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Abstract: Chebyshev wavelets operational matrices play an importéafor the numeric solution ofth order differential equations.
In this study, operational matrices kh integration of Chebyshev wavelets are presented and aajgrecedure of these matrices is
correspondingly given. Disadvantages of Chebyshev wevalethods is eliminated foth integration of¥(t). The proposed method
is based on the approximation by the truncated Chebyshegletaseries. Algebraic equation system has been obtainedibyg the
Chebyshev collocation points and solved. The proposedaddtas been applied to the three nonlinear boundary vallsgmns using
guasilinearization technique. Numerical examples shaweépplicability and accuracy.
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1 Introduction

Various numerical methods based on orthogonal functiodgpatynomial series, involving wavelets, have been used to
obtain approximate solutions of various problems in regeats, [L,2,3,4,5,6]. Using truncated orthogonal approximate
series as:

N-1
y(t) = yn(t) = ; ca

these problems are reduced to solve a algebraic equatitensyBundamental approach is based on transforming the
given differential equations into integral equations bggration, approximating various signals involved in theaion
by truncated orthogonal series and using the operationaixiaobtained by eliminating the integral operations as:

/Ot ®(s)ds= Po(t).

Where @(t) = [@(t), @(t), ..., @v_1(t)]Tand matrixP is uniquely determined on the basis of particular orthogona
functions defined on the interval [a, b]. The form of P depeadshe choice of the orthogonal functions. Typical
examples of orthogonal functions or polynomials are Legermgblynomials 2], Chebyshev polynomials3], Walsh
function [7], block-pulse function §] and Legendre serie®]. All of the orthogonal functions previously mentioned
dependent on the interval [a, b]. However, this global depece on the interval [a, b] is clearly a disadvantage foresom
analysis works, particularly systems involving abruptia@ons or local function vanishing outside a short intéi
time or spacef].

Wavelets, known as very well-localized functions, a powkeaihd recognized tool used in image processing, quantum
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mechanics, signal processing, computer science, comations and mathematics and many more other areas. Wavelets
are greatly useful for solving differential, fractionalffdrential, integral, integro-differential and fractianVolterra
integro-differential equations and give accurate sohgifi0,11,12 13 ?,15,16,17]. The wavelet technique allows the
development of extremely fast algorithms when it is comgarih the algorithms ordinarily used. Gu and Jiadg][
derived the Haar wavelets operational matrix of integraticepik [19] solved Burgers and sine-Gordon equations by
using the Haar wavelet method. Geng et20][and Hariharan et al.2[1,22,23,24,25] used Haar wavelets methods for
the solution of some nonlinear PDEs. Kaur et abj[used Haar wavelet quasilinearization approach for sglvin
nonlinear boundary value problems. Karabacak and Ce&lrk $olved fractional differential-algebraic equations twit
Haar wavelet method. Celik2B,29] solved generalized Burgers-Huxley equation and magiyeaidynamic flow
equations with Haar wavelet method. In the literature, spedtention has been given to the applications of Legendre
wavelets §,30]. The Legendre and Chebyshev wavelets operational matofkimtegration and product operation matrix
have been introduced i8], 32,33,34,35]. These matrices may be used to solve problems such asfidatiin, analysis
and optimal control. Karabacak and Yigide36] analyzed fractional differential-algebraic equationghw_egendre
wavelets method. Adibi and AssaB7] used Chebyshev wavelet method for numerical solution efiRolm integral
equations of the first kind. Wang and F&8] solved fractional differential equations with the secddad Chebyshev
wavelet method. Heydari et al39] used Chebyshev wavelets method for solution of nonlineactional
integrodifferential equations. Hooshmandasl| et 40] [solved one dimensional heat equation by using Chebyshev
wavelets method. Yang and Ho#ll] used Chebyshev wavelets method for solving Bratu’s probleariharan et al.42]
used Chebyshev wavelets based approximation method to gaadity assessment model problem. Celild 4,45
solved differential equations, generalized Burgers-ldyxéquation and Free vibration problems of non-uniform
Euler-Bernoulli beam by Chebyshev wavelet collocationhdt

Analyses show that there are some disadvantages in applgipgndre and Chebyshev wavelet methods in terms of
taking second integration &’. In Razzaghi and YousefiLp,16] and Babolian and Fattahzadet7], the operational
matrix of integratiorP are derived as

