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Abstract: This article presents the chaos synchronization problethefestricted three body problem (RTBP) when the primaries
are moving in a circular orbit around their center of masson-uniform motion. The feedback controller for the gitgtof the
closed-loop system is designed using the active contrategty. Simulation results satisfy the theoretical findirfgsr validation of
results by numerical simulations, the mathematica 10 id uden the primaries are Mars and Earth.
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1 Introduction

A deterministic system is chaotic whenever its evolutions##/ely depends on the initial conditions. This property
implies that two trajectories emerging from near by initahditions separate exponentially in the course of time. In
1990, Pecora and Carrol24] gave idea of synchronization of chaotic systems using tireept of master and slave
system and they demonstrated that chaotic synchronizadigid be achieved by driving or replacing one of the varigble
of a chaotic system with a variable of another similar cleadévice. Many methods and techniques for chaos control
and synchronization of various chaotic systems have beeslafged, such as non linear feedback contdl],| OGY
approach?2?, sliding mode control11], adaptive synchronizatior3f], anti synchronization metho@8], active control

[4] and so on.

The active control is an efficient technique for synchrargzihe chaotic systems. This method has been applied to many
practical systems such as spatiotemporal dynamical sgst@@odreanu §]), the Rikitake two-disc dynamo-a
geographical systems (Vincen3d ), Non-linear Bloch equations modeling "jerk” equationdaR. C. L shunted
Josephson junctions (Ucar et aB0[31] ), Complex dynamos (Mahmoud®]] ), Qi systems (Lei et al.1g]) and
Hyper-chaotic and time delay systems (Israr Ahmad etla?]] etc.

Extensive research work has been devoted to address thiéacirestricted three body problem in the field of astronomy
and space dynamics. A numbers of good research papers hegtigated the circular restricted three body problem
such as the Eulerl[], Hill [ 12], Poincare 25|, Birkhoff [ 5], Whittaker [35], Wintner [34], Lagrange 17], Deprit [9],
Hadjidemetriou 13], Bhatnagar 7,8], Sharma et al.27,28], Sahoo and Ishwar2g] and many others. These studies
focus on the analytical, qualitative and numerical studfgbe problem. A detailed analysis of this problem is ilrastd
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in the work of American mathematician Szebeh&§][

Khan and Shahzadlf] investigated the synchronization behaviour of the twantdl circular restricted three body
problem influenced by radiation evolving from differenttial conditions via the active control. In 2013, Khan and
Tripathi [15] have investigated the synchronization behavior of a iest three body problem under the effect of
radiation pressure. In an another paper the Complete syniziation, anti-synchronization and hybrid synchroriaat
of two identical parabolic restricted three body problemehbeen studied by Khan and Rimpi pa#[. Arif [ 3] studied
the complete synchronization, anti-synchronization aytarid synchronization in the planar restricted three peabby
taking into consideration the small primary is ellipsoiddabigger primary an oblate spheroid via active control
technique.

Being motivated by the above discussion, in this article, équation of motion of the restricted three body problem
when the primaries are moving in a circular orbit aroundrthenter of mass in the orbit-orbit resonance (not in uniform
motion) is formulated. This paper also discusses the camplachronization behavior of this problem by active cointr
techniques. It has been observed that the system is chaosorine values of parameter. Hence the slave chaotic system
completely traces the dynamics of the master system in these®f time. The paper is organized as follows. In section
2 we derive the equations of motion when the primaries moinng circular orbit around their center of mass in the
non-uniform motion. Section 3 deals with the complete syonization of the problem via active control. Finally, we
conclude the paper in section 4.

2 Equation of motion

In basic terms a resonance can arise when there is a simplerizahrelationship between frequencies or periods. The
periods involved could be the rotational and orbital pesiofl a single body, as in the case of spin-orbit coupling, or
perhaps the orbital periods of two or more bodies, as in tee chorbit-orbit coupling. The most obvious examples of
orbit-orbit resonance in the solar system are Dione-EdcslgSaturn’s moons), Hyperion-Titan (Saturn’s moons),
Ganymede-Europa-lo (Jupiter's moons, ratio of orbits) laetiveen all planets etc.

