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Abstract: Chebyshev wavelets operational matrices play an importantrole for the numeric solution ofrth order differential equations.
In this study, operational matrices ofrth integration of Chebyshev wavelets are presented and a general procedure of these matrices is
correspondingly given. Disadvantages of Chebyshev wavelets methods is eliminated forrth integration ofΨ(t). The proposed method
is based on the approximation by the truncated Chebyshev wavelet series. Algebraic equation system has been obtained byusing the
Chebyshev collocation points and solved. The proposed method has been applied to the three nonlinear boundary value problems using
quasilinearization technique. Numerical examples showedthe applicability and accuracy.
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1 Introduction

Various numerical methods based on orthogonal functions and polynomial series, involving wavelets, have been used to

obtain approximate solutions of various problems in recentyears, [1,2,3,4,5,6]. Using truncated orthogonal approximate

series as:

y(t)∼= yN(t) =
N−1

∑
i=0

ciφi

these problems are reduced to solve a algebraic equation system. Fundamental approach is based on transforming the

given differential equations into integral equations by integration, approximating various signals involved in the equation

by truncated orthogonal series and using the operational matrix P obtained by eliminating the integral operations as:

∫ t

0
Φ(s)ds∼= PΦ(t).

WhereΦ(t) = [φ0(t), φ1(t), ... ,φN−1(t)]Tand matrixP is uniquely determined on the basis of particular orthogonal

functions defined on the interval [a, b]. The form of P dependson the choice of the orthogonal functions. Typical

examples of orthogonal functions or polynomials are Legendre polynomials [2], Chebyshev polynomials [3], Walsh

function [7], block-pulse function [8] and Legendre series [9]. All of the orthogonal functions previously mentioned

dependent on the interval [a, b]. However, this global dependence on the interval [a, b] is clearly a disadvantage for some

analysis works, particularly systems involving abrupt variations or local function vanishing outside a short interval of

time or space [5].

Wavelets, known as very well-localized functions, a powerful and recognized tool used in image processing, quantum
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mechanics, signal processing, computer science, communications and mathematics and many more other areas. Wavelets

are greatly useful for solving differential, fractional differential, integral, integro-differential and fractional Volterra

integro-differential equations and give accurate solutions [10,11,12,13,?,15,16,17]. The wavelet technique allows the

development of extremely fast algorithms when it is compared with the algorithms ordinarily used. Gu and Jiang [18]

derived the Haar wavelets operational matrix of integration. Lepik [19] solved Burgers and sine-Gordon equations by

using the Haar wavelet method. Geng et al [20] and Hariharan et al. [21,22,23,24,25] used Haar wavelets methods for

the solution of some nonlinear PDEs. Kaur et al [26] used Haar wavelet quasilinearization approach for solving

nonlinear boundary value problems. Karabacak and Çelik [27] solved fractional differential-algebraic equations with

Haar wavelet method. Çelik [28,29] solved generalized Burgers-Huxley equation and magnetohydrodynamic flow

equations with Haar wavelet method. In the literature, special attention has been given to the applications of Legendre

wavelets [6,30]. The Legendre and Chebyshev wavelets operational matrixes of integration and product operation matrix

have been introduced in [31,32,33,34,35]. These matrices may be used to solve problems such as identification, analysis

and optimal control. Karabacak and Yiğider [36] analyzed fractional differential-algebraic equations with Legendre

wavelets method. Adibi and Assari [37] used Chebyshev wavelet method for numerical solution of Fredholm integral

equations of the first kind. Wang and Fan [38] solved fractional differential equations with the secondkind Chebyshev

wavelet method. Heydari et al [39] used Chebyshev wavelets method for solution of nonlinear fractional

integrodifferential equations. Hooshmandasl et al [40] solved one dimensional heat equation by using Chebyshev

wavelets method. Yang and Hou [41] used Chebyshev wavelets method for solving Bratu’s problem. Hariharan et al. [42]

used Chebyshev wavelets based approximation method to water quality assessment model problem. Çelik [43,44,45]

solved differential equations, generalized Burgers-Huxley equation and Free vibration problems of non-uniform

Euler-Bernoulli beam by Chebyshev wavelet collocation method.

Analyses show that there are some disadvantages in applyingLegendre and Chebyshev wavelet methods in terms of

taking second integration asP2. In Razzaghi and Yousefi [15,16] and Babolian and Fattahzadeh [17], the operational

matrix of integrationP are derived as
∫ t

0Ψ(s)ds∼= PΨ(t)
∫ t

0

∫ s
0 Ψ(w)dwds∼= P2Ψ(x)

}

(1)

WhereΨ(t) is vector andP is a matrix. Some expressions, obtained from integration ofΨ (t), have not been used in

the construction of the matrixP. For example, in the Chebyshev wavelet method,TM andTM+1 obtained from the first

and second integrations of theΨ(t) have not been used in the construction ofP andP2. These are the disadvantages

of the Legendre wavelet and Chebyshev wavelet methods. Çelik [43,44] showed thatP2 was different from the second

integration, directly taken, for Chebyshev wavelet method. That is

∫ t

0

∫ s

0
Ψ(w)dwds6= P2Ψ(t) (2)

Hence, disadvantages of Chebyshev wavelets methods are eliminated by new construction ofP.