JoW(s9)ds=PW(t) 1
Jo 5 W (w)cwdls= P (x &

WhereW¥(t) is vector andP is a matrix. Some expressions, obtained from integratio# @, have not been used in
the construction of the matriR. For example, in the Chebyshev wavelet methgand Ty, 1 obtained from the first
and second integrations of ti(t) have not been used in the constructionPo&ind P?. These are the disadvantages
of the Legendre wavelet and Chebyshev wavelet methodik [26,44] showed thaP? was different from the second
integration, directly taken, for Chebyshev wavelet methiduht is

t rS
/ / W(w)dwds£ P2W(t) )
0 Jo
Hence, disadvantages of Chebyshev wavelets methods muieatied by new construction &

This study presents a Chebyshev wavelet collocation mefimothe solution ofrth-order linear ordinary differential
equations with variable coefficients given in the followifiogm:

¥+ 3 A0 G =60 @
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whereA; andG are functions ok defined in the interval o <t < b. rth-order nonlinear ordinary differential equations
with variable coefficients is given as:

YO =F (Ly).y ©), ..y (0)) (4)

The quasilinearization of these equations gives a set ofrecce linear differential equations

V00 = F (66340, - WV 0) + 3138 (WL 0 -4 1) Fo (L3050, - V0)  6)

Ys

whereF (t,ys(t),ys(t), ...,yg’l)(t)) = z?y(?)(t) (F (x,ys(t),)/s(t), ...,yg*l)(t))) andypo(t) is taken as a function
satisfying initial/boundary conditions. Any range< x < b can be transformed in to the basic range 0< 1 with the

change of variables= (b—a)t +a.

In the proposed method, there are no disadvantages of thenteg wavelet and Chebyshev wavelet methods. The
method is based on the approximation by the truncated Cheliygavelets series. By using the Chebyshev collocation
points, algebraic equation system has been obtained.rgottis algebraic equation system, the coefficients of the
Chebyshev wavelet series can be found. Hence, we have thieitrfggm of the approximate solution ath-order linear

or nonlinear ordinary differential equations. The methsdpplied to four nonlinear boundary value problems using
quasilinearization technique. Calculations demondirtitat the accuracy of the Chebyshev wavelet collocatioratet

is quite high even in the case of a small number of grid points.

2 Chebyshev wavelet method

Wavelets consist of a family of functions defined by dilatiord translation of a single function named the mother wavele
If aas a dilation parameter abds translation parameter vary continuously, the folloviargily is a continuous wavelets
[10].

t—b
Yan(t) = [a] V2 <T> abeR a0, ©)
Chebyshev wavelets are written as
‘l’nm(t) = w(ka n, mat)v (7)
wherek=0,1,2, ..., n=1,2, ..., 25 mis degree of Chebyshev polynomials of the first kind andenotes the

normalized time. They are defined on the intef@al) by:

2Py kit _2ny1), l<x< A
Yolt) = { v boESxs (8)
0, otherwise
where
V2, m=0
am= ’ 9
m {2, m=1,2 .. ©)

andTn (24"t — 2n 4 1) are Chebyshev polynomials of the first kind of degmeahich are orthogonal with respect to the
weight functionwy (t) = w(21t — 2n+4 1)on[—1, 1] [44].
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A function f(t) € L2 [0, 1] may be expanded as:

[ [

f(f) Z famWnm(t)

n=1m=0
where

fam = (f(X), Ynm(t))
(., .) denotes the inner product with weight functiwr(t) in Eq. (11).

Truncated form of Eq.10) can be written as:

2 M-1
n=1m=0
whereC andW(t) are XM x 1 columns vectors given by:
CT =[f10, fr1, vy fam—1, f20, -y fam—1, ooy Fokgy ooos Tokpa ]
W(t) = (o, Y, oy Yim-1, Wo0, s YoM, ooy Yokgo s Wokm1 1"
The integration of thelhm(t) given in Eq. 8) can be shown as

pr) = [ thn(s)ds

Form=0,m= 1 andm> 1, pnm(t) can be obtained as

0, 0<t< i
Pro(t) = aozxf*l (T2 —2n+ 1)+ T2t —2n+1)], Hr<t<d
%;TWTO(Zk*lt—Zn—f— 1), n<t<l
0, 0<t< iyt
—kf2—-3 o
Pi(t) = ‘HZT [To(23t — 2n+ 1) — To(2¢ 3% — 2n+-1)], n<t< X
0, F<t<l
0, 0<x<
2-K2-2 T, (=™ T 4(u-(-ym? 1
Brrn(X) = am\/ﬁ m+1<ur)n+(% )™ Tm i(ur)m(1 ) } , nzk <X< 2_nk
2 K22 1 (—pym™l 1 (M
Om:. \/TT (m+)l (m,)l :| , EnR < X < 1

