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Abstract: In this paper we introduce and study the concept of densityazfuli with respect to the probabilistic norm in a probastit
normed space, wher€ is a unbounded modulus function . Also we are trying to inges¢ some relation between the ordinary
convergence and module statistical convergence for evdsgunded modulus function.

Keywords: f-statistical convergence, Probabilistic Normed Spéegensity, modulus function.

1 Introduction

Looking through historically to statistical convergendesingle sequences, we recall that the concept of statistica
convergence of sequences was first introduced by Rdktag an extension of the usual concept of sequential limits.
Schoenbergd4] gave some basic properties of statistical convergenceatsudstudied the concept as a summability
method. Most of the existing works on statistical convergeinave been restricted to real or complex sequences except
the works of Kolk P], Maddox [23] and Cakalli 0]. More recently, the notion of statistical convergence iesn used

as a tool by many mathematicians to solve many open probleth®iarea of sequence spaces and summability theory
and some other applications as well. One may refera§ (23],[19],[31],[32,[36],[15,[10],[11],[12],[13)).

In 2014, A. Aizpuru et al. 27] introduced a new concept of density for sets of natural remsibwith respect to the
modulus function. They studied and characterized the gdimation of this notion off-density with statistical
convergence and proved that ordinary convergence is dquivéo the module statistical convergence for every
unbounded modulus function. Savas and Borgoh&ifj jntroduced some new spaces of lacundry-statistical
A-convergent sequences of oraer

An interesting and very useful generalization of the notddmmetric space was introduced by Meng26][under the
name of statistical metric space, which is now called prdiséib metric space. The idea of Menger was to use
distribution functions instead of nonnegative real nursber

The most fascinating application of the probabilistic rieespace in quantum physics arises in string and El Naschie’s
£”-theory (R28,[29,[30). In fact the probabilistic theory has become an area da¥acesearch for the last forty years. It
has a wide range of applications in functional analy8ig.[An important family of probabilistic metric spaces are
probabilistic normed spaces (briefly, PN-spaces). Thenatf probabilistic normed spaces was introduced by Sherstn
[2] in 1963 and later on studied by various authors, ség{{]).
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In [1], Alotaibi studied the notion oA -statistical convergence for single sequences in prolstibinormed spaces. Also
Savas and Mohiuddind §] studiedA -statistically convergent double sequences in probaicilimrmed spaces.

2 Preliminary Concepts

A sequencéx;) of real numbers is statistically convergenttd for arbitrary € > 0, the seK (i) = {i <k:|x —L| > &}
has natural density zero, .i.e.,

Xl

i
lim JZlXK(i)(J) =0,

wherexy i) denotes the characteristic functiontofi).

A modulus function (22land [LQ)) is defined as a functiof : R™ — R™ which satisfies:

(1) f(x) =0ifand only ifx=0.

(2) f(x+y) < f(x)+ f(y) for everyx,y € R".
(3) fisincreasing.

(4) f is continuous from the right at 0.

It is clear that a modulus function must be continuous ®n. Examples of moduli aref(x) = %5 and

f(x)=xP,0<p<1.

Let AC N, we meanf-density ofAif ot (A) = IiLn f(LA(‘S))D , (in case this limit exists )wher(i) = {ke A:k<i} andf

is an unbounded modulus function.

Let (x) be a sequence M (X is a normed space). If for eath> 0, A= {i <k: ||xi —L|| > €} hasf-density zero, then
it is said that thef -statistical limit of(x;) is L € X, and we write it asf — statIiLn Xi = L. Note thatd(A) = 1— 6(N\A).

A triangular norm {-norm) is a continuous mapping: [0,1] x [0,1] — [0,1] such that([0,1], «) is an abelian monoid
with unitone ancc+d > axbif c > aandd > bforall a,b,c,d € [0, 1].

Let X be a real linear space amtd: X — D, whereD is the set of all distribution functiong: R — RJ such that it is
non-decreasing and left-continuous V\{it% @if) = 0 and sup(t) = 1.
€ teR

The probabilistic norm oN-norm [6] is a triangular norm satisfying the following conditions:
(1) Ny(0) =0,

(2) Np(t)=1forallt > 0iff p=0,

(3) Nap(t) =Np (‘fﬂ) for all a € R\{0} and for allt > 0,

(4) Npiq(s+1) > Np(s) xNg(t) for all p,q € X ands,t € RJ;

whereNp meandN(p) andNp(t) is the value ofNp att € R. (X, N, *) is named as a probabilistic normed space , in short
PN-space.

In this paper, we study the density on moduli with respechéprobabilistic nornN in the PN-spacéX, N, x). We also
investigate some results on the new concepftypbtatistical convergence with the ordinary convergendso Ave find
out some new concepts ofj-statistically convergent and try to find out new resultsated to this. Moreover, the
concepts off -statistical limits,f-cluster points and -equivalence are introduced and try to find out the relatamsng
them.
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3 Main results

Definition 1. Let (X,N, ) be a PN-space. Then a sequence xx) is said to be f-statistically convergent to L with
respect to the probabilistic norm N provided that, for every0 andu > 0,

PSRN () < 1))

Ian a0y 0.