This study presents a Chebyshev wavelet collocation methodfor the solution ofrth-order linear ordinary differential

equations with variable coefficients given in the followingform:

y(r)(t)+
r

∑
i=1

Ai(t)
dr−iy(t)

dtr−i = G(t) (3)
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whereAi andG are functions ofx defined in the interval ofa≤ t ≤ b. rth-order nonlinear ordinary differential equations

with variable coefficients is given as:

y(r)(t) = F
(

t,y(t),y′(t), ... , y(r−1)(t)
)

(4)

The quasilinearization of these equations gives a set of recurrence linear differential equations

y(r)s+1(x) = F
(

t,ys(t),y′s(t), ... , y(r−1)
s (t)

)

+∑r−1
i=0

(

y(i)s+1(t)− y(i)s (t)
)

F
y(i)s (t)

(

t,ys(t),y′s(t), ... , y(r−1)
s (t)

)

(5)

whereF
y(i)s (t)

(

t,ys(t),y′s(t), ... , y(r−1)
s (t)

)

= ∂
∂y(i)s (t)

(

F
(

x,ys(t),y′s(t), ... , y(r−1)
s (t)

))

and y0(t) is taken as a function

satisfying initial/boundary conditions. Any rangea≤ x ≤ b can be transformed in to the basic range 0≤ t ≤ 1 with the

change of variablesx= (b−a)t+a.

In the proposed method, there are no disadvantages of the Legendre wavelet and Chebyshev wavelet methods. The

method is based on the approximation by the truncated Chebyshev wavelets series. By using the Chebyshev collocation

points, algebraic equation system has been obtained. Solving this algebraic equation system, the coefficients of the

Chebyshev wavelet series can be found. Hence, we have the implicit form of the approximate solution ofrth-order linear

or nonlinear ordinary differential equations. The method is applied to four nonlinear boundary value problems using

quasilinearization technique. Calculations demonstrated that the accuracy of the Chebyshev wavelet collocation method

is quite high even in the case of a small number of grid points.

2 Chebyshev wavelet method

Wavelets consist of a family of functions defined by dilationand translation of a single function named the mother wavelet.

If a as a dilation parameter andb as translation parameter vary continuously, the followingfamily is a continuous wavelets

[10].

ψa,b(t) = |a| 1/2 ψ
(

t −b
a

)

, a,b∈ R, a 6= 0. (6)

Chebyshev wavelets are written as

ψnm(t) = ψ (k,n,m, t), (7)

wherek = 0, 1, 2, ... , n = 1, 2, ..., 2k, m is degree of Chebyshev polynomials of the first kind andx denotes the

normalized time. They are defined on the interval[0,1) by:

ψnm(t) =

{

αm2k/2√
π Tm(2k+1t −2n+1), n−1

2k ≤ x≤ n
2k ,

0, otherwise
(8)

where

αm =

{√
2, m= 0

2, m= 1, 2, ...
(9)

andTm(2k+1t −2n+1) are Chebyshev polynomials of the first kind of degreem which are orthogonal with respect to the

weight functionwn(t) = w(2k+1t −2n+1)on [−1, 1] [46].
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A function f (t) ∈ L2
w[0,1] may be expanded as:

f ( f ) =
∞

∑
n=1

∞

∑
m=0

fnmψnm(t) (10)

where

fnm= 〈 f (x),ψnm(t)〉 (11)

〈 . , .〉 denotes the inner product with weight functionwn(t) in Eq. (11).

Truncated form of Eq. (10) can be written as:

f (t)∼=
2k

∑
n=1

M−1

∑
m=0

fnmψnm(t) =CT Ψ (t) (12)

whereC andΨ(t) are 2kM×1 columns vectors given by:

CT = [ f1,0, f1,1, ..., f1,M−1, f2,0, ..., f2,M−1, ..., f2k,0, ..., f2k,M−1 ] (13)

Ψ(t) = [ψ1,0, ψ1,1, ..., ψ1,M−1, ψ2,0, ..., ψ2,M−1, ..., ψ2k,0, ..., ψ2k,M−1 ]
T (14)

The integration of theψnm(t) given in Eq. (8) can be shown as

pnm(t) =
∫ t

0
ψnm(s)ds (15)

Form= 0,m= 1 andm> 1, pnm(t) can be obtained as

pn0(t) =















0, 0≤ t < n−1
2k

α02−k/2−1
√

π

[

T1(2k+1t −2n+1)+T0(2k+1t −2n+1)
]

,
n−1
2k ≤ t < n

2k

α02−k/2√
π T0(2k+1t −2n+1), n

2k ≤ t < 1

(16)

pn1(t) =











0, 0≤ t < n−1
2k

α12−k/2−3
√

π

[

T2(2k+1t −2n+1)−T0(2k+1t −2n+1)
]

