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Abstract: An advanced matrix method is formulated for the solution oft&fra integro-differential equations with weakly siteyu
kernel by using orthogonal Jacobi polynomials. Employirig practical method, it is possible to solve various tyffabese equations
routinely in a systematic fashion. An error estimation pdhare is prescribed to estimate the error of the basic Jacethiod and then
the error correction term is added to the basic method tdrobtare accurate results. Four test experiments are privaeonfirm
the validity and systematic approach of the advanced mefftoese experiments also certified that this advanced metimpasses the
basic Jacobi method, as well as several alternative appesac
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1 Introduction

1.1 Volterra integro-differential equations with weakiggular kernel

An mth order linear \olterra integro-differential equatiavith weakly singular kernel (WSVIDE) having variable
coefficients can be expressed 4]

N W90 L Pt
iZ’P.(x)u()(x):a(x)Jr/\l/o (X_t)fdt—i—)\z/o K(xt)u® @)dt, 0<xt<p L)

subject to the mixed conditions

m-1
S {ajku(") (0) + bju® (B)} =¢j, m=maxJ,r,k), j=0,1,2,...,m-1 @)
o

whereR (x) ando (x) are known functions defined on the intervakX < 3; ajx, bjk, ¢j, A1 andA; are real or complex
constants, & & < 1 and,u(x) is the unknown function to be determined.

Eq. (1) contains both integral and differential operators and ta&g several forms as follows:

(i) A1=0andr =0;
J X
> R u<i>(x):o(x)+/\2/0 K (x,t)u(t)dt 3)
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(ii)

(i)

(iv)

Eq. @) is defined as \olterra integro-differential equation (\AD Many researchers have been interested in
solving VIDEs by employing miscellaneous numerical methf3#].

A1=0,r =0andRy(x) =1 and all othePR, (x) are zero;
ux)=o(x)+ /\Z/OXK(x,t)u(t)dt, O<x<pf 4)

Eqg. @) is called Volterra integral equation (VIE). Finding outmarical solutions for VIE has been a research area
for mathematiciansg, 6, 7].

VIEs and VIDEs are faced in various problems in mechanicgsies and biology. Some of the common examples
are the heat conduction problem, unsteady Poiseuille flow fiipe, electroelasticity, population growth model,
and diffusion problemsi].

A2=0,k=0andR (x) =0 suchthat i< J;

O(X) = A1 /O ” (X“()?> it 5)

Eq. ©) is defined as the Abel integral equation of the first ki#i[d [ts exact solution fo€ = 0.5 is stated as

1 X 1 do()
u(X)_ET./O X—t dt (6)

assumingo (0) =0 [9].
A2=0,k=0,Py(x) =1andR, (x) =0 suchthat Ki <J;

u(x)
(x—1)*

"X
u(x)za(x)+)\1/0 dt, 0<é <1 7)
Eq. (7) is called the Abel integral equation of the second kiad {)]. Vanani and Soleymanilfl] gave a numerical
solution for Eq. {) using Tau method.

Both types of the Abel integral equations constitute the ehddr many physical problems and are solved
numerically by many scientists even in the last dec&ge 10,11,12].

Since Eq. {) covers Egs. 37), its numerical solutions have become an important subfjectresearchers.
Numerical solution algorithms have been given by collaratnethods based on Bernstein polynomidlsgnd
Bessel polynomialsZ] for £ = 0.5. Tang [L3] presented a numerical solution for the first order WSVIDEs b
using spline collocation method.

The present study comes up with a matrix method on the basigttadgonal Jacobi polynomials to numerically
solve Eqg. (). Error estimation is exploited to enhance the accuracyestilis. The advantage of the presented
method is that it is practical and can be beneficial in solvirvamy different problems.
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1.2 Orthogonal Jacobi polynomials

The polynomial systems have always been extensively studiewever, many researchers focused especially on
orthogonal polynomials and applied them to miscellaneousblpms. Jacobi, Hermite and Laguerre systems are
altogether named the classical orthogonal polynomiads [

Jacobi polynomials can be characterized using the follgwétationship 14]

n
A () = (-2 () (13 (149 S [(-0™ (1™ ®)
In this equation, the parametefsandn are taken ag > —1, n > —1 for integrability purposes. The following are the
most essential cases.
(i) The Legendre polynomialg = n =0)

(i) The Chebyshev polynomialg = n =-1/2)

