥2) € X1 < X2 OF X1 = X, y1 < Yo. Note thatR? is Archimedean with coordinatwise ordering but not with
lexicographical ordering.

Remark/6] If E is a Riesz space arad< kawhereac E, k€ [0,1), thena=0.

Definition 8. [12] Let S be a non-empty set and {d, } < be a family of self mappings on S and J an indexing set. A
pointue S is called a common fixed point for a famflyiy } ¢y if and only if u= Tyu for each .
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3 Main results

Theorem 1.Let X be an E-complete vector metric space with E is Archimedguppose the mapping X — X satisfies
the following condition for all xy € X and a constantr € [0,3)

d(T(x),T(y)) < a(d(T(x),x)+d(T(y),y))- 1)
Then T has a unique fixed point in X and for any X, the iterative sequence™X converges to the fixed point.

Proof. Let we takexp € X. Define the sequenden) by x1 = T(X0),X2 = T(X1) = T?X0, ..., X011 = T (Xn) = T™xo, ..
Then we have

d (Xn+1,%1) = d (TX0, TXa—1) < o (d(T %0, %n) +d(TX—1,%0-1)) = o (d(Xn+1, %) + d(Xn, Xa—1)).

Sod(Xni1.%) < 1 d(xn,xn 1) wheref3 = 1— Forn, m

m

d (Xn, Xm) < d (X0, Xn-1) + A(Xn-1,X0-2) + -+ + A (X1, Xm) < (B" 4B 2+ 4+ BMd(x1,%0 )Slﬁﬁ

d(x1,Xo)-

Now sinceE is Archimedean thelx,) is anE—Cauchy By the E—completeness oX, there isz € X such thatx, €,
Hence there exist&@y) in E such that(a,) | 0 andd(x,,z) < an. Now we show thar is a fixed point ofT.

d(Tz2) <d(Tx, T2 +d(TX,2) < a(d(Txy, %) +d(Tz2) +d(Xn+1,2)

thend(Tz2) < 195 (d(T %, %n) +d(Xn+1,2)). This impliesTz= z Sozis a fixed point ofT. Now we takew is another
fixed point of T, thend (zzw) =d(TzTw) < a(d(Tzz) +d(Tw,w)) = 0. Thusz= w. Therefore the fixed point of is
unique.

Remark.The Banach contraction mappings are known to be continlButsgeneralized contraction mappings are not
continuous, generally. The following example was givendmplete metric spaces which ge-complete vector metric
spaces. As a result, it can be said that the Kannan’s mapaiegmt necessarily continuous.

Example 1.Let E = R? with coordinatwise ordering (sindg? is not Archimedean with Lexicographical ordering, then
we can not use this ordering) axd= [0, 3] be the set of real numbers with the metdic,y) =k | x—y [,] | x—y ),
k.1 > 0. DefineT : X — X by

T(x) = {

Xy Xy
d(TXTY) = (K T TyLH T Ty = K 5= =Y )y = (€ pxey g 1x-y))

if x<2
if 2<x<3’

3

wIx Ullx

Forx,y € [0, 2] we have

k> 0and >0, sof >0and{ > 0. Hence

d(Tx,Ty):(I—(|x—Tx+Tx—Ty+Ty| I—|x—Tx+Tx—Ty+Ty|)
( | x— TX|+ | Tx— TylﬂL | Ty=yl.z IX TX|+ | Tx— TylﬂL | Ty=yl)

< %[d(x,Tx)+d(T>sTy)+d(y,Ty)]-
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Thusd (Tx Ty) < %[d(x,Tx) +d(y,Ty)| thend (Tx, Ty) < %[d(x,Tx) +d(y, Ty)].

Similarly we get that the same inequality holds for othelesasfx,y. But T is not continuous.

Theorem 2.Let X be an E-complete vector metric space with E is ArchimedBuppose the mapping X — X satisfies
the following condition for all xy € X

d(T(x),T(y) < kxy)d(xy) +10xy)d(x Tx) +m(x,y)d(y, Ty) +n(x,y) [d(x, Ty) +d((y, TX)]. )
Here take kI, m,n: X x X — [0,1) are functions such that
a =suplk(xy)+1(xy)+mxy)+2n(xy) : x,ye X} <1 (3)

then

(&) T has a unique fixed point
(b) Fu as n— oo, for each xe X
(©) d(T™,u) < -2=d(x, TX).