,
n−1
2k ≤ t < n

2k

0, n
2k ≤ t < 1

(17)

pnm(x) =















0, 0≤ x< n−1
2k

αm2−k/2−2
√

π

[

Tm+1(u)−(−1)m+1

m+1 − Tm−1(u)−(−1)m−1

m−1

]

,
n−1
2k ≤ x< n

2k

αm2−k/2−2
√

π

[

1−(−1)m+1

m+1 − 1−(−1)m−1

m−1

]

,
n
2k ≤ x< 1

(18)

whereu= 2k+1x−2n+1. The integration of theΨ (t) can be represented as

∫ t

0
Ψ(s)ds= [p1,0, p1,1, ..., p1,M−1, p2,0, ..., p2,M−1, ..., p2k,0, ..., p2k,M−1 ]

T = P1Ψ1(t) (19)

where

Ψ1(t) = [ψ1,0, ψ1,1, ..., ψ1,M, ψ2,0, ..., ψ2,M, ..., ψ2k,0, ..., ψ2k,M ]T (20)
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√

2
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√
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√

2
3 − 1

2 0 1
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
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













The second integrations of theΨ(t)can be represented as

∫ t

0

∫ t1

0
Ψ(s)dsdt1 =

∫ t

0
P1Ψ1(t1)dt1 = P1

∫ t

0
Ψ1(t1)dt1 = P1P2Ψ2(t) 6= P2Ψ(t) (21)

Therth integrations of theΨ(t)can be represented as

∫ t

0

∫ t1

0

∫ t2

0
· · ·

∫ tr−1

0
Ψ(s)dsdtr−1dtr−2 · · ·dt1 = P1P2 · · ·Pr Ψr(t) 6= PrΨ(t) (22)

where
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












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




























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√

2
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−
√

2
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6 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .
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√
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√
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√
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1

2k+1
















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















and

Ψr(t) = [ψ1,0, ψ1,1, ..., ψ1,M+r−1, ψ2,0, ... , ψ2,M+r−1, ... , ψ2k,0, ... , ψ2k,M+r−1 ]
T (23)

The matricesLr andFr have the dimension(M+ r−1)×(M+ r). HencePr has the dimension 2k(M+ r−1)×2k(M+ r).

3 Chebyshev wavelet collocation method for Rth-order differential equations

Consider Eq. (3) or Eq. (5) with initial conditions

r−1

∑
i=0

λi j y
(i)(0) = δ j , j = 0, 1, 2, ... , r −1 (24)

or boundary conditions
r−1

∑
i=0

αi j y
(i)(0)+βi j y

(i)(1) = δ j , j = 0, 1, 2, ... , r −1. (25)

It is assumed thaty(r)(t) can be expanded in terms of truncated Chebyshev wavelet series as

y(r)(t) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(t) =CTΨ(t). (26)

By successively integration of Eq. (26) with respect tot from 0 tot, following equations are obtained

y(r−1)(t) =
∫ t

0
CTΨ(s)ds+ y(r−1)(0) =CTP1Ψ1(t)+ y(r−1)(0). (27)

y(r−2)(t) =CTP1

∫ t

0
Ψ1(s)ds+ ty(r−1)(0)+ y(r−2)(0) =CTP1P2Ψ2(t)+ ty(r−1)(0)+ y(r−2)(0). (28)

y(r−3)(t) =CTP1P2
∫ t

0Ψ2(s)ds+ t2
2 y(r−1)(0)+ ty(r−2)(0)+ y(r−3)(0)

=CTP1P2P3Ψ3(t)+
t2
2 y(r−1)(0)+ ty(r−2)(0)+ y(r−3)(0).

(29)

...
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y(x) =CTP1P2 ...Pr−1
∫ t

0Ψr−1(s)ds+ tr−1

(r−1)! y
(r−1)(0)+ tr−2

(r−2)! y
(r−2)(0)+ ... + ty′(0)+ y(0)

=CTP1P2P3 ...PrΨr(t)+ tr−1

(r−1)! y
(r−1)(0)+ tr−2

(r−2)! y
(r−2)(0)+ ... + ty′(0)+ y(0).

(30)

In these equations, the values ofy(0), y′(0), ... , y(t−1)(0) can be obtained with initial conditions or boundary conditions.

Replacing Eqs. (27)-(30) into the Eq. (3) or Eq. (5), we have the following equations.

CT(Ψ (t)+A1(t)P1Ψ1(t)+ ... +Ar(t)P1P2P3 ...PrΨr(t))

+y(r−1)(0)∑r−1
v=0Av+1(t)

tv
v! + y(r−2)(0)∑r−2

v=0Av+2(t)
tv
v! + y(r−3)(0)∑r−3

v=0Av+3(t)
tv
v!