(ili) The Gegenbauer polynomialg = n).
The Jacobi polynomials P,SZ’”) (x) are characterized 1p,16] with reference to weight function
wWo (x) = (1-%)° (1+x)" (> —1,n > —1) on (—1,1). On the other hand, these polynomials comply the relation
[6]:

n
R 00 = 3 B - 1 4> ©
k=
where K
AL Zk(nJFZJerH )(:‘Li) k=0,1,2,...,n (10)

In the last decade, Jacobi polynomials have been used tprdesiv numerical algorithms for particular issues. Eslahch
et al. [L7] derived approximate solutions and presented explicinfdae for certain nonlinear ordinary differential
equations. Bojdi et al.1][8] came up with a spectral method for numerically solving kaany value problems involving
differential-difference equations. Fractional-orddfeatiential equations were solved using these polynomialshe Tau
method in 9. Cai [20] and Behzadi 21] employed the Jacobi method for analyzing Fredholm integrad
Fredholm-Volterra integro-differential equations, resgively. In the last few years, Bhrawy and co-worke2g] [used
Jacobi polynomials to solve numerically various problemsectral method, tau method and collocation methods. The
authors of this papep] applied the present method recently to Fredholm integfferéntial-difference equations and
obtained commendable results.

We propose the basic Jacobi solution in the form of truncag¢es of Jacobi polynomials
@) & o)
u(x) =uy (x) = Z)anpn M (%) (11)
n=

WherePr(,Z’”) (x),n=0, 1, 2, ..., N represent the orthogonal Jacobi polynomials described @sli0); N is any positive
integer such thall > n; { andn are defined as arbitrary parameters suchfiat —1,n > —1). Our aim is to determine
the unknown coefficients\an=0, 1, 2, ..., N.

2 Matrix representation of Jacobi Polynomialsand conditions

The orthogonal Jacobi polynomieFPéZ’”) (x) can be converted into matrix form in such a way that

P& (x) = X (x) D&M (12)
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where
p(.n) (x) = [Pél,’]) (X) Pl(Zm (X) ... PIEIZJ)) (X)} (13)

X0 = [1(x=1) (= 1% . (x— 1] (14)

and

DN — [d-(-z’”) , 1<i, j<N+1 (15)

N }(N+l)><(N+1)
21— i+j—2+{+n\ (i—1+ o

such tha‘dff’”) { (EE( i) I._ J._

0 s>

The assumed solution of Edl)(formulated in Eq. 11) can be presented as follows:

[UF™ (9] = PEM (x)A (16)
where T
A:{aoal...aN} a7
Substituting £2) into (16) yields
[UF” (9] =X (D&M A (18)

Now we have to define the matrix form of derivativé® (x) in terms ofu(x); for this purpose, the matrix (x) is related
with its derivatives< () (x) as

XD (x) = X (x) B! (19)
where
B = [b1j] N 1) (n41) (20)
i,j—i=1 .
such thaty; = {O , Jothers . Using (L8) and (19), we can write
(i @\ O o in(d.n)
[u (x)}%[(u,\,’ ) (x)}:X (x)DEMA =X (x)BDEMA (21)

Likewise, we may define the delay fofsrderivatives in terms of the matrix form ofx)

ud) (x—1) =X (x)B;BIDEMA (22)
whereB; = |:Bij:| such that
(N+1)x (N+1)
- i<
bij — {(Il)( T) ) I = J (23)
0 , 1>
The differential part of Eq.X) can be putin the following matrix form using@ )
J ) J .
%wa%ngamxmwmmm (24)
i= =

(© 2018 BISKA Bilisim Technology
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Then, for the parh, [XK (x,t)u'” (t)dt of Eq. (1)

/ K (xt)u® (t)dt = Q(x)B'DMA (25)
whereQ (x) = [qij]lX(N+l) such that
Gij (X / K (xt) (t—1)"*dt (26)
Finally,
X K
/ uto () dt = Qs(x) B1B*D¢M A (27)
0 (x—t)°
whereQs (x) = [Gjj (X )]1X (N+1) Such that
G- [V g 28)
q'] (X) 7/‘0 (Xft)é (
We can compose the mati@¥s (x) using the formula]]
x M CYA-HYM+D) e
/0 (Xitﬁdtf T (29)
as follows va-v().,
G =3
q'J(X) LIJ( +1 E) X (30)

