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1 Introduction

The concept of functions of bounded variation first appearedin a paper by Camile Jordan [5] in 1881 while dealing with

the convergence of Fourier series. He established the relationship between the functions of bounded variation and the

monotonic functions. Since then this topic has attracted researchers studying mathematical analysis all across the world

and a number of extensions has been given in many directions.The first generalization is the functions of bounded

p-variation given by Wiener [14] which nowadays are widely being accepted as the definition given in the Wiener sense.

L.Young [15] in 1937 further generalized this to the functions ofΦ-variation on a closed interval[a,b] . De La Valle

Poussin [3] took this concept in a very different direction. He introduce the notion of bounded second variation on a

closed interval and obtained relationship between the functions of second bounded variation with the convex functions.

A.M. Russel and C.J.F. Upton [12] obtained the functions of bounded secondp-variation(1 ≤ p < ∞) in the sense of

Wiener. It is important to mention here that all of the above generalization of the function of bounded variation were

motivated by their applications in several different areasof mathematics few of which are Fourier analysis [10], [13],

operator theory [1],[4] calculus of variation, geometric measure theory and mathematical physics.

For decades, modular space has been an active area of research primarily due, to its very rich in structure besides being a

Banach space. Recently a new modular space call the variableLebesgue space is being developed which generalizes both

Orlicz and Musielak Orlicz space. Although it has its originfrom 1931 in the work of Orlicz. However serious work on

this space began after the fundamental paper by Kovacik and Rakosnk [7] in 1991.

Recently Rene Erlin Castillo, Nelson Merentes and HumbertoRafeiro [2] further extended the notion of function of

boundedp-variation to function of boundedp(·)-variable variation. Further in 2016 George Kakochasvili and Shalva

Zviadadze [6] studied functions of bounded Rieszp(·)-variation. In this paper we have extended the concept of bounded

secondp-variation defined by Merentes [8] to the variablep(·)-variation and using certain concepts from the variable

Lebesgue spaces we have partially generalized certain results proved forp-variation and bounded secondp-variation.
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2 Premilinaries

We shall begin this section with some basics and definitions of variable Lebesgue space, function of bounded variation

and there generalizations which will be used through this paper.

First we begin with a brief introduction to the variable Lebesgue space. Letp : [a,b]→ [1,∞) be a measurable function

such that

p∗ = esssupx∈[a,b]p(x) and p∗ = essin fx∈[a,b]p(x) (1)

Denote byLp(x) [a.b], the collection of all measurable functionsf : [a,b] → R such that for someλ = λ ( f ) > 0,

I [a,b]p(·)

(

f
λ

)

< ∞, whereI [a,b]p(·) is the modular function defined by

I [a,b]p(·) ( f ) =
∫ b

a
| f (x)|p(x)dx (2)

This is a linear space and is a Banach Spaces with respect to the Luxemburg norm defined by

‖ f‖Lp(·)[a,b]
= inf

{

λ > 0 : I [a,b]p(·)

(

f
λ

)

≤ 1

}

(3)

For a givenp : [a,b]→ [1,∞), we define the conjugate exponent function by

1
p(x)

+
1

q(x)
= 1, x∈ [a,b] (4)

Note that here we do not allow eitherp(x) or q(x) to tend to infinity and so we also exclude the tendency of either p(x) or

q(x) to 1. Thus we always assume that

1< p∗ ≤ p(x)≤ p∗ < ∞ and 1< q∗ ≤ q(x)≤ q∗ < ∞

Now for any partition of[a,b] of the form

π∗ : a= xo < y1 ≤ z1 < x1 < y2 ≤ z2 < x2 < · · ·< yn ≤ zn < xn = b with Qk = (xk,xk+1) . (5)

Define
1

p̃Qk

=
1

|Qk|

∫

Qk

1
p(x)

dx and
1

q̃Qk

=
1

|Qk|

∫

Qk

1
q(x)

dx (6)

wherep(·) andq(·) are conjugate functions. We further define the discrete variable Lebesgue space denoted byl p(·),Q(see