+ ...+(Ar−1(t)+ tAr(t))y′(0)+Ar(t)y(0) = G(t)

(31)

CT(Ψ (t)−F
y
(r−1)
s

P1Ψ1(t)− ... −FysP1P2P3 ...PrΨr(t)) = F
(

t,ys(t),y′s(t), ... , y(r−1)
s (t)

)

+y(r−1)(0)∑r−1
v=0F

y(r−1−v)
s

tv
v! + y(r−2)(0)∑r−2

v=0F
y(r−2−v)
s

tv
v! + F

y(r−3)
s

y(r−3)(0)∑r−3
v=0F

y(r−3−v)
s

tv
v!

+ ...+(Fy′s+ t Fys)y
′(0)+Fysy(0)−∑r−1

i=0 y(i)n F
y(i)n

(

t,ys(x),y′s(x), ... , y(r−1)
s (t)

)

.

(32)

The collocation points can be taken as 2k+1tn,i −2n+1= cos((M+1)−i)π
(M+1) or

tn,i =
1

2k+1

(

2n−1+ cos
((M+1)− i)π

(M+1)

)

, i = 1, 2, ..., M,n= 1, 2, ..., 2k
. (33)

which are also called the turning points ofTM+1(2k+1t−2n+1). Substituting the Chebyshev collocation points into (14),

(19) and (23), a discretized form of the vectorsΨ(tn,i),Ψ1(tn,i) andΨr(tn,i) can be obtained. Hence form Eq. (31) or Eq.

(32), the algebraic equation system whose matrix notation is obtained as:

CTU = B (34)

whereU is a2kM×2kM matrix.C andB are 2kM×1 vectors. Hence, by solving algebraic equation system (34), we can

find the coefficients of the Chebyshev wavelet series that satisfied differential equation with initial or boundary conditions.

4 Error analysis

Lemma 1. If the Chebyshev wavelet expansion of a continuous functionf (x) converges uniformly, then the Chebyshev

wavelet expansion converges to the function f(t) [37].

Theorem 1. A function f(t) ∈ L2
ω ([0,1]) with bounded second derivative,| f ′′(t)| ≤N, can be expanded as an infinite sum

of Chebyshev wavelets, and the series converges uniformly to f(t) [37]. That is

f (t) =
∞

∑
n=1

∞

∑
m=0

fnmψnm(t). (35)
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Since the truncated Chebyshev wavelets series is an approximate solution of problem, so one has an error functionf (t)

for y(t) as follows:

E(t) =
∣

∣y(t)−CTΨ (t)
∣

∣ . (36)

The error bound of the approximate solution using Chebyshevwavelets series is given by the following theorem.

Theorem 2. Suppose that y(t)∈Cm[0,1] andCTΨ (t) is the approximate solution of problem using the Chebyshev wavelets

method. Then the error bound would be obtained as follows [41]:

E(t)≤
∥

∥

∥

∥

2

m!4m2m(k−1)
max

x∈[0,1]

∣

∣

∣
y(m)(t)

∣

∣

∣

∥

∥

∥

∥

2

(37)

5 Numerical results

Example 1.Consider the nonlinear boundary value problem [26]

y′′(t) = y2(t)+2π2cos(2πt)− sin4(πt), 0< t < 1,

y(0) = y(1) = 0,
(38)

with analytic solutiony(t) = sin2(πt). This nonlinear boundary value problem is converted into a sequence of linear

boundary value problems generated by quasilinearization technique. First approximate solution is taken asy0(t) = sin(πt)

andy2
1(t)

∼= 2y0(t)y1(t)− y2
0(t) can be obtained by quasilinearization technique. Hence converted problem is obtained as

y′′s+1(t)−2ys(t)ys+1(t) =−y2
s(t)+2π2cos(2πt)− sin4(πt), (39)

whereys(t) is known. It is assumed thaty′′(t) can be expanded in terms of truncated Chebyshev wavelet series as

y′′s+1(t) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(t) =CTΨ(t). (40)

By integrating this equation twice with respect tot from 0 to tand using boundary condition, following equations are

obtained.

y′s+1(t) =
∫ t

0
CTΨ(s)ds+ y′s+1(0) =CTP1Ψ1(t)+ y′s+1(0). (41)

ys+1(x) =CTP1

∫ t

0
Ψ1(s)ds+ ty′s+1(0)+ ys+1(0) =CTP1P2Ψ2(t)+ ty′s+1(0). (42)

ys+1(1) =CTP1P2Ψ2(1)+ y′s+1(0) = 0 ⇒ y′s+1(0) =−CTP1P2Ψ2(1) . (43)

ys+1(t) =CTP1P2Ψ2(t)− tCTP1P2Ψ2(1) =CT (P1P2Ψ2(t)− tP1P2Ψ2(1)) . (44)

Replacing Eqs. (40) and (44) into the Eq. (39), we have

CT (Ψ (t)−2ys(t)P1P2Ψ2(t)+2tys(t)P1P2Ψ2(1)) =−y2
s(t)+2π2cos(2πt)− sin4(πt). (45)

Substituting the Chebyshev collocation points (33) into the (45), we can obtain algebraic equation system as given (34).