Finally, summing upZ4), (25) and 7), the matrix form of Eq. {) turns into
Z}P x)B'IDCMA = g (x) + A1Qs (x) B1BXDEMA+2,Q (x) B'DETA (31)

The mixed conditions?) should also be converted into matrix form; in doing this,wtiize expressionZ4) to get

m-1 m-1
;[ajku“)(owbjku“)(ﬁ)}:;[a,-kx<0>+bij(B>}BDf” =[¢j], i=0,1,2...,m-1 (32
k= k=

3 Solution methodology

Start with defining the collocation points as

:%h, h=0,1,2 ..., N (33)

Reorganizing Eg.31) using these collocation points brings out

J .
Z)P. (Xn) X (%) B'DMA = g (x,) B1B*DCDA+A,Q (x,) B'DCTA h=0,1,2 ..., N
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Therefore, the fundamental matrix equation develops into

{iPiXBi D&M — 2,QsB;B*D¢) —2,QB'DE) } A=0o (34)
Rlo) 0 0 o (%) Qs (%) Q (%) X (xo)
wherepP; = ’ :P' . . O 9= U(:Xl) Qs = QS:(Xl) Q= : (:Xl) andX = ’ (:Xl)
0 0 -~ B(xn) O (XN) Qs(XN) Q(XN) X(XN)

Eq (31) denotes a system of + 1 algebraic equations havim+ 1 unknown coefficients. Therefore, if we determine
MA = gor[M; o] (35)

such that

J .
M = Z}PiXB'D“’”) —A1QsB1B¥DEM) —A,QB D),
i=

At the same time, from32), one may derive the matrix form of conditions shortly as
UjA = ¢jor[Uj; ¢;], ji=0,14,2 ....m-1 (36)

such that

m-1

Uj= Zo kX (0) +bjX (B)] BD“ A = [¢]].
k=

Subsequently, in order to deduce the solution of Bjjs@bject to the mixed conditiong); the matrix 86) is substituted
for the last n rows of our augmented matr8gj; this yields the desired matrix form

{M;a} (37)
_ _ N\ -1
Provided rankM = rank{M;(ﬂ =N+ 1, one may setA = (M) o. In this regard, the matriA (so that

ag, a1, &, ---, an) is exactly evaluated and Edl)(has a unique solution under the conditioBs Therefore, we obtain
the desired Jacobi polynomial solution.

4 Advanced solution by error estimation

Now, we develop a practical error estimation procedure liier tasic Jacobi polynomial approximation as well as an
approach to achieve an advanced (higher accuracy) soligicthe problem g, 2) by utilizing the residual correction
method R4,25] and error estimation via the Tau meth@s[27].

Baykus and SezeRfB] introduced a hybrid Taylor Lucas collocation method to béedo retrieve approximations for
pantograph type delay differential equations benefitirsideal error function. Yuzbasi et akg| presented a modified
Legendre method in order to numerically solve some intetifferential equations. For the sake of determining an

(© 2018 BISKA Bilisim Technology
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advanced solution, the residual function is described as

3 NG X(u(sz)(k) © ) o
:iZOPI(X) (UN”) (X)*)\l/o Wdt)\zfo K (x,t) (uN’”) (x)dt— o (x) (38)

Whereu<Z n) (x) is the approximate solution of Eq4, @). Thusu(Z ) (x) satisfies

() y&m® )
570R 00 (ud™) " (0 - ,\lfg%dt_/\zfgmx,t) (WF)" (0dt= 0% +Ru (¥

J&my¥ ¢\ ® (39)
z?&FJ( ”) (0)+ by (™) <m]=¢hj=o,szn,m—1
Accordingly, Jacobi error functioey¢-7 (x) may be delineated as
e () = () — " (%) (40)

whereu(x) is the exact solution of Eqsl,(2). If we substitute Eq.40) into Egs. (, 2) and employ 88) and @9), then we
may define an error differential equation having the follegvhomogeneous conditions:

i Z n
520R 00 ()" (0 - Mh(x> dt—Az f5K (ct) (&™) (0 dt = —Ru(x) )

Sho {a,—k( ) +b1k( Z"))()(B)}o

The solution of Eg.41), which can be derived in a similar manner as in the previeatian, gives the approximation
en v $M (x) toey(€) (x). This approximation may be called as the error function dagen the residual functidRy (X).
Note that for the approximation to be valid,> N must be satisfied. Therefore, we achieve the advanced Jsaabbn
as