[6]) by

l p(·),Q =

{

{

xQk

}

Qk∈Q
: ∑

Qk∈Q

|xQk|
p̃Qk <+∞

}

(7)

and is equipped with the Luxemburg’s norm

‖x‖l p(·),Q = inf

{

λ > 0 : ∑
Qk∈Q

∣

∣

∣

xQk

λ

∣

∣

∣

p̃Qk
≤ 1

}

,

where we have denotedQ = {Qk} to be a partition of the form (5). Note that{eQ}Q∈Q
is the canonical basis of the

discrete variable Lebesgue space whereeQ has 1 at the indexQ and 0 otherwise.
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Also for a functionp : [a,b]→ [1,∞) and its conjugate functionq : [a,b]→ [1,∞), we have the Holder’s inequality as

∑
Qk∈Q

|xQk ·yQk| ≤C‖x‖l p(·),Q ‖y‖lq(·),Q , x∈ l p(·),Q
, y∈ lq(·),Q (8)

Now before we begin our main section, we shall go through somedefinition of functions of bounded variations

Definition 1. Let f : [a,b]→R be a function. Then for a partition

π : a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

of [a,b], define

V( f : [a,b]) = sup
π

n−1

∑
k=0

| f (xk+1)− f (xk)| , (9)

where supremum is taken over all partitionsπ of the interval[a,b]. If V( f : [a,b])< ∞, then f is said to be a function of

bounded variation on[a,b]. We denote the collection of all functions of bounded variation on[a,b] by BV( f : [a,b]) .

In 1973 N. Wiener [14] further introduced functions of boundedp-variations (1< p< ∞) on an interval[a,b] .

Definition 2.[14] A function f : [a,b] → R is said to be a function of bounded p-variation(1< p < ∞) in the sense of

Wiener iff

Vw
p ( f : [a,b]) = sup

π

n−1

∑
k=0

| f (xk+1)− f (xk)|
p
< ∞, (10)

where supremum is taken over all partitionπ given by

π : a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

of [a,b]. We denote the collection of all functions of boundedp-variation(1< p < ∞) in Wiener sense over[a,b] by

BVw
p ( f : [a,b])

Definition 3.[11] Let f : [a,b]→R be a function. Then for a given partition

π = a= x0 < x1 < x2 < · · ·< xn = b

of [a,b], define

Vr
p ( f : [a,b]) = sup

π

n−1

∑
k=0

| f (xk+1)− f (xk)|
p

|xk+1− xk|
p−1 (1< p< ∞), (11)

where supremum is taken over all partitionπ of [a,b]. Now, if Vr
p ( f : [a,b])<∞, then we say that f is a function of bounded

Riesz p-variation on[a,b] and we take BVrp ( f : [a,b]) to be the collection of all function of bounded Riesz p-variation

(1< p< ∞) on [a,b] .

George Kakochashvili,Shalva Zviadadze [6] recently in 2016 introduce the concept of functions of bounded Rieszp(·)-

variable variation on[a,b].

Definition 4.[6] Let p: [a,b]→ [1,∞) be a measurable function. Then a function f: [a,b]→R is said to be a function of

bounded Riesz p(·)-variable variation on[a,b], if

D( f ) = sup
π

n−1

∑
k=0

| f (xk+1)− f (xk)|
p̃Qk

|xk+1− xk|
p̃Qk

−1 < ∞, (12)
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where supremum is taken over all partition of[a,b] given by

π = a= x0 < x1 < x2 < · · ·< xn = b

of [a,b] with Qk = (xk+1− xk) .

We denote the collection of all function of bounded Rieszp(·)-variable variation on[a,b] by BVp(·) [a,b].

BVp(·) ( f : [a,b]) = { f : [a,b]→R : D( f ) < ∞} .

De la Valle Poussin [3] studied the class of all functions of bounded second variation as follows.

Definition 5.[3] For a partition π of the formπ : a = xo < z1 ≤ y1 < x2 < · · · < xn−1 ≤ zn ≤ yn < xn = b of [a,b]. A

function f : [a,b]→ R is said to be of bounded second variation on[a,b], if

V2 ( f : [a,b]) = sup
π

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

< ∞. (13)

We denote the collection of all such function by BV2 [a,b]

i.e., BV2 ( f : [a,b]) =
{

f : [a,b]→R : V2 ( f : [a,b])< ∞
}

.