whereu = 2t1x — 2n + 1. The integration of thé’(t) can be represented as

t
/0 W(s)ds = [P1o, PLL - PLM-1, P20, s P2M-1, -y Pokgs s Pam_1)' = PL¥A(D)
where

qu(t) = [4’1,07 QU1,17 23} U’LM, LI"Z,O) seey LIJZ,M7 23} U’zk,oa 3 LI"ZKM]
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The second integrations of ti¥é(t)can be represented as
t oty t t 5
/O /O W(s)dsdy = /O Py YA (ty)dty = Py /O W (ty)dt, = PP (L) £ P2W(t) (21)
Therth integrations of th&’(t)can be represented as
t ptp pto o1
// / o [T w(s)dsd_adt_o---dt = PiP- B W (1) £ PTY() 22)
oJo Jo Jo
where
[ 1 ¥200..- 0 0 0 O0-- 0 0 0 ]
¥ 030
/2 _
=y2 SHE o 0 0 o0 0o 0 o0
2 M8 (Mt -1 1
L= §( w3 — w1 ) 000 vy 9 zmem O o 0 0
1\M-2 M B
L2 _CUTy 000 0 sy O % 0 0 0
\M-1 _1\M+1 B
RG-S 000 0 0 gEg o 0 0 o
o) (71)M—3+r (71)M+r—l 1 1
_%( M—3+r ~ ~ M+r—1 ) 000--- 0 0 0 U 2(M—=3+r) 02(M71+r)_
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[ 2 0---0]
0 0---0
2V2
2 O L /i R F F
: 0.0 r B Py r Py
V2 1-(=pM-t 1 (M-8 1 OL k- FF
F=| FOwr —Tws ) 0 0lpo
e = o B 000-LF
2/ 1-(—pM+L 1 (—pM-1 000---0L
%( (M+)1 ( 7)1 ) 0---0 r
: 0 -.0
2 ,1—(-1 M+r—1 1-(_1)M+r-3
2 (e~ e ) 0 0
and
LIJr(t) = [4’1,07 wl,la SE) QU1,M+r—1; LI"Z,O) seey U’Z,M+r—1, ceey Zk,O’ N Zk,MJrrfl]T (23)

The matriced, andF, have the dimensiofM +r — 1) x (M+r). HenceP: has the dimensiort®M +r —1) x 2¢(M +-r).

3 Chebyshev wavelet collocation method for Rth-order differential equations

Consider Eq.3) or Eg. 6) with initial conditions
r-1 )
Z}Aljy(l)(O)zaj, J:O, 1, 2,...,r—1 (24)
i=

or boundary conditions
r—1

Z}aijy@(O) +6iy(1)=¢;,j=0,1,2 ...,r—1 (25)
i=l
Itis assumed that") (t) can be expanded in terms of truncated Chebyshev wavelessesi

X M-1

YOO =5 S famam(t) =CT¥(1). (26)

n=1 m=0

By successively integration of EQR€) with respect td from O tot, following equations are obtained

Yy (t) = /0 CTW(s)ds+ " (0) = CTRA(H) + ¥ (0). (@7)

y" 2t =CTh, /0 (S ty Y (0) +y02(0) = CTRPYA() + ty(0) 1y 2(0). (28)

Y2(0) = CTRIP, fg Yh(s)ds+ 5y (0) + 1y 2(0) +y9(0)
(29)
— CTRIRPsY(t) + 5y (0) +ty"2(0) + ¥~ (0).
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Y(x) =CTPiPs.. R 1 [§ W a(8)ds+ gy (0) + £y 2 (0) + .. +1y/(0) +(0)
(30)

tl’fl tl’72

=CTPPP;...RW(t) + (ril)!y“*l)(O) + my<f*2>(0) + ... +ty'(0) +y(0).

In these equations, the valuesy90), y (0), ..., y~Y(0) can be obtained with initial conditions or boundary corutiti.
Replacing Eqs.27)-(30) into the Eq. 8) or Eq. 6), we have the following equations.
CT(WH) +AL(OPA(L) + ... +A(D)PIPPs. . RW(1))
DO T 5A 0§ YD O) T A0 + YT (0) 3T S A (31)
+ o4 (A () +A(1)Y (0) + A ()y(0) = G(t)
CT(W(1) ~ F P — . — FPiPoPs. RU(D) = F (Lys(0), %60, o 6 (0))

+yY(0) 3125 Fe-1v G +y2(0) 3.3 F2v G+ ) yr30) 33 Fo—2v G (32)

o (R R (0) + Fy(0) = S0 F o (£3500.%400, 38 (0)).