Hence, by solving algebraic equation system, coefficientsCT of the Chebyshev wavelet series can be obtained. By

substituting the Chebyshev wavelet coefficients into Eq. (44), we have the implicit form of the approximate solution of
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(39) satisfied differential equation and whose boundary conditions. Table 1 shows the absolute errors in collocation

points forM = 4, k = 1, M = 8, k = 1 andM = 16, k = 0. Graphical presentations of the approximate solution and

absolute error are depicted in Figures 1 and 2 forM = 8, k = 1. As can be seen in Table 1, Figures 1-2 and Figure 2

given [26], it is clear that the results obtained by the presented method are superior to [26].

Fig. 1: Approximate solution of Example 1 forM = 8, k= 1.

Fig. 2: The absolute error of Example 1 forM = 8, k= 1.

Example 2.Consider the nonlinear boundary value problem [47,48]

y(4)(t) = y2(t)− t10+4t9−4t8−4t7+8t6−4t4+120t−48, 0< t < 1,

y(0) = y′(0) = 0, y(1) = y′(1) = 1,

(46)
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Table 1: Absolute error of Example 1 with Chebyshev wavelet collocation method for various collocation points.

t M = 4,k= 1 t M = 8,k= 1 t M = 16,k= 0
0.0477457514 2.4974593112e-4 0.0150768448 5.9826586536e-9 0.0085134500 1.12782311 e-13
0.1727457517 8.1982196612e-4 0.0584888893 1.7469014807e-8 0.0337638850 3.10584000 e-15
0.3272542486 1.2376539594e-3 0.1250000000 3.4378819800e-8 0.0748914320 1.08110000 e-13
0.4522542486 1.8483044111e-3 0.2065879555 6.0398887234e-8 0.1304955415 1.32348500 e-14
0.5477457514 1.8483044111e-3 0.2934120442 8.0761774170e-8 0.1986826815 9.71398900 e-14
0.6727457514 1.2376539594e-3 0.3750000000 1.0781454947e-7 0.2771308225 3.12829100 e-14
0.8272542486 8.1982196613e-4 0.4415111108 1.2650986336e-7 0.3631685050 7.87285800 e-14
0.9522542486 2.4974593112e-4 0.4849231552 1.3973346048e-7 0.4538658200 5.49689900 e-14

0.5150768448 1.3973346048e-7 0.5461341795 5.49689800 e-14
0.5584888892 1.2650986336e-7 0.6368314950 7.87286400 e-14
0.6250000000 1.0781454947e-7 0.7228691780 3.12830900 e-14
0.7065879555 8.0761774170e-8 0.8013173180 9.71398600 e-14
0.7934120442 6.0398887236e-8 0.8695044585 1.32348200 e-14
0.8750000000 3.4378819800e-8 0.9251085680 1.08109800 e-13
0.9415111108 1.7469014807e-8 0.9662361145 3.10576000 e-15
0.9849231552 5.9826586535e-9 0.9914865500 1.12782471 e-13

with analytic solutiony(x) = t5 − 2t4 + 2t2. This nonlinear boundary value problem is converted into a sequence of

linear boundary value problems generated by quasilinearization technique. First approximate solution is taken asy0(t) =

t3(2− t)2 andy2
s+1(t)

∼= 2ys(t)ys+1(t)− y2
s(t) can be obtained. Hence converted problem is obtained as

y(4)s+1(t)−2ys(t)ys+1(t) = y2
s(t)− t10+4t9−4t8−4t7+8t6−4t4+120t−48, (47)

whereys(t) is known. It is assumed thaty(4)
s+1(t) can be expanded in terms of truncated Chebyshev wavelet series as

y(4)s+1(t) =
2k

∑
n=1

M−1

∑
m=0

fnmψnm(t) =CTΨ(t). (48)

By integrating this equation four times with respect tot from 0 to tand using condition in Eq. (46), following equations

are obtained.

y′′′s+1(t) =
∫ t

0
CTΨ(s)ds+ y′′′s+1(0) =CTP1Ψ1(t)+ y′′′s+1(0). (49)

y′′s+1(t) =CTP1P2Ψ2(t)+ ty′′′s+1(0)+ y′′s+1(0). (50)

y′s+1(t) =CTP1P2P3Ψ3(t)+
t2

2
y′′′s+1(0)+ ty′′s+1(0). (51)

ys+1(t) =CTP1P2P3P4Ψ4(t)+
t3

6
y′′′s+1(0)+

t2

2
y′′s+1(0). (52)

By using boundary conditionsy′s+1(1) = 1 and ys+1(1) = 1, the following two equations are obtained.