Merentes in his paper [8] studied functions of bounded Riesz(p,2)-variation on[a,b] and proved that iff : [a,b]→ R is

a function of bounded(p,2)-variation(1< p< ∞), thenV2
p ( f : [a,b]) = ‖ f ′′‖p

Lp[a,b]
where‖·‖p

Lp[a,b]
is theLp norm of the

function f andV2
p ( f : [a,b]) is defined as follows.

Definition 6.[8] Let f : [a,b]→R be a function with1< p< ∞. For a givenπ partition of the form

π : a= xo < z1 ≤ y1 < x2 < · · ·< xn−1 ≤ zn ≤ yn < xn = b, (14)

define

V2
p ( f : [a,b]) = sup

π

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p( 1
xk+1− xk

)p−1

, (15)

where supremum is taken over all partitionπ of the form (14) over the interval[a,b] . We say that f is a function of

bounded Riesz(p,2)-variation on[a,b] if V 2
p ( f : [a,b]) < ∞. We denote by BV2p ( f : [a,b]) the collection of all functions

such that V2
p ( f : [a,b])< ∞.

3 Main result

In this section, we shall begin with our definition of boundedsecondp(·)-variable variation on[a,b] and prove some

results.

Definition 7. Let p: [a,b]→ [1,∞) be a measurable function such that p∗ < ∞. For a partitionπ∗ of [a,b] given by

π∗ : a= xo < y1 ≤ z1 < x1 < y2 ≤ z2 < x2 < · · ·< yn ≤ zn < xn = b with Qk = (xk,xk+1) . (16)

We define the class of all functions f: [a,b]→ R which are of bounded second p(·)-variable variation as follows.

Let

ρ2
p(·) [ f : π∗] =

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk 1

|Qk|
p̃Qk

−1

© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 4, 45-53 (2018) /www.ntmsci.com 49

and

D2( f ) = sup
π∗

ρ2
p(·) [ f : π∗] ,

where supremum is taken over all the partitionsπ∗ of the form (16). We say that f is a function of bounded second

p(·)-variable variation on[a,b]. We denote the set BD2
p(·) ( f : [a,b]) to be the collection of all those functions for which

D2( f )< ∞.

i.e BD2
p(·) ( f : [a,b]) =

{

f : [a,b]→ R : D2( f )< ∞
}

Remark.Every constant functionf : [a,b]→R are elements ofBD2
p(·) ( f : [a,b])

Example 1.Let f : [a,b]→R be a real valued function given byf (x) =αx+β for some fixed realsα andβ . Then clearly

D2( f )< ∞. Thus f ∈ BD2
p(·) ( f : [a,b])

Remark.If p(x) = p,∀ x∈ [a.b], then the class of all functionsBD2
p(·) ( f : [a,b]) coincides with the class of functions of

Riez-(p,2) variation on[a,b] which we have denoted byBD2
p ( f : [a,b])

Remark.If p(x) = 1,∀ x∈ [a.b], then the class of all functionsBD2
p(·) ( f : [a,b]) coincides with the class of functions of

bounded second variation defined by De la valle Poussin [3] which we have denoted byBV2 ( f : [a,b]).

Theorem 1.Let p: [a,b]→ [1,∞) be a measurable function such that0< p∗ ≤ p∗ < ∞. If D2( f ) < ∞, then the function

f is of bounded second variation on[a,b], and

V2 ( f : [a,b])≤
(

D2( f )
)

1
p∗ |b−a|q

∗
(17)

Proof.Consider a partitionπ∗ of [a,b] as

π∗ : a= xo < y1 ≤ z1 < x1 < y2 ≤ z2 < x2 < · · ·< yn ≤ zn < xn = b

with Qk = (xk,xk+1) . Then by Holder’s inequality, we have

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

=
n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk |Qk|
1− 1

p̃Qk

|Qk|
1− 1

p̃Qk

≤C

∥

∥

∥

∥

∥

∥

∥







(

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

)

1

|Qk|
1− 1

p̃Qk







Qk∈Q

∥

∥

∥

∥

∥

∥

∥

l p(·),Q

∥

∥

∥

∥

∥

{

|Qk|
1

q̃Qk

}

Qk∈Q

∥

∥

∥

∥

∥

lq(·),Q

,

whereq : [a,b]→ [1,∞) is the conjugate exponent.