In formulating the problem assuming that the two primariesnassesm; andm, are moving in the circular motion
around their centre of ma§3with angular velocities, the mean motiomsandn; respectively Fig(1). The motion of a
particle P of mass m defined by its radius vectavill be referred to a frame of referen€xy that rotates in the same
direction and the same angular veloaityas the primary of massy, which in this frame are taken to stay at rest on
X — axis.

In this article authors define the relation between grawital and centrifugal forces as

k2mymy
B

= amyn? = bmyn3, (1)
k= Gaussian constan = a2+ b% — 2abcogn; — np)t*= variable mutual distance between the primaries.

Then, the equation of motion of the particle P in the sidesgatem may be written as:

d2X  9F(X,Y,tY)
dtx2 oxX

)
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d?y  OF(X,Y,t¥)

a2~ oy 3)
where
5 M My
= _— _— 4
F=Kg +g. ) @

Fig. 1

RE=(X—X1)?+(Y-Y1)?, R=X-X)2+(Y-Y2)? X =acosmt*, Y;=asinmt*, Xp=Dbcosnt*, Y=
bsinnyt* andt* is the dimensional time. Now introducing a rotating co-aede systentx, y) by substituting

Z=z"", (5)
whereZ = X +iY andz=x+iy. After, using the complex vector Z, the equation of motiong@y (3) take the form:

d?z d?z dz

. . m(z—a) mp(z—bemty . .
3= (F*Z +2ml@ —nfz) Mt = —K?[ l(R3 ) ( = )]e'“lt , (6)
1
whereRy =|z—z |, Ro=|z2— 2 |, zz = ad™!" andz, = ag™".
Thus, the equations of motion in the rotating coordinatéesysare:
d?x dy , M (X—a)  mp(X—bcos(ny — np)t*)
ﬁ - anw —NX= —k [ r—13 + r—23 ]5 (7)
d?y dX ,— My mp(y—bsin(ny —ng)t*)
dy L I n 8
qop T 2Mge My =k [r13 + =3 ], (8)

=[(X—a)2+y22, rz=[@+y2+b%— 2ybsin(n, — ny)t* — 2Xbcogn, — ny)t*]2.

The equations of motion (7) and (8) cont&®) my, mp, &, b, ny, andn, as physical parameters which are dependent to
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each others. To reduce these parameters, now introducimendionless pulsating co-ordinates system given by:

X =

—J x|
<

I

—I<|
QD
O
-
=
-
N

Introducing a particular case

nlil

Ny 2’

then,(n, — n)t* = nit* =t. (Primaries are in a 1:2 resonance, the inner primary will glete two periods for every one
period of outer primary)
Now substituting the values in equations (7) and (8), theaggas of motion are

2. o1 :
X+ ~Ix—2my = —[Ux+2myl], 9)

¥+ Ig[yf 2mx = % [Uy + 2nsx1], (10)

wheredots denote the derivatives with respect to the dimensionless {t) and subscripts signify partial derivatives and

U:%%“(Xeryz)Hz(ng&)]_Mi} rE= (= )" +¥]
L T 2l

and 13 = [X?+y?+ i — 2ypSint — 2Xi2 COSt].
3 Complete synchronization via active control

Now to use active control techniques. bet x;, X=X, Y=X3, Y= X4, then, the equation (9) and (10) can be
written as:

X1 = Xo, (11)

o = xa(n :> ~Zixo 4 Z”TX?’" - 2nXq + A, (12)

X3 = Xa, (13)

X4 = — Znixll- — 2MmXp + Xa(n2 — ::) - lgl'x4 + B, (14)

Ay = —n2l [4(X1;§11)U2 + (Xruzrgw)m], B = —ndl [4Xr3§“2 + (X3*U?gsint)u1], 2 = (xy — )2 + 2 and

r3 = X2 4+ x5+ U3 — 2xgplp Sint — 2xq fp COK|.
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The system (11-14) is the master system. The state orbitssofitaster system are shown in Figure (2a) and the surface
of section in (2b) these figures shows that the system is ichaot
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(a) State orbits (b) Surface of section