CTP1P2P3Ψ3(1)+
1
2

y′′′s+1(0)+ y′′s+1(0) = 1. (53)

CTP1P2P3P4Ψ4(1)+
1
6

y′′′s+1(0)+
1
2

y′′s+1(0) = 1. (54)
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Table 2: Absolute error of Example 2 with Chebyshev wavelet collocation method for various collocation points.

t M = 4,k= 0 t M = 4,k= 1 t M = 4,k= 2
0.0954915028 1.0500 e-20 0.0477457514 1.4000 e-22 0.0238728757 4.0000 e-23
0.3454915028 1.1000 e-21 0.1727457514 2.0000 e-21 0.0863728757 4.0000 e-23
0.6545084972 2.3000 e-20 0.3272542486 1.0000 e-21 0.1636271243 9.0000 e-22
0.9045084972 5.2700 e-20 0.4522542486 2.1000 e-20 0.2261271243 3.9000 e-21

0.5477457514 1.9000 e-20 0.2738728757 9.0000 e-21
0.6727457514 2.4000 e-20 0.3363728757 1.0000 e-20
0.8272542486 4.6000 e-20 0.4136271243 4.0000 e-21
0.9522542486 2.5000 e-20 0.4761271243 6.0000 e-21

0.5238728757 8.0000 e-21
0.5863728757 5.5000 e-20
0.6636271243 5.0000 e-21
0.7261271243 1.6000 e-20
0.7738728757 1.7000 e-20
0.8363728757 1.1000 e-21
0.9136271243 2.4100 e-20
0.9761271243 2.7260 e-20

Table 3: Comparison between the maximum errors for Example 2.

Method in [47] Method in [48] Present Method
7.092 e-6 6.6613 e-15 2.7260 e-20

By solving this system of equations,

1
2

y′′s+1(0) =CT(−3P1P2P3P4Ψ4(1)+P1P2P3Ψ3(1))+2, (55)

1
6

y′′′s+1(0) =CT(2P1P2P3P4Ψ4(1)−P1P2P3Ψ3(1))−1 (56)

are obtained. Hence replacing Eqs. (55) and (56) into the Eqs. (51) and (52), we have

y′s+1(t) =CT (P1P2P3Ψ3(t)+ (6t2−6t)P1P2P3P4Ψ4(1)+ (2t−3t2)P1P2P3Ψ3(1)
)

+4t−3t2 (57)

ys+1(t) =CT (P1P2P3P4Ψ4(t)+ (2t2−3t2)P1P2P3P4Ψ4(1)+ (t2− t3)P1P2P3Ψ3(1)
)

+2t2− t3
. (58)

Replacing Eqs. (48) and (58) into Eq. (47), we have

CT (Ψ (t)−2ys(t)P1P2P3P4Ψ4(t)−2tys(t)P1P2P3P4Ψ4(1)−2ys(t)P1P2P3Ψ3(1)) =

−y2
s(t)+2(2t2− t3)ys(t)− t10+4t9−4t8−4t7+8t6−4t4+120t−48.











(59)

Algebraic equation system achieved from Eq. (59) by using collocation points can be solved and the coefficientsCTof

Eq. (58) satisfied differential equation and whose boundary conditions are obtained. Table 2 shows the absolute errors in

collocation points forM = 4, k= 0,M = 4, k= 1 andM = 4, k= 2. Numerical results for this problem presented in [47]

with the maximum absolute error 7.092e−6 and in [48] with the maximum absolute error 6.6613e−15. As can be seen

in Table 3, it is clear that the results obtained by the presented method are superior with respect to [47] and [48].
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Example 3.Consider the nonlinear boundary value problem [47,48]

y(4)(t) = sint + sin2 t − (y′′(t))2, 0< x< 1,

y(0) = 0, y′(0) = 1, y(1) = sin1, y′(1) = cos1,

(60)

with analytic solutiony(t) = sint. This nonlinear boundary value problem is converted into a sequence of linear boundary

value problems generated by quasilinearization technique. First approximate solution is taken as

y0(t) = (1+ cos1−2sin1)t3+(3sin1− cos1−2)t2+ t (61)

and
(

y′′s+1(t)
)2 ∼= 2y′′s(t)y

′′
s+1(t)−

(

y′′s(t)
)2

(62)

can be obtained. Hence converted problem is obtained as

y(4)s+1(t)+2y′′s(t)y
′′
s+1(t) =

(

y′′s(t)
)2

+ sint + sin2 t, (63)

whereys(t) is known. It is assumed thaty(4)
s+1(t) can be expanded in terms of truncated Chebyshev wavelet series as in Eq.

(48). By the similar processing, we have

y′′s+1(t) =CT (P1P2Ψ2(t)+(12t −6)P1P2P3P4Ψ4(1)+(2−6t)P1P2P3Ψ3(1)) +(6t −2)cos1+(6−12t)sin 1+6t −4, (64)

ys+1(t) =CT
(

P1P2P3P4Ψ4(t)+ (2t3−3t2)P1P2P3P4Ψ4(1)+ (t2− t3)P1P2P3Ψ3(1)
)

+(t3− t2)cos1+(3t2−2t3)sin1+ t3−2t2+ t

(65)

equations and the following algebraic equations system

CT (Ψ (t)+2y′′s(t)P1P2Ψ2(t)+ (24t−12)y′′s(t)P1P2P3P4Ψ4(1)+ (4−12t)ys(t)P1P2P3Ψ3(1)) =

(y′′s(t))
2− (12t−4)y′′s(t)cos1− (12−24t)y′′s(t)sin1− (12t−8)y′′s(t)+ sint + sin2 t.