(M+1)—i)mr

The collocation points can be taken &%, — 2n+ 1= cos ™D OF
1 (M+1)—i)m\ . K
tn,i:ﬁ<2n—l+COSW ,|:1, 2, ...,,\/I,n:l7 27 ceey 2 (33)

which are also called the turning pointsTaf .1 (2t — 2n+ 1). Substituting the Chebyshev collocation points iritd)(
(19 and @3), a discretized form of the vectot8(tn;), % (thi) and¥ (tn;) can be obtained. Hence form E§ or Eq.
(32), the algebraic equation system whose matrix notationtaioed as:

c'u=8B (34)

whereU is a*M x 2XM matrix.C andB are XM x 1 vectors. Hence, by solving algebraic equation syst4)) (ve can
find the coefficients of the Chebyshev wavelet series thisfigat differential equation with initial or boundary cotidns.

4 Error analysis

Lemma 1. If the Chebyshev wavelet expansion of a continuous funé{inconverges uniformly, then the Chebyshev
wavelet expansion converges to the functi¢i) [37].

Theorem 1. A function f(t) € L2,([0,1]) with bounded second derivativé! (t)| < N, can be expanded as an infinite sum
of Chebyshev wavelets, and the series converges unifanfily)t[37]. That is

f(t) = % i FrmWnm(t). (35)

n=1m=0

(© 2018 BISKA Bilisim Technology
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Since the truncated Chebyshev wavelets series is an apmatexsolution of problem, so one has an error funcfign
for y(t) as follows:

= |y(t) —CTw(t)|. (36)
The error bound of the approximate solution using Chebysleelets series is given by the following theorem.

Theorem 2. Suppose that(y) € C™[0, 1] and C" ¥/ (t) is the approximate solution of problem using the Chebyslaerelgts
method. Then the error bound would be obtained as follelk [

2

- c (m)
) < H miAmmE 1) 10 ’y (t)’ (37)
5 Numerical results
Example 1Consider the nonlinear boundary value probl@ [
y'(t) = y3(t) 4+ 2mPcog2mt) —sirf(mt), O0<t<1, (38)
y(0)=y(1) =0,

with analytic solutiog(t) = sir?(7t). This nonlinear boundary value problem is converted int@gusnce of linear
boundary value problems generated by quasilinearizatichmique. First approximate solution is takeryg@$) = sin(7t)
andy?3(t) = 2yo(t)y1(t) — Y3(t) can be obtained by quasilinearization technique. Henceerted problem is obtained as

Yera(t) = 2s(t)Ysi1(t) = —YA(t) + 2 cog(2mt) — sirf(t), (39)
whereys(t) is known. It is assumed thgt (t) can be expanded in terms of truncated Chebyshev wavelesssi

2% M-1

al0= 53 fombhnlt) =CT¥(0). (40)

=1 m=0

By integrating this equation twice with respectttérom 0 totand using boundary condition, following equations are
obtained.

Voia(t) / CTW(s)ds+Yy,,1(0) = CTPUWA(L) +Y,,4(0) (41)
Ys+1(X) =CTPy ./0‘t Wi(s)ds+tyg,1(0) + Ysr1(0) = CTPIPUA(t) + tyg, 1(0). (42)
Ys1(1) = CTPIPYS(1) +¥5,1(0) = 0 = ¥4, 1(0) = — CTPRYA(1). (43)
Ys11(t) = CTPIPUA(t) —tCTPIPUA(1) = CT (PP (1) — tPIPYS(1)) . (44)

Replacing Eqs.40) and @4) into the Eq. 89), we have
CT(W(t) — 2ys(t) PLPaY () + 2tys(t)PLPoYb(1)) = —YA(t) + 2P cos(27t) — sirf'(7t). (45)

Substituting the Chebyshev collocation poir@8)(into the @5), we can obtain algebraic equation system as gigdh (
Hence, by solving algebraic equation system, coeffici€ltsof the Chebyshev wavelet series can be obtained. By
substituting the Chebyshev wavelet coefficients into Bd),(we have the implicit form of the approximate solution of
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(39) satisfied differential equation and whose boundary comit Table 1 shows the absolute errors in collocation
points forM =4, k=1, M =8, k=1 andM = 16, k = 0. Graphical presentations of the approximate solution and
absolute error are depicted in Figures 1 and 2Mos 8, k = 1. As can be seen in Table 1, Figures 1-2 and Figure 2
given [26], it is clear that the results obtained by the presented ouktine superior to6].