We define it asyf— stat—limx; = L and Q,I, is the collection of all (f-statistically convergent sequences with resepct to
|
the probabibilistic norm N.

We begin with the following observation.

Corollary 1. For any unbounded modulus f, if a sequeKg is convergent to L with respect to the probabilistic norm
N, thenitis § — statlimx = L. But not conversely.

Proof. Let limx; = L with respect to the probabilistic norhh . So fort > O,y > 0, we haveN,,_| > 1— u. Construct
I
Kn,pu(t) = {i < k:Nyg-L(t) <1—pu}, which is a finite set ofN. Then we have that there exidts, p € N such that
F(IKNu )]

[Kn,u(t)] = p, if k> ko, which will show that, ItimT =0= fy—statlimx; = L.

For the converse part, I€R, N, ) be a PN-space with«b=ab, Ny(t) = tthW Define a sequence ,

 [1ifk=i2i<k
] 0, otherwise

(%) is fy-statistical convergent, but not convergent with respethé probabilistic norniN.
The proofs of the following Therems are easy and thus omitted
Theorem 1.Let (X, N, x) be a PN-space. Then thg-6tatistical limit of a sequencg) is unique.

Corollary 2. Let (X,N,*) be a PN-space. For f and g two unbounded moduliyif-fstlim x, = x and gy — stlimx, =y
then x=y.

Theorem 2.Let (X, N, x) be a PN-space.

(1) If L1 and L, are two f-statistical limits ofx;) and (yi) respectively with respect to the probabilistic norm N, then
fn —lim(x +yi) = L1+ Lo

(2) If (%) is f-statistically convergent to L with respect to the prblliatic norm N, then for anyr > 0, fy —limax; =
al.

In the following, we investigate the relationships betwdgrstatistical convergence arfg}-statistical convergence with
respect to the probabilistic norh. However , to defindy-statistically convergence, we first prove Theorem 3.4 civhi
describes the characteristic fif-statistical convergence in a more clear way.

Definition 2.A subset K oN is called f-statistically dense & (K) = 1.

Theorem 3.Let (X,N, x) be a PN-space. Then, statlilr(n xi = L if and only if there exists a subset {in : i1 < iy <
i3,...} of Nsuch that | is f-statistically dense with resepct to N dirnnixin = L with respect to the probabilistic norm N.
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Proof. Assume,fy — statlimx; = L. Then for anyt > 0 andu € N, we haveKy (t) = {i <K<n:Ng_(t)<1- %} So
|

fK®)

that I|km a0

Construct 1
Mn(u,t) = {i <K<n:Ng_(t)>1- H}

such that
Mn(1,t) D Mn(2,t) D MN(3,t) D ..M (i, t) D Mn(i+1,t) D ...

and
i M ()
k k
We have to show thate My(u,t) and(x;) is convergent td. with respect to the probabilistic norid. Suppose the
sequencéy;) is not convergent th with respect to the probabilistic norh, for i € My(u,t). Therefore there is > 0
and one positive integég such thatNy, . (t) < 1—r,Vi > .

=1

(i < kgn:][\l(qu)L(t) >3- _ 4 sincer > 5

= 0, which is a contradiction . Hende) is convergent t&. with respect to the probabilistic norit

o R
Take Ny (t) > 1—r, for all i <ip such that Lm‘ we have,

- F(Mn (1))
LT

Conversely, suppose there exists a subsefiy : i1 <ip <is....} C N such that is f-statistically dense with respect to
N, i.e. o (1) =1and Imein = L with respect to the probabilistic nori, then there existi € N such that for every
t > 0andu > 0, we have

Ny—L >1—p, forall i >io.

Thus,
M () = {i <k N1 () <1—p} © N\{ligia, ligr2;ligra--- -}
Therefore, umf(lhﬁiﬁgt)l) =0, hencefy — statlimx = L.
|

Definition 3. Let (X, N, ) be a PN-space. Then=(x;), defined in Theorem 2.4. is said to bedtatistical convergent to
L with respect to the probabilistic norm N. We define it gsstatistical convergentto L.

Definition 4. Let (X, N, *) be a PN-space. For an unbounded modulus f, a sequeace is said to be f-statistically
null with respect to the probabilistic norm N, if for evemy> 0, J¢, ({i <k: Ny <1—pu})=0.

Theorem 4.Let (X,N,*) be a PN-space. Then if Iirkn>q = L if and only if there exists two sequences yy;) and
z=(z) in X such that x= y+z, where y is statistically convergent to L with respect ®pgiobabilistic norm N and z is
f-statistically null in X.