(66)

Algebraic equation system achieved from the above equationby using collocation points can be solved and the coefficients

CTof Eq. (65) satisfied differential equation and whose boundary conditions are obtained. Table 4 shows the absolute

errors in collocation points forM = 4, k= 1, M = 8, k= 1 andM = 16, k= 0. Numerical results for this problem were

presented in [47] with the maximum absolute error 1.358e−5 and in [48] with the maximum absolute error 1.0502e−6.

As can be seen in Table 5, it is clear that the results obtainedby the presented method are superior than [47] and [48].

Example 4.Consider the nonlinear boundary value problem [49,50,51,52,53,54]

y(4)(t) = 6e−4y− 12
(1+t)2

0< t < 1,

y(0) = 0, y(1) = ln(2), y′′(0) =−1, y′′(1) =− 1
4,

(67)

with analytic solutiony(t) = ln(1+ t). This nonlinear boundary value problem is converted into a sequence of linear

boundary value problems generated by quasilinearization technique. First approximate solution satisfying boundary
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Table 4: Absolute error of Example 3 with Chebyshev wavelet collocation method for various collocation points.

t M = 4,k= 1 t M = 8,k= 1 t M = 16,k= 0
0.0477457514 6.1312946582 e-11 0.0150768448 5.18630 e-19 0.0085134500 1.1000 e-22
0.1727457517 6.9209690356 e-10 0.0584888893 7.46650 e-18 0.0337638850 1.1000 e-22
0.3272542486 1.7781891083 e-9 0.1250000000 3.05100 e-17 0.0748914320 0
0.4522542486 2.3627312327 e-9 0.2065879555 7.25950 e-17 0.1304955415 3.1000 e-21
0.5477457514 2.3537433020 e-9 0.2934120442 1.22920 e-16 0.1986826815 8.1000 e-21
0.6727457514 1.8017223110 e-9 0.3750000000 1.64720 e-16 0.2771308225 1.1000 e-20
0.8272542486 7.1472435460 e-10 0.4415111108 1.87870 e-16 0.3631685050 1.1000 e-20
0.9522542486 5.5932879400 e-11 0.4849231552 1.94570 e-16 0.4538658200 0

0.5150768448 1.94480 e-16 0.5461341795 1.1000 e-20
0.5584888892 1.87700 e-16 0.6368314950 1.1000 e-20
0.6250000000 1.64260 e-16 0.7228691780 4.1000 e-20
0.7065879555 1.22660 e-16 0.8013173180 2.1000 e-20
0.7934120442 7.24900 e-17 0.8695044585 3.1000 e-20
0.8750000000 3.04000 e-17 0.9251085680 4.1000 e-20
0.9415111108 7.62000 e-18 0.9662361145 3.1000 e-20
0.9849231552 4.90000 e-19 0.9914865500 2.1000 e-20

Table 5: Comparison between the maximum errors for Example 3.

Method in [47] Method in [48] Present Method
7.092 e-6 6.6613 e-15 4.1000 e-20

condition is taken as:

y0(t) =
t3

8
− t2

2
+

(

ln(2)+
3
8

)

t (68)

and

e−4ys+1(t) ∼=−4e−4ys(t)ys+1(t)+4e−4ys(t)ys(t)+e−4ys(t) (69)

can be obtained. Hence converted problem is obtained as

y(4)s+1(t)+24e−4ys(t)ys+1(t) = 6e−4ys(t)+24e−4ys(t)ys(t)−
12

(1+ t)2 , (70)

whereys(t) is known. It is assumed thaty(4)
s+1(t) can be expanded in terms of truncated Chebyshev wavelet series as in Eq.

(48). By the similar processing given above, we have a equation as:

ys+1(t) =CT
(

P1P2P3P4Ψ4(t)− tP1P2P3P4Ψ4(1)+
(

t
6 − t3

6

)

P1P2Ψ2(1)
)

+ t3
8 − t2

2 +
(

ln(2)+ 3
8

)

t (71)

and the following algebraic equations system

CT
(

Ψ(t)+24e−4ys(t)P1P2P3P4Ψ4(t)−24te−4ys(t)P1P2P3P4Ψ4(1)+4(t− t3)e−4ys(t)P1P2Ψ2(1)
)

=

6e−4ys(t)+24e−4ys(t)ys(t)− 12
(1+x)2

−3t3e−4ys(t)+12t2e−4ys(t)−24
(

ln(2)+ 3
8

)

te−4ys(t)

Algebraic equation system achieved from the above equationby using collocation points can be solved and the

coefficientsCTof Eq. (71) satisfied differential equation and whose boundary conditions are obtained. Table 6 shows the

absolute errors in collocation points forM = 4, k = 1, M = 8, k = 1 andM = 16, k = 0. Numerical results for this
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Table 6: Absolute error of Example 4 with Chebyshev wavelet collocation method for various collocation points.