Ui 00 = U™ 09+ enn @ (% (42)

where,ey v (€1 (x) is the estimated error function. Eventually, the correfgtédanced Jacobi error function is

Eir) (0 = u(x) —uil) (0. (43)

5 Numerical examples

Here, we implement the advanced Jacobi method to four exeaminyl using symbolic computational programig][

Example 1.We consider the linear WSVIDE]

i 20 (x) = Bx— Lxd— 1653 4 (XU g
u” (X) +x%u (x) = 6x 2x4 5_2 Jo = dt Joxtwr (t)dt (44)

with the exact solutiom (x) = X3+ 1. We assume that, fod = 4 and({,n) = (0.5,0) which are chosen arbitrarily, the
Jacobi polynomial solution is

u(x) = aoRy"™ (%) + 1P (%) + aaPL ™ (%) + agPL™ (%) + auPy ™ (%)

(© 2018 BISKA Bilisim Technology
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such that
r 4T
1
1,5
it ,
p(d.n) (x) = _§ + 35)(7L 63(X71)
3
245+ 315X—|— 693(x 1) + 4295)(2;31)
1995, 115 9ooog(x 1)? 643E(xfl)3 12158x—1)*
T X+ e+ s T~ 0ag
The collocation points are assigned as
1 2 3
=0.X1==. Xo = — = 1
{Xo P X1= 7 X2 4, 2 X4 = }

while the fundamental matrix equation for problem, due toB4), is

{P>XB?D + P1BXD — A1QsB1BD — 1,QB?D}A = 0

where

0O 0 O O 0 0O 0 O 0 0

128 768 12288 10240 491520

Q,L’zﬁz\fzzﬂsﬁ Q=|4i z1 1L 13 19

S= |1 3 5 35 315 |'RT |16 24 384 640 1280

2v/3 2v/3 63 543 18/3 27 —27 243 -189 4077

T2 4 20 280 140 128 256 4096 5120 163840

2 4 18 32 256 i -1 1 1 1

1 3 15 35 15 2 6 12 20 30

0 0 63 99 _ 4719
16 64 512
0o _8 22883 2566821 40305309
64 8192 327680 58720256
M= lo_5_ 5/2 3731 7V2 24297 63/2 3482041 326%/2
16 4 1024 4 2048 ~ 640 262144 1792

a5 _ 103 25137 77v/3 1103805 26013 322028223 8041/3
~8 8192 32 65536 1280 8388608 14336
_ 15 _ 525 3042¢ 3427457
4 128 2560 57344

o
=
ol
a1
N
ul
w
=]
e
N
©

and

T
o — |03579 95_ 2v2 2223  18/3 23
256032~ 5 Biz2 20 10

Using 36), we may pose the matrix form of our initial conditions as

(© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 3, 24-38 (2018) www.ntmsci.com BISKA 32

2~ 128 2048
7 _ 225 341 . o
1

_17 23 827 .4
6

EN[S N

Uoido| _ |1
U; ¢1 0

Consequently, to derive the solution of E44), we replace the third and fourth rows of augmented maifixg] by the
matrix [U; ¢], and find out the augmented matrﬁﬂ;(ﬂ. Solving this augmented matrix yields the Jacobi polyndmia
coefficient matrix

28 512

[

A:{gz 76 _ 32 1280T

105 165 ~ 273 429

Therefore the Jacobi polynomial solution can be deduced ngusi Eg. ()] as
ug°'5’°) (X)=24+3(x—1)+3(x— 1)%+ (x— 1)3; this is the exact solution for the problem. Likewise, diffet values of
¢ andn can be utilized to extract the same solutionfbe= 5.

Example 2. We consider the WSVIDEL[13]

1 >Xu(t)

u” (X) 4+ u(x —/ dt=f(x),u(0)=u(0)=1 45
(M +u()+ = | st =1 (,u(0) =U (0 (45)
Casel. InRefs. [1,13], f (x) was chosen as-Bx+ x* + 4‘—\/[;, and the exact solution wasfx+x2. For{ =n = _%
(Chebyshev base) amti= 3, we obtain Jacobi characteristic mattband the Jacobi polynomial coefficient matfxas
follows
1 4 18 84
i ii7 5oy
-1-3 05 %5 % 18 5 T
p(-2-3) — 0o B CA=[1851%0) (46)
iy
00 0 %5

From Egs. (8 and @6) the Jacobi polynomial solution of the problem is deterrdineas
ugfo's’fo's) (X) =3+ 3(x— 1)+ (x— 1)%; this is the exact solution of EG4¥).

