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Abstract: In the present article, we have established a result on @idlorlund summability factors by generalizing a theorem of
Mishra and Sivastavg] on Cesaro summabilty factors.
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1 Introduction

Let the infinite series with sequence of partial sufag be y a,. Suppose for the sequenf® }, the nth(C,1)- mean is
{tn}. If

3 (M Htn—th-2* < oo, (1)
n=1

theny asis said to be summabl€, 1),k > 1. (see [4]). Let
n
Q=) v, asn—-w(Qi=0g=0i>1), )
v=0

where{q,} is a sequence with, € R™. Let the (N, gn)-mean of the sequende,} be {T,}, which is generated by the
sequence of coefficien{s|,}, where

1 (o]
Th= @VZOanvsv- 3

0 k-1
2 (% [Ta—Ta-al* < oo, (4)

n=1 n

theny a, is said to be summab|&, gn|, .k > 1 (see [3]).

Clearly|N, gn | -summabiity is same af, 1|-summabiity wherg, = 1 ¥n. Mishra and Srivatava [5], established the
following result for|C, 1|, summability.
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2 Known theorem

Suppose(Yn) be a positive non-decreasing sequence and let there bermes{f,} and{un} such that

Aptn] < B (5)
Bn— 0 as n— ; (6)
[Hn[Ya=0(1) as n— oo; (7)
Z N|AB|Yn < ; (8)
le|5“| — O(Y) 85 M= oo, 9)

theny_; anpin is summableC, 1),k > 1.

3 Main theorem

Suppose, for a non-decreasing sequeivgg let there be sequencégn} and{un} satisfying the conditions (5) to (9)
and{qgn} be a sequence witl, € R such that

Qn= O(nqn>: (10)
Z ISnI =O(Ym) as m— oo; (11)
1 o(3:22) @2
mt1 Qn)kl On—r (Qr )

~n =0 3
n:%l ( On Qn Qr (13)

thens»_; antln is summableN, gn |k, k > 1. The condition (11) reduces to condition (9%if = 1 ¥n. After reading [1],
[2] and [6], we have established the following result. Tabish our main result we need the following lemma.

4 Lemma

Suppos€Y,) be a positive non decreasing sequence and let there be segdifn} and{u,} such that the conditions
(6) to (10) are satisfied.Then,

BnYa=0(1) as n— o, (14)
S Biva <o (15)
n=1

5 Proof of the main theorem

Let the(N,gn)- mean of the serieg;,_; antin be denoted byt,) . Then, by definition, we have

n r

L 1
In= Qn rZDCIn rszoasl-lsf o) Zoasl-‘sZSCIn r= ~ on zoasl-‘sQn s= Qnr arQn r Uy
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Thus

1 n 1 n-1
Tn—Th-1= Q_ z Qn—rar lr — m z Qn_r—1ar tr
—Lir=1

Qn r Qn—r—
z( Qn Qn- ll)arur

1
QnQn 1rz (Qn-rQn-1~ Qn-r—1Qn)ar

1 ' -

koo rzlA{ Qn—rQn-1—Qn—r—1Qn) Hr} ‘Zlav, with go=0
1 nct n-1 |

= OnOn: Z (Gn-rQn-1—0n—r—1Qn) tr& + Z (Qn-r-1Qn-1— Qn_r_2Qn) A Y:s | (ByAbel’stransformation)

L =]
=Tn1+Tn2+Thz+Tha,

In order to complete the proof of the main theorem by usingkdwski’s inequality, it is sufficient to show that

© o\ KL
Z (q—n) |Tn,j|k<oo for j=1,23,4.
n

n=1

Now, we have

Qn

mH1 k-1 ‘
=) T
nZQ ( On ) | n’l|

ey Qn k=1 1 n-1 k
nZz (E) |mr: On-rQn_1HrS|

mil %)kli n—1 - iml k-1 - N |
< 22( " Zanr|Ur| s Qnr;qn,r (Using Holder’sineguality)
Qn) (an)
S
ZW s nZH( Qn

1>z|ur|k|sr|k%, by (13)

=0(1 ) |5r| |IJr||Ur|

Q
zmmz Y s+ 0L |um|z g K

1) Z | A [Yr + O(L)| Hm| Ym , by (11)
r=1

=0(1), as m— co.(By the lemma and (7))
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Next,
m+1 Qn k—1 y Ml Qn k—1 1 1 K
— T — ~n o
nZz <Qn> T2 nZl <Qn> |Qnanlr: Gn-r-1Qnkisy|
m+-1 Qn k—1 1 n—-1 5 ) 1 n-1 K—1
< O O 1 T -~ ——
<5 (D) ol Zoanlsl) (g 3
Qn On-r-1
—omy sty (& ) (_)
Z r n;l G Qns
1 kig [«
)rzl|“r| | | Qr
=0(1), as m— o, Asin proof of thelst part.
Further,
m-1 Qn k—1 y M1 Qn ke 1 "
— T = xn A
n;(qn) | n73| nzl(qn) QnQn- 1ZQn r—1Qn-1 Ilr5r|
1 n-1 k-1
A = A _
- 2( ) ZQn aldulls ) o 3 Q- slm
Since,
11 n—1
A < S |Apn| < njAy| < nBp.
Qnr Qn—r—1|Ap| _r;| Ln| < n|Ap| < nBy
Therefore,

Thal®

N

L0

N—
]
:

m m+1 k—1

<0 : k— 1A ) (%) Qn—r—l
Wy s Hanlst 3 () Yo

=0y lauis g
SO( il |&|qu

:1

m 1 K

ISNI +O( )(Bm ISrI

M
>
;m

\

=0(1) ;|Aﬁr|Yr+o(1)(Bm)Ym

=0(1)
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Now,

k

m+1 Qn k—1 ! m+1 Qn K—1 1 1
=~ T _ n o A
”Zz < Gn ) T nzz< On ) |QnQn71r: Qn-r-2QnAprs |

(@ RS k 1 n=1 k—
< xn A 1 o
- nZZ(qn) Qn-1 r;Qn r 2| Nr||5r| Qn-1 ;Qn r 2| Nr|

m

k—1
rZi n:Z+1 On Qn

1

m
k Or

=0y iaulsf g

=0(1), (as above)

This completes the proof of the theorem.

Conclusion

If (Yn) is a positive non-decreasing sequence and let there berssa{@,} and{un} such that the condition&) to
(9) along with the conditions (14) and (15) are satisfied thersér@sy ;_; anth is summabléN, gn|k, k > 1, under the
conditions (10) to (13). Thus, our result generalizes tsalteof Mishra and Srivastava [5].
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