Fig. 2

Corresponding to above master system the identical slatersyis defined as:

y1=Yyz2+ui(t), (15)

. i 2. 2mysl

VZZYl(nZ_I‘)_I_IYZ+ Ty3 + 2Mmya+ A1+ Up(t), (16)
Y3 =Ya+ us(t), (17)

. 2nyyl i 2.

yp= — 2y, +Ya(f — 1) = Tiya+ By + ua(t), (18)

r

1
2yspp sint — 2ygp codt]. ui(t);i = 1,2,3,4 are control functions to be determined. leet=y; — X;;i = 1,2,3,4 be the
synchronization errors (Liul]). From (11) to (18), we obtain the error dynamics as follows

Alyy — - < 4 — o sint
P = (A | (i), g S-S (2 ()2 B anr — R 33+ 4 -

&1 = e+ u(t), (19)

_ 2. onl
ez=(n%—[)el_T'ez+|—les+2n1e4+Az—A1+U2(t)v 20)
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€3 = e+ Ug(t), (21)

. 2ny| I 2;
e4:_I_le1_2n1e2+(n§—l—)eg—l—le4+Bz—Bl+U4(t)- (22)

This above error system to be controlled is a linear systeimagintrol functions. Thus, let us redefine the control fiore
as follows:

Ul(t) = Vl(t)a
Up(t) = —Ag+Ag +Vao(t),
uz(t) = va(t),

ug(t) = —Bo+ By + vy(t).

The new system can be expressed as:

& =e+w(t), (23)
&= (nf— ::)el — Igl'ez+ ZT—l[es +2nes + Vo (t), (24)
&3 = e4+V3(t), (25)
€y = —zLﬂel—2n1e2+(n%—[)es—lgl'e4+V4(t)- (26)

The system (23)-(26) to be controlled is a linear system wittontrol inputvi(t)(i = 1..4) as functione (i = 1..4). As

long as these feedbacks stabilize the systgin= 1..4) converge to zero as time t tends to infinity. This shows that th
master and the slave system are synchronized with activieotdachniques. There are many possible choice for the

controlv;(t)(i = 1..4). Now Choosing

vy (t) e -1 -1 0 0
ey (2142 2
R _al® , where A= (ni—1) (=1+7) | 2 @)
va(t) e o 0 -1 ~1
uwO] e 2o -1+
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is a square constant matrix of order four to be determinedcEléhe system (23)-(26) can be define as

€ e -10 0 O
: 0-10 0
2 _B|®|, whee B= 28)
& & 0 0-10
& e 00 0-1

with eigen values having negative real parts. This impheslim_..|&| = 0;i = 1,2,3,4 and according to the Lyapunov
stability theory and the Routh-Hurwitz criteria, compleignchronization is achieved between the master and slave
systems.

Let us consider an example of Mars-Earth system in the céstirihree body problem in which the inner primary is taken

as the Earth and outer primary is the Mars and use the astsmgihgata the simulation results for uncoupled system are
given in figures 3a, 4a, 5a, 6a and controlled system of tieagtaown in figures 3b, 4b, 5b and 6b respectively.
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(@) Uncontrolled states. (b) Synchronized states.

Fig. 3: Time series ok4|t], y1[t](time in second).
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(@) Uncontrolled states. (b) Synchronized states.

Fig. 4: Time series oky|[t], y2[t](time in second).
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(8 Uncontrolled states. (b) Synchronized states.
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Fig. 5: Time series oks|t], ys[t](time in second).
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Fig. 6: Time series okylt], ya[t](time in second).

4 Conclusion

In this article authors formulated the equation of motiorewlhe primaries are moving in orbit- orbit resonance and
investigated the complete synchronization behavior ofdviairth system, via active control technique based on Lyaypu
stability theory and Routh-Hurwitz criteria. Here two sysis (master and slave) are completely synchronized eplvin
from different initial conditions.
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