1L}

0z

n74

LLE

4

[k}

024

ni4

71 0z 03 04 0% a6 07 0E DR

Fig. 1: Approximate solution of Example 1 fol =8, k= 1.

|4 = -2

g % 1D~

xS

&= [om

& =10

i1 62 &3 04 03 08 0F 0E 0

Fig. 2: The absolute error of Example 1 fir =8, k= 1.

Example 2Consider the nonlinear boundary value problém 48]

YA (t) = y2(t) — 104+ 4t% — 4t8 — 4t7 -85 — 4t* 4120 - 48, O<t<1,
(46)
y(0)=y(0)=0,y(1)=y (1) =1,
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Table 1: Absolute error of Example 1 with Chebyshev wavelet collmamethod for various collocation points.

t

M=4k=1

t

M=8k=1

t

M=16Kk=0

0.047745751

42.4974593112 e-4

1 0.015076844

85.9826586536 e-4

) 0.008513450

01.12782311 e-13

0.172745751

78.1982196612 e-4

1 0.058488889

31.7469014807 e-§

0.033763885

0 3.10584000 e-15

0.327254248

61.2376539594 e-3

0.125000000

D 3.4378819800 e-§

0.074891432

01.08110000e-13

0.452254248

61.8483044111e-3

0.206587955

56.0398887234 e-§

0.130495541

51.32348500 e-14

0.547745751

41.8483044111 e-3

0.293412044

28.0761774170e-§

0.198682681

59.71398900 e-14

0.672745751

4 1.2376539594 e-3

0.375000000

D 1.0781454947 e-1

1 0.277130822

53.12829100 e-14

0.827254248

68.1982196613 e-4

1 0.441511110

81.2650986336 e-1

r 0.363168505

0 7.87285800 e-14

0.952254248

62.4974593112 e-4

1 0.484923155

2 1.3973346048 e-1

1 0.453865820

0 5.49689900 e-14

0.515076844

8 1.3973346048 e-1

1 0.546134179

55.49689800 e-14

0.558488889

2 1.2650986336 e-1

1 0.636831495

0 7.87286400 e-14

0.625000000

01.0781454947 e-1{

1 0.722869178

0 3.12830900 e-14

0.706587955

58.0761774170e-§

0.801317318

0 9.71398600 e-14

0.793412044

?6.0398887236 e-§

0.869504458

51.32348200 e-14

0.875000000

0 3.4378819800 e-§

0.925108568

0 1.08109800 e-13

0.941511110

81.7469014807 e-§

0.966236114

53.10576000 e-15

0.984923155

2 5.9826586535 e-

) 0.991486550

01.12782471 e-13

with analytic solutiony(x) = t® — 2t# 4- 2t2. This nonlinear boundary value problem is converted int@gusnce of
linear boundary value problems generated by quasilinawiz technique. First approximate solution is takego#l) =
t3(2—t)? andy?2, ,(t) 2 2ys(t)ys,1(t) — y3(t) can be obtained. Hence converted problem is obtained as

YEP1 () — 2ys(t)ysa(t) = yA(t) — 1104 4t® — 4t®— 4t 4 80— 4t* 1 120 — 48,

(47)

whereys(t) is known. It is assumed thyﬁ)l(t) can be expanded in terms of truncated Chebyshev waveles i

(

Ysi1

2% M-1

v-33

n=1 m=0

4)

famWnm(t) = CTW(t)

(48)

By integrating this equation four times with respect foom 0 totand using condition in Eq46), following equations

are obtained.

£a(0) = [ CTW(9d5+1212(0) = TR +1241(0)

Yap1(t) = CTPIPUS(t) +ty2) 1 (0) + Y2 1(0).

2
Yora () = CTPIPPAUS(0) + y2L1(0) +14,4(0).

t3 t2
Vs 1(t) = CTPIPP3PyWy(t) + E>/S”+1(0) + ?/S’H(O).

By using boundary conditiong, (1) =1 andys;1(1) = 1, the following two equations are obtained.