t M = 4,k= 1 t M = 8,k= 1 t M = 16,k= 0
0.0477457514 9.25288664 e-7 0.0150768448 8.82647223 e-11 0.0085134500 2.09962400 e-16
0.1727457517 3.40945573 e-6 0.0584888893 3.43160523 e-10 0.0337638850 7.44817000 e-16
0.3272542486 5.91635023 e-6 0.1250000000 7.21292980 e-10 0.0748914320 1.70714300 e-15
0.4522542486 6.96205374 e-6 0.2065879555 1.15346796 e-9 0.1304955415 2.57566500 e-15
0.5477457514 7.02766347 e-6 0.2934120442 1.54466057 e-9 0.1986826815 3.71569000 e-15
0.6727457514 6.03425421 e-6 0.3750000000 1.81704188 e-9 0.2771308225 4.45748000 e-15
0.8272542486 3.58175110 e-6 0.4415111108 1.95548622 e-9 0.3631685050 5.06856000 e-15
0.9522542486 1.02677122 e-6 0.4849231552 1.99469362 e-9 0.4538658200 5.33904000 e-15

0.5150768448 1.99680551 e-9 0.5461341795 5.10591000 e-15
0.5584888892 1.96233301 e-9 0.6368314950 4.79461000 e-15
0.6250000000 1.83191940 e-9 0.7228691780 3.90409000 e-15
0.7065879555 1.56296740 e-9 0.8013173180 3.18099000 e-15
0.7934120442 1.17301237 e-9 0.8695044585 2.11543000 e-15
0.8750000000 7.37052694 e-10 0.9251085680 1.34364000 e-15
0.9415111108 3.50650517 e-10 0.9662361145 5.90880000 e-16
0.9849231552 9.07713233 e-11 0.9914865500 1.58960000 e-16

Table 7: Comparison between the maximum errors for Example 4.

Method in
[49]

Method in
[50]

Method in
[51]

Method in
[52]

Method in
[53]

Method in
[54]

Present
Method

5.40 e-8 6.30 e-11 1.25 e-12 2.70 e-12 6.70 e-12 3.44 e-15 1.5896 e-16

problem were presented in [49,50,51,52,53,54] with the best absolute error given in the Table 7. As can be seen in Table

5, it is clear that the results obtained by the presented method are superior than [49,50,51,52,53,54].

6 Conclusion

Chebyshev wavelet collocation method is proposed to eliminate disadvantages of Chebyshev wavelet and Legendre

wavelet methods and to obtain approximate solution ofrth order differential equations. The method has been applied to

the three nonlinear boundary value problems by using quasilinearization technique. Approximate and exact solutions of

examples are correspondingly compared. For Example 1, comparison of present results in Table 1, Figure 2 and Figure 2

given in [26], it is clear that the results obtained by the proposed method are better than the provided examples.

Numerical results for Example 2 were presented in [47,48] with the maximum absolute error 7.092e− 6 and

6.6613e−15 respectively Also maximum absolute errors of Example 3 were given as 1.358e− 5 and 1.0502e−6 in

[47,48] respectively. The best absolute errors of Example 4 presented in [49,50,51,52,53,54] are given in the Table 5.

As can be seen from Tables 1-7, the present method is highly efficient and accurate. All of the calculations have been

made by Maple program with 20 digits. These calculations demonstrated that the accuracy of the Chebyshev wavelet

collocation method is quite high even in the case of a small number of grid points. In the proposed method, there are no

complex integrals or methodology. Applications of this method are very simple. It is also very convenient for solving the

initial and boundary value problems since the initial and boundary conditions in the solution are automatically taken.

Moreover, the proposed method, which gives accurate solution even in the case of a small number of grid pointsM andk,

is reliable, simple, fast, minimal computation costs, flexible, and convenient alternative method.
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[29] İ. Çelik, Haar wavelet approximation for magnetohydrodynamic flow equations Applied Mathematical Modelling, 37 (2013) 3894-

3902.

[30] M. T. Kajani and A. H. Vencheh, Solving linear integro-differential equation with Legendre wavelet, Int. J. Comput. Math. 81 (6)

(2004), pp. 719-726.

[31] M. Razzaghi, S. Yousefi, Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation 53

(2000) 185-192.

[32] M. Razzaghi, S. Yousefi, Legendre wavelets operationalmatrix of integration, Int. J. Syst. Sci. 32 (4) (2001) 495-502.

[33] E. Babolian, F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of

integration, Appl. Math. Comput. 188 (2007) 417-426.

[34] E.Babolian, and F. Fattahzadeh, Numerical computation method in solving integral equations by using Chebyshev wavelet

operational matrix of integration, Applied Mathematics and Computation 188.1 (2007): 1016-1022.

[35] M. T. Kajania, A. H. Vencheha and M. Ghasemib, The Chebyshev wavelets operational matrix of integration and productoperation

matrix, Int. J. of Comput. Math. 86/7 (2009) 1118-1125.
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