SinceD2( f ) < ∞,without loss of generality we may assume thatD2( f ) ≥ 1, so that

1≥
n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk 1

|Qk|
p̃Qk

−1

1
D2( f )

≥





n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

1

|Qk|
1− 1

p̃Qk

(

1
D2( f )

) 1
p̃Qk





p̃Qk

≥





n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

1

|Qk|
1− 1

p̃Qk

(

1
D2( f )

) 1
p∗





p̃Qk
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So that
∥

∥

∥

∥

∥

∥

∥







(

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

)

1

|Qk|
1− 1

p̃Qk







Qk∈Q

∥

∥

∥

∥

∥

∥

∥

l p(·),Q

≤
(

D2( f )
)

1
p∗ (18)

Further we see that
∥

∥

∥

∥

∥

{

|Qk|
1

q̃Qk

}

Qk∈Q

∥

∥

∥

∥

∥

lq(·),Q

≤ |b−a|
1

q∗ (19)

Thus from equation (18) and (19), we get

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

≤
(

D2( f )
)

1
p∗ |b−a|

1
q∗ (20)

Taking supremum over all such partitions of[a,b], we get

V2 ( f : [a,b])≤
(

D2( f )
)

1
p∗ |b−a|

1
q∗ (21)

Now using Theorem1 with Theorem 1.1 [3], we have the following corollary

Corollary 1. Let p: [a,b]→ [1,∞) be a measurable function such that1< p∗ < ∞ and1< q∗ < ∞. If D2( f )< ∞, then f

is absolutely continuous on[a,b] and f can also be expressed as a difference of two convex function.

Theorem 2.Let p : [a,b] → [1,∞) such that1 < p∗ ≤ p∗ < ∞. If D2( f ) < ∞, then first derivative of f exists for every

x∈ (a,b) .

Proof.SinceD2( f )< ∞ implies thatV2 ( f : [a,b])< ∞ by Theorem1. Then the existence of the right-hand derivative and

left hand derivative is evident from the fact thatf can be express as a difference of two convex function. The further proof

can be done in a similar way as was done for fixed 1< p< ∞.(see [8])

Theorem 3.Let p: [a,b]→ [1,∞) be a measurable function such that1< p∗ ≤ p∗ < ∞. If D2( f )< ∞ and f′′ ∈ Lp∗ [a,b],

then f′ ∈ BVp(·) [a,b] and f′ is absolutely continuous. Moreover

∥

∥ f ′′
∥

∥

p∗
Lp(·)[a,b]

≤ D2( f ) ≤ rp
∥

∥ f ′′
∥

∥

p∗

Lp∗ [a,b]
(22)

Proof.Let us consider the partition

π∗ : a= xo < y1 ≤ z1 < x1 < y2 ≤ z2 < x2 < · · ·< yn ≤ zn < xn = b

with Qk = (xk,xk+1) .

We take smallh> 0 such thath≤ min
{

|Q0|
2 ,

|Q1|
2 , · · ·

|Qn−1|
2

}

. Then by the definition ofD2( f ) < ∞, we have

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (xk+1−h)
h

−
f (xk+h)− f (xk)

h

∣

∣

∣

∣

p̃Qk 1

|Qk|
p̃Qk

−1 ≤ D2( f ) (23)

Also sinceD2( f ) < ∞ and so by Theorem2, we see that derivative off exists at each pointx∈ (a,b). Thus taking limit

h→ 0 in equation (23), we get
n−1

∑
k=0

∣

∣ f ′(xk+1)− f ′(xk)
∣

∣

p̃Qk
1

|Qk|
p̃Qk

−1 ≤ D2( f ) (24)
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This shows thatf ′ is absolutely continuous and now taking supremum on RHS of equation (24) over all such partitions of

[a,b], we have

sup
π∗

n−1

∑
k=0

∣

∣ f ′(xk+1)− f ′(xk)
∣

∣

p̃Qk
1

|Qk|
p̃Qk

−1 ≤ D2( f )

i.e D( f ′)≤ D2( f ) < ∞ (25)

Thus we find thatf ′ ∈ BVp(·) [a,b] . Further by embedding in the variable lebesgue space we havef ′′ ∈ Lp(·) [a,b] and

∫ a

b
| f ′′(x)|p(x)dx≤ D( f ′)

see [6, Theorem 3.1].