1
CTPIPPsY5(1) + 5)4@1(0) +Ve:1(0) =1

1 1
CTPIP,P3Py Wy (1) + é)/s,—llrl(o> + 5)/s'+1(0) =1

(49)

(50)

(51)

(52)

(53)

(54)

(© 2018 BISKA Bilisim Technology
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t

M=4,k=0

t

M=4Kk=1

t

M=4Kk=2

0.095491502

81.0500 e-20

0.047745751

4 1.4000 e-22

0.023872875

7 4.0000 e-23

0.345491502

81.1000 e-21

0.172745751

42.0000 e-21

0.086372875

7 4.0000 e-23

0.654508497

2 2.3000 e-20

0.327254248

51.0000 e-21

0.163627124

39.0000 e-22

0.904508497

25.2700 e-20

0.452254248

52.1000 e-20

0.226127124

33.9000 e-21

0.547745751

4 1.9000 e-20

0.273872875

79.0000 e-21

0.672745751

4 2.4000 e-20

0.336372875

7 1.0000 e-20

0.827254248

5 4.6000 e-20

0.413627124

34.0000 e-21

0.952254248

65 2.5000 e-20

0.476127124

36.0000 e-21

0.523872875

7 8.0000 e-21

0.586372875

7 5.5000 e-20

0.663627124

35.0000 e-21

0.726127124

31.6000 e-20

0.773872875

7 1.7000 e-20

0.836372875

71.1000 e-21

0.913627124

32.4100 e-20

0.976127124

32.7260 e-20

Table 3: Comparison between the maximum errors for Example 2.

Method in 47]

Method in 48]

Present Method

7.092 e-6

6.6613 e-15

2.7260 e-20

Table 2: Absolute error of Example 2 with Chebyshev wavelet collmramethod for various collocation points.

By solving this system of equations,

1
5Y¥s11(0) = CT(~3PiPaPsPaY4(1) + PLPoPsY4(1)) +2 (55)
1
5 .1(0) = CT (2PiPoPsPa Wy (1) — PIPoPsY4(1)) — 1 (56)
are obtained. Hence replacing E¢gb)(and 66) into the Egs.$1) and 62), we have
Y, 1(t) =CT (PLPaPsWA(t) + (6t% — 6t)PLPoPsPaWy(1) + (2t — 3t?)PPoPst4(1)) + 4t — 3t (57)
Ys:1(t) = CT (PLPaPsPsWy(t) + (22— 3t%)PiPaPsPsWy(1) + (12 — t3)PPoPsY4(1)) + 2t% — t2. (58)
Replacing Egs.48) and 68) into Eq. @7), we have
CT(W(t) — 2ys(t) PLPoPsPata(t) — 2tys(t) PLPoPsPyWa(1) — 2ys(t) PPoPs (1)) =
(59)

—Y2(t) + 2(2t% — t3)ys(t) — t104 4t% — 4t8 — 4t7 + 86 — 4t* + 120 — 48

Algebraic equation system achieved from E8g)(by using collocation points can be solved and the coeffisi€hof

Eq. (68) satisfied differential equation and whose boundary canmfitare obtained. Table 2 shows the absolute errors in
collocation points foM =4, k=0,M =4, k=1 andM = 4, k= 2. Numerical results for this problem presentedd| [
with the maximum absolute error@®2e— 6 and in j8] with the maximum absolute error@13e— 15. As can be seen

in Table 3, itis clear that the results obtained by the priesbmethod are superior with respect4d][and [48].

(© 2018 BISKA Bilisim Technology
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Example 3Consider the nonlinear boundary value probl&m 48]

y@(t) = sint + sirft — (y'(t))?, 0<x<1,
(60)
y(0) =0, y(0) =1, y(1) =sinl y(1) =cosl

with analytic solutiory(t) = sint. This nonlinear boundary value problem is converted intecuence of linear boundary
value problems generated by quasilinearization technigjugt approximate solution is taken as

yo(t) = (14 cos1-2sin)t3 + (3sin1- cos1- 2)t? 4t (61)

and
2 2
(Vora(D)” = 25 (t)ye, 1 (t) — (Ya(t)) (62)
can be obtained. Hence converted problem is obtained as

YL (®) + 2204, 1 (8) = (YA(1))? + sint 4 sirft, (63)

whereys(t) is known. It is assumed thy,fgl(t) can be expanded in terms of truncated Chebyshev wavelessesiin Eq.
(48). By the similar processing, we have

S/+1(t) =CT (P]_Pz%(t) + (12 — 6) P1F12P3P4W4(1) + (2— 6t)P1P2P3%(1)) +(6t — 2) cos 1+ (6— 12) sin1+ 6t — 4, (64)