Proof. Let us assume thdt; — limx = L which implies that there exists a subset {i, : i1 < iz < ...} of N such that
oy (1)=1and Irinmx.-m = L with respect to the probabilistic norih We define the sequences- (yi) andz= (z) as

] 8,if i e KandB is the zero element of;
"L ifi e KS.
and

%, ifieK
AT\ x—LifieKe
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For givent > 0,u > 0, we haveNy,_ (t) =1 > 1— u,i € K°. Which implies thatx = (x) is convergent td_ with

respect to the probabilistic norih SinceZy = {i <k: z is f-statistically null inX} C K¢, we have Im% 0.To

prove the converse part, let us takg = {i < k: z is f-statistically null inX} is an infinite set such thal, (Zn) = 1.
Letl = {im:i1 <i2 <iz......}. Sincex,, = Vi, and bothy and(x;,,) convergent to the same lirit with respect to the
probabilistic normN, it implies thatfy, — lim x; = L. This completes the proof.

Corollary 3. Let (X,N,*) be a PN-space. Then {k;) is fy-statistical convergent sequence, then it has a convergent
subsequence with respect to N.

Definition 5. Let (X,N, x) be a PN-space. Thefx;) is said to be f-statistically Cauchy iIiLn % = 0 where
Bn(t) = {i,] <k:Ng_x(t) <1—p}.

Theorem 5.Let (X, N, ) be PN-space. Thenfstatistically Cauchy implies\fstatistical convergent.

Proof. Let Bn(t) = {i,1 <k:Ny_x(t) <1—pu} such that |Im% = 0, which follows that the seBf(t) is a

non-empty set. ConstruBg (t) = {i,l <k:Ny_ (5) >1-r}.

For givent > 0,1 > 0, let us take > 0 such tha{l—r)*(1—r) > 1— u. Assume thak = (x;) is not fy-statistically
convergent but convergent towith respect to the probabilistic nori , so Ny _| ( ) > 1—r. Now, fori € B§(t), we
have,

Ny 1 (t) = Ny x4+ - (tz ;) Ny X|(%)*NXVL(%)>(1*r)*(1*r)21*ﬁ1-

Hence,

{i<K:Ngx(t)>1—p}C{i,] <k:Ng_(t)>1—p}

:slimf({i’lSk:NXi*X'(t)>l_u})§l| fF({i <K:Ng_L(t)>1—pu})
k f(Kk) k f(k)
i <Kk NgoL(t) <1—p}) o F{i<kiNg_x(t) <1—pu})
= Ilrkn f(kL) < Ilrkn a0y .

Since (x) is fy-statistically Cauchy, so this leads to the conclusion that (x) is fy-statistically convergent. This
completes the proof.

Corollary 4. Let (X,N,*) be a PN-space. Then if) is fy-statistically Cauchy sequence then it has a Cauchy
subsequence with respect to the probabilistic norm N.

In this section,we define the conceptfgfstatistical summability with respect to the probabitisiormN and prove the
following result which investigates the relation betwegnstatistical convergence arfg-statistical summability for the
bounded sequence= (x;) also.

Definition 6. Let (X,N,x) be a PN-space. Then a sequence xx) is said to be {-statistically summable to L with
respect to the probabilistic norm N provided that , for evieryO and u > 0,

HlAn®D

Iirkn a0 =0, where Ay(t) = {i <k: ZNXI ) <1—pj}.

We defint—:i‘lhf,I be the collection of all §-statistically summable sequences with respect to thegtitistic norm N.

Finally we conclude this paper by stating the following imjpat theorem.
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Theorem 6.Let (X,N, x) be a PN-space. Then

(1) Ifx=(x) is fy-statistically summable to L then it i {statistically convergent to L.
(2) For the bounded sequence=x(x;), fy-statistically convergence implieg-Statistically summable.
(3) Qine=nine.

Proof. (1) Letx = (x) is fy-statistically summable th with resepct to the probabilistic norlsh Then for every > 0 and

u >0, we have,

IiLn W =0, whereAn(t) = {i <k: IZNXi,L(t) <1-—pu}. (1)

Also, we can write

ZNXi*L(t)Z Z Nyg—L > {I <K:Ng_L(t) <1—p}{p

ieN IEN,Ny —L<1-p

So,

k
P < 3 N0 S 1) 2 F( < kN O) S 1= ) 2 ef (i < kN (0 < 1= ) ()
Then for anyt > 0 andu > 0, we have

k ; . _
le)f({i <k: i;erL(t) <1l-p})> ctii<k: in;g())g LDt

which follows that(x) is fy-statistically convergent tb. (from (1))

Proof. (2) Letx = (x) € £ and(x) is fy-statistically convergent th. Then there exists a@ > 0 such that fott >
0,Nx,—L(t) > 1—C. Now for anyu > 0,we have,

SMHA= T N+ Y Nl Ol kN 1=

€N NN (<1 NN 1512 H

Consequently, we get,

k ; ) B
%f({isk:;mm)slu})s f('{'ﬁk'NXif(Lkg”Sl 1l

which shows thafx;) is fy-statistically summable th. This completes the proof.

Proof. (3) Proof follows from (1) and (2). So omitted.

4 Conclusion

In this paper, we studied the conceptfeétatistical convergence in probabilistic normed spaaéch can be extended
in terms of A -statistical convergence as well. Results can be genedliz other sequence spaces also along with
probabilistic normed spaces. Moreovestatistical convergence can be studied using the fuzayreabers too.
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