So that





∫ a

b

∣

∣

∣

∣

∣

f ′′(x)

D( f ′)
1
p∗

∣

∣

∣

∣

∣

p(x)

dx



≤





∫ a

b

∣

∣

∣

∣

∣

f ′′(x)

D( f ′)
1

p(x)

∣

∣

∣

∣

∣

p(x)

dx



=
1

D( f ′)

(

∫ a

b

∣

∣ f ′′(x)
∣

∣

p(x)
dx

)

≤ 1.

Thus





∫ a

b

∣

∣

∣

∣

∣

f ′′

D( f ′)
1
p∗

∣

∣

∣

∣

∣

p(x)

dx



≤ 1.

Thus by the definition of Luxemburg’s norm on variableLp(·) [a,b] space, we find that

∥

∥ f ′′
∥

∥

Lp(·)[a,b]
≤ D( f ′)

1
p∗

So that
∥

∥ f ′′
∥

∥

p∗
Lp(·)[a,b]

≤ D( f ′) (26)

From equation (25) and (26), we find that
∥

∥ f ′′
∥

∥

p∗
Lp(·)[a,b]

≤ D2( f ). (27)

Next sincef ′ is absolutely continuous and hence continuous. So by mean value theorem, we can always find sometk and

sk such thatxk < tk < yk+1 andzk+1 < sk < xk+1 for k= 0,1,2,3· · ·(n−1) and

f (xk+1)− f (zk+1)

xk+1− zk+1
= f ′(tk) and

f (yk+1)− f (xk)

yk+1− xk
= f ′(sk) (28)

So by Holder’s Inequality, we have

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk
≤ rp

(

{

∫ xk+1

xk

∣

∣ f ′′(ζ )
∣

∣

p̃Qk dζ
} 1

p̃Qk
(xk+1− xk)

1− 1
p̃Qk

)p̃Qk

≤ rp

{

∫ xk+1

xk

∣

∣ f ′′(ζ )
∣

∣

p̃Qk dζ
}

(xk+1− xk)
(1− 1

p̃Qk
) p̃Qk

≤ rp

{

∫ xk+1

xk

∣

∣ f ′′(ζ )
∣

∣

p̃Qk dζ
}

(xk+1− xk)
p̃Qk

−1
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So that
∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk 1

(xk+1− xk)
p̃Qk

−1 ≤ rp

{

∫ xk+1

xk

∣

∣ f ′′(ζ )
∣

∣

p̃Qk dζ
}

(29)

Now taking summation on both the sides of equation (29), we get

n−1

∑
k=0

∣

∣

∣

∣

f (xk+1)− f (zk+1)

xk+1− zk+1
−

f (yk+1)− f (xk)

yk+1− xk

∣

∣

∣

∣

p̃Qk 1

(xk+1− xk)
p̃Qk

−1 ≤ rp

n−1

∑
k=0

∫ xk+1

xk

∣

∣ f ′′(ζ )
∣

∣

p̃Qk dζ

≤ rp

∫ b

a

∣

∣ f ′′(ζ )
∣

∣

p∗
dζ

= rp
∥

∥ f ′′
∥

∥

p∗

Lp∗ [a,b]

D2( f )≤ rp
∥

∥ f ′′
∥

∥

p∗

Lp∗ [a,b]
(30)

Hence from equation (27) and (30), we finally get

∥

∥ f ′′
∥

∥

p∗
Lp(·)[a,b]

≤ D2( f ) ≤ rp
∥

∥ f ′′
∥

∥

p∗

Lp∗ [a,b]
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