Ys1(t) = CT (PLPaPsPyW(t) + (2t3 — 3t2) P PoPsPy Wy (1) + (12 — t3) P PP YA (1))

(65)
+(t3 —t?)cos 1+ (3t2 — 2t3) sin 1+ 13— 2t2 + t
equations and the following algebraic equations system
CT(W(t) +2y¢(t)PLPaYh(t) + (24 — 12)y2 () PiPoPsPsWA(1) + (4 — 12t)ys(t)PLPaP3Ys(1)) =
(66)

(Y(1))% — (12 — 4)y!(t) cos 1— (12— 24t)y.(t)sin 1 — (12 — 8)y(t) + sint + sirft.

Algebraic equation system achieved from the above equisiaising collocation points can be solved and the coeffisient
CTof Eq. (65) satisfied differential equation and whose boundary c@mntare obtained. Table 4 shows the absolute
errors in collocation points fal =4, k=1,M = 8, k=1 andM = 16, k = 0. Numerical results for this problem were
presented in47] with the maximum absolute error358e—5 and in §8] with the maximum absolute error@502e— 6.

As can be seen in Table 5, it is clear that the results obtdigelde presented method are superior thaf §nd [48].

Example 4Consider the nonlinear boundary value problé® $50,51,52,53,54]

yA(t) =6e ¥ — (13)2 0O<t<1,
(67)

y(0)=0, y(1) =In(2), y'(0) = -1, y'(1) = -3,

with analytic solutiony(t) = In(1+t). This nonlinear boundary value problem is converted integuence of linear
boundary value problems generated by quasilinearizagohnique. First approximate solution satisfying boundary

(© 2018 BISKA Bilisim Technology
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Table 4: Absolute error of Example 3 with Chebyshev wavelet collmramethod for various collocation points.

t

M=4k=1

t

M=8Kk=1

t

M=16Kk=0

0.047745751

46.1312946582 e-11

0.015076844

85.18630 e-19

0.008513450

0 1.1000 e-22

0.172745751

76.9209690356 e-10

0.058488889

37.46650 e-18

0.033763885

0 1.1000 e-22

0.327254248

61.7781891083 e-9

0.125000000

0 3.05100 e-17

0.074891432

DO

0.452254248

62.3627312327 e-9

0.206587955

57.25950 e-17

0.130495541

53.1000 e-21

0.547745751

42.3537433020 e-9

0.293412044

21.22920 e-16

0.198682681

58.1000 e-21

0.672745751

41.8017223110e-9

0.375000000

01.64720e-16

0.277130822

51.1000 e-20

0.827254248

67.1472435460 e-10

0.441511110

81.87870e-16

0.363168505

0 1.1000 e-20

0.952254248

65.5932879400 e-11

0.484923155

21.94570 e-16

0.453865820

00

0.515076844

81.94480 e-16

0.546134179

51.1000 e-20

0.558488889

?1.87700e-16

0.636831495

0 1.1000 e-20

0.625000000

01.64260 e-16

0.722869178

0 4.1000 e-20

0.706587955

51.22660 e-16

0.801317318

02.1000 e-20

0.793412044

P 7.24900 e-17

0.869504458

53.1000 e-20

0.875000000

0 3.04000 e-17

0.925108568

04.1000 e-20

0.941511110

87.62000 e-18

0.966236114

53.1000 e-20

0.984923155

2 4.90000 e-19

0.991486550

02.1000 e-20

condition is taken as:

and

Table 5: Comparison between the maximum errors for Example 3.

Method in 47] Method in 48] Present Method
7.092 e-6 6.6613 e-15 4.1000 e-20
3 t2 3
yo(t) = g — E + (In(Z) + §> t

e74YSF1(t) o~ _4e74YS<t)ys+l(t) + 4e74YS(t)ys(t) + 674)/5(0

can be obtained. Hence converted problem is obtained as

12

ygr)l(t) + 24 HsWyg 1 (t) = 6eWsV) 1 24 HsVyy(t) - ———_

(1+1)%

(68)

(69)

(70)

whereys(t) is known. It is assumed th 4)1(t) can be expanded in terms of truncated Chebyshev wavelessesiin Eq.
(48). By the similar processing given above, we have a equation a

3 12

Ys:1(t) = CT (PIPPsPAYA(L) — tPIRPSPAA(1) + (5 — 5 ) PIRYs(1) ) + 5 = 5 + (In(2) + 3)

and the following algebraic equations system

Algebraic equation system achieved from the above equdiiorusing collocation points can be solved and the
coefficientsCT of Eq. (71) satisfied differential equation and whose boundary ciomtitare obtained. Table 6 shows the

cT (W(t) 1 246 YO PP (t) — 24te VP P,PsP W (1) + At — t3)e*4yS<t)P1P2Wz(1)) -

6eYs(l) 4 24~ WsVyy(t) —

(1+x)?