= 1-a

Proof. Let we takex € X. Define the sequende,) by xo = X, X1 = TXg, X2 = TX1, ..., Xn41 = T X, .... From 1,

d(Xn, Xn+1) = d(T X1, TX1) < K(Xn—1,%n)d(Xn—1,%n) + 1 (Xn—1,%n)d (Xn—1,%n)

+M(Xn-1,%1)d (X0, Xn+1) +N(Xn-1,%n) [ (Xn—1,Xn+1) +d(Xn, Xn)]
or

d(Xn, Xnt1) = d(T X1, TX1) < K(Xn—1,%)d(Xn—1,%n) + 1 (Xn—1,%n)d(Xn—1,%n)

+ M(Xn—1,X0)d (X, Xn+1) + N(Xn—1,X0)d(Xn—1, Xn+1).- 4)
By the triangle inequality, we obtain that

d(Xn-1,%n+1) < d(Xn-1,%n) +d(Xn, Xn+1)

Therefore,
d(Xn, Xnr1) < d(Xn—1,%0) +d(n, Xnr1) < 2maxd(Xn_1,%n), d(Xn,Xni1)}- (5)
From 3 and 4.
d(Xn, Xnr1) < (K+1+m)ymax{d(xn—1,%n),d(Xn, Xn+-1) } + 2nmaxd(Xn—1,%n), d(Xn, Xn+1) } -
Then

d(Xn, Xnt1) < amax{d(Xn—1,%n) + d(Xn,Xn+1) }-

Sincea < 1, then
d(Xn,Xnt1) < @d(Xn—1,%n)- (6)

By inductivity, we get

d(Xn, Xn+1) < ad(Xn—1,%) < 0.0d(Xn-2,Xn-1) < -+ < a"d(x, TX). (7)
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Since a vector metric has triangle inequality, fior- n we obtain
d(Xn,Xm) < d(Xn,Xn+1) + d(Xnr1,%n+2) + .. +d(Xm-1,Xm)-
From7

d(Xn, Xm) < d(Xn, Xnt1) +d(Xns1,%042) + - 4+ d(Xm-1,Xm)
<a"d(x,Tx) +a™d(x, Tx) + ...+ a™ td(x, Tx)
an
1-a

< d(x, Tx).

Now sinceE is Archimedean thefix,) is anE—Cauchy. By theE—completeness of, there isz € X such thatx, €,
Hence there exist@y) in E such that(a,) | 0 andd(x,,2) < an.

Now we show thar is a fixed point ofT. From1 and2

d(TzTx) <k(z,X)d(Z, %) +1(Z%)d(Z, T 2) + M(Z,%,)d (%0, T %) + N(Z, %) [d(Z, T %) + d(Xn, T 2)]
< [k(zZ,%n) +1(z,%0) + M(2, %) + 21 (z, xn)]max{d(z,Xn), d(z, T2),d(Xn,%n+1), Ad(Z,X%n+1),d(Xn, T2}
<amax{d(z,x,),d(zT2), d(Xn,Xnt1), d(ZXn+1),dn, T2}

Then we obtainl(Tzz) < ad(z T 2. Sincea < 1, thend(Tzz) =0 and henc& z=z

Now, let we show unigueness. Assumg € X andx # y are two fixed points of . From1, then

d(x,y) =d(Tx Ty)
< k(x,y)d(x,y) +1(x,y)d(x, TX) +m(x,y)d(y, Ty) + n(x,y)[d(x, Ty) +d(y, TX)]
< [k(x,y) +2n(x,y)ld(x,y)
< ad(xy),

sincea < 1, thend(x,y) = 0 sox =y. Sincex € X was arbitrary, then foa, | 0, d(xn,2) < a, we conclude thatb)
holds.

To show(c) takingd(Xn, Xm) < 1‘f;d(x,Tx) asm — o0 and making use of Lemma 1, we obtai(l "x, u) < l‘f;d(x,Tx)
for all n.

Proposition 1. T is a generalized contraction mapping on aEomplete vector metric space satisfying
1
d(Tx Ty) < amax{d(x.y),d(x, Tx),d(y, Ty), 5[d(x. Ty) +d(y, Tx)]}

wherea € (0,1) and xy € X. Then T has a unique fixed point and at this point it is contirsuou

Proof.From above theorem we know thRhas a unique fixed point. Let we take X and{yn} C X, be such thagy d—">E z
Hence there exist&y) in E such that, | 0 andd(yn,2) < an. From1, we have

1
d(TyanZ) <a maX{d(yn,Z),d(yn,Tyn), d(yaTy)a E[d(yn,z) + d(ZaTYn)]} < ad(ynvz) + ad(TZ,Tyn)
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or

d(Tyn, T2) —ad(Tz Ty, < ad(yn,2) = (1-a)d(TzTyn) < ad(yn,2)

=>d(TzTyn) <

From8 and above Remark théiny, 9% T2 ThusT is continuous at a fixed point.

Theorem 3.Let X be an E-complete vector metric space with E is Archimedean@h}c; is a family of self mappings
of X. If there exists a fixed ¢ J such that for eacln € J, there exists a fixed ¢ J, for somea = a(i) € (0,1) and all
X,y € X, we have

1
d(TiX’ TJy) sa max{d(xvy)a d(vaiX)) d(ya ij), é[d(vajy) + d(yaTlX)]} e (9)
Then all T have a unigue common fixed point, which is a unique fixed pbedch T, i € J.

Proof. Let we take € J andx € X. Define the sequende,) by Xo = X, Xont+1 = TiXon, Xont2 = TiXont1, N > 0. From?7,

d(Xont1, Xon+2) = d(TiXan, TjXon+1)

1
< amax{d(Xzn,Xent1), d(Xen,Xen+1), d(Xeni1,Xeni2), E[d(XmXZnJrZ)+d(X2n+17X2n+l)]}-

Since d(xgn, Xon+2) < d(Xon, Xon+1) + d (Xont1, Xon+2) - Then

%d(XZmXZnJrZ) < %[d(XZmXZnJrl) +d(Xan+1,X2n+2)] < max{d(Xzn, Xon+1),d(Xen+1,Xon+2) }
we haved(Xoni1,Xon+2) < o max{d(Xgn,Xon+1),d (Xont1,Xont2) . Hence asr < 1, d(Xont1,Xon+2) < ad(Xon, Xon+1)-
Similarly, we obtain that (xon, Xon+1) < ad(Xon—1,%2n). FOr anyn > 1,
d(%n, Xne1) < @d(Xn_1, %) < a2d(Xn_2,Xn—1) < --- < ad(Xg,X1).
Thus from1 and since a vector metric has triangle inequalityrfos n we obtain

d(%n, Xm) < d(Xn, Xn+1) +d(Xnt1,%n42) + -+ d(Xm_1,Xm) < a"d(x0,%1) + a™1d(xo,x1) + - -+ a™ 1d(x0,x1)

" d(xo,x1). (10)

a
< (anJran+1+...+amfl)d(X0,X1) < 1—q

Now sinceE is Archimedean thelix,) is anE—Cauchy. By theE-completeness oX, there isz € X such thaix, €,
Hence there exist&,) in E such that, | 0 andd(x,,2) < an. From(vii), we get

1
d(TJ Za X2n+1) = d(Tj 271_iX2n) S a max{d(za XZI'I)) d(za TJ z)7d(X2n7X2n+l)a é[d(za X2n+1) + d(XZnaTj Z)]} (11)

By (x) and Lemma 1 we obtaid(Tjz z) < ad(z T;z). Therefored(T;z,z) = 0 and soT;z= z Now, we prove tharis a

fixed point of all{Ti }icJ, leti € J be arbitrary. Then from 6 witk =y = z= T;zwe have

LizT2)

d(z,Tiz) =d(Tjz Tiz) < a(i)max{d(z,'l'iz),é

and sal;z= z Therefore alll; have a common fixed point.
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For uniqueness we suppose theait another fixed point ofj. Thenw is a common fixed point of aliTi }ic3. Thus from
7,d(z,w) =d(T;z Tiw) < ad(z,w) andw = z. Hencezis a unique common fixed point of &[T }ic;.
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