— 33 sl - 124265 — 24 (In(2) + 3) te= sV

(71)

absolute errors in collocation points fsf =4, k=1, M =8, k=1 andM = 16, k = 0. Numerical results for this

(© 2018 BISKA Bilisim Technology
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Table 6: Absolute error of Example 4 with Chebyshev wavelet collmamethod for various collocation points.

t

M=4k=1

t

M=8k=1

t

M=16k=0

0.047745751

49.25288664 e-7

0.015076844

88.82647223 e-11

0.008513450

0 2.09962400 e-16

0.172745751

7 3.40945573 e-6

0.058488889

33.43160523 e-10

0.033763885

D 7.44817000 e-16

0.327254248

65.91635023 e-6

0.125000000

07.21292980e-10

0.074891432

01.70714300 e-15

0.452254248

56.96205374 e-6

0.206587955

51.15346796 e-9

0.130495541

52.57566500 e-15

0.547745751

47.02766347 e-6

0.293412044

2 1.54466057 e-9

0.198682681

5 3.71569000 e-15

0.672745751

46.03425421 e-6

0.375000000

01.81704188 e-9

0.277130822

54.45748000 e-15

0.827254248

53.58175110 e-6

0.441511110

81.95548622 e-9

0.363168505

0 5.06856000 e-15

0.952254248

61.02677122 e-6

0.484923155

2 1.99469362 e-9

0.453865820

0 5.33904000 e-15

0.515076844

81.99680551 e-9

0.546134179

55.10591000 e-15

0.558488889

?1.96233301 e-9

0.636831495

04.79461000 e-15

0.625000000

01.83191940e-9

0.722869178

0 3.90409000 e-15

0.706587955

51.56296740 e-9

0.801317318

0 3.18099000 e-15

0.793412044

21.17301237 e-9

0.869504458

52.11543000 e-15

0.875000000

07.37052694 e-10

0.925108568

0 1.34364000 e-15

0.941511110

83.50650517 e-10

0.966236114

55.90880000 e-16

0.984923155

29.07713233 e-11

0.991486550

0 1.58960000 e-16

Table 7: Comparison between the maximum errors for Example 4.

Method in | Method in | Method in | Method in| Method in| Method in| Present
[49 [5Q [57] [57 [53 [54] Method
5.40 e-8 6.30e-11 | 1.25e-12 | 2.70e-12 | 6.70e-12 | 3.44e-15 | 1.5896 e-16

problem were presented id9,50,51,52,53,54] with the best absolute error given in the Table 7. As can ke s& Table
5, itis clear that the results obtained by the presentededethe superior thartp,50,51,52,53,54).

6 Conclusion

Chebyshev wavelet collocation method is proposed to eéiteirdisadvantages of Chebyshev wavelet and Legendre
wavelet methods and to obtain approximate solutiortioforder differential equations. The method has been appdie
the three nonlinear boundary value problems by using doaailization technique. Approximate and exact solutidns o
examples are correspondingly compared. For Example 1, aogsgnm of present results in Table 1, Figure 2 and Figure 2
given in [26], it is clear that the results obtained by the proposed ntkte better than the provided examples.
Numerical results for Example 2 were presented 47,48 with the maximum absolute error.092e — 6 and
6.6613e— 15 respectively Also maximum absolute errors of Example Bevggven as 358e— 5 and 10502e— 6 in
[47,48] respectively. The best absolute errors of Example 4 pteden [49,50,51,52,53,54] are given in the Table 5.

As can be seen from Tables 1-7, the present method is higfityeat and accurate. All of the calculations have been
made by Maple program with 20 digits. These calculationsatestrated that the accuracy of the Chebyshev wavelet
collocation method is quite high even in the case of a smatilrer of grid points. In the proposed method, there are no
complex integrals or methodology. Applications of this huet are very simple. It is also very convenient for solving th
initial and boundary value problems since the initial andifmary conditions in the solution are automatically taken.
Moreover, the proposed method, which gives accurate solatren in the case of a small number of grid poitandk,

is reliable, simple, fast, minimal computation costs, i and convenient alternative method.
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