Casell. If f(x) is chosen &+ erf (/X)€" the exact solution is given agx) = € in Refs. [1,13]. The approximate
solution of the WSVIDE obtained by the basic Jacobi method is

uj %5799 (x) =0.1437720458 — 1+ 2.701787249+ 1.308375018x — 1)2
+0.3760461068 — 1)° + 0.5329388356 — 1 (x — 1)*

and the error estimate function is

e %7 %% (x) = — 0.1297755894— 1+ 0.1495374256 — 1x+ 0.4422748836 — 1 (x— 1)? + 0.0627218449(x — 1)°
+0.4269527684— 1 (x— 1)* + +-0.01122336138&— 1)°
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Finally, we forecast the advanced solution function by addip the approximate solution and the error estimate fancti
as follows:

upe %% (x) =u 257 (%) + €% (x) = 0.139964558 2+ 2.716740992 + 1.352602506x — 1)°
+0.4387679517x — 1)° +0.0959891604( — 1)* +0.1122336138— 1 (x— 1)°

By taking{ = —0.5 andn = —0.5, we then compare the absolute errors of the basic Jacaliiofor N = 4 and those

of the advanced solution fdd =5, 6 with the error values of the Taylor expansion methtig] and the Bernstein method
[1,13] in Table 1. The absolute error values of the basic Jacobitisol are the same as those of the Bernstein method;
anyhow, the basic solution yields better results than Tagkpansion method. Furthermore, our advanced method gives
better results than Taylor expansion, Bernstein and atszbi@olynomial solution methods.

Table 1: Comparison of the absolute errors of the advanced Jacoltiometith some other numerical methods for
Example 2

Taylor expansion method 8] Bernstein methodl] Present methof{ = —0.5, n = —0.5)

X N=4 N=4 | BT 0] BT
0 0 0 0 0 0
0.2 137%-3 145% -5 145%-5 0874-7 540%-8
0.4 0.0015 36655 36655 183%-6 94588
0.6 0.0063 318605 3186e—5 3087e-6 143%-7
0.8 00172 322084 3226—4 4541e-6 3.160e—7
1 0.0369 21173 2117%—3 141le—4 87986

In Table 2, the actual absolute error values are comparddthét estimated absolute error values derived by the error
estimation algorithm foN =4 andM =5, 6, 7, 8. It is seen that the error estimation algorithm gives atrtires same

values as the actual absolute error.

Table 2: Actual absolute error and estimated absolute errors cdegueior Example 2

Actual Absolute Error

Estimated Absolute Errors

x &5 () 57 00| |0 (ST ] e o0
0 0 0 0 0 0
0.2 14522—-5 1551e—-5 14462—5 1452-5 1452-5
0.4 3.66%—-5 384%-5 3656—5 3666e—5 3665%—-5
0.6 3186e—-5 349% -5 3172-5 3187%-5 3186-5
0.8 3220e—-4 3174—4 3217e—4 3220e—4 3220e—-4
1 2117e-3 1976e—2 2108-3 2116e—3 2117e-3
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Figure 1 compares the basic Jacobi solutiQrix) for N = 2 and the advanced Jacobi solutiafgm (X) for N = 2 and

M = 3, 4, 5 with the exact solutiom (x) of Eq. @45). We can see from the figure that the advanced Jacobi polyatiomi
solutions provide more convergent results than Jacobinoohyal solution. When M increases, advanced Jacobi
polynomial solution yields better results.

Exact Solution

= + = Jacohi {N=2)
i7 =— = = Improved Jacobi (N=2, M=3)
--------- im proved Jacohi (N=2, M=4)

w m == |mproved lacobi (N=2, M=5} ,,

13

Fig. 1. Comparison of the basic Jacobi and the advanced Jacobigulghsolutions with the exact solution for Example
2

Example 3. Consider the WSVIET]],

u(x):ex(1+\/ﬁerf(\/>_<))—/ u®) dt, x € [0,1] (47)

X
0 vX—t

whereerf (x) is the error function and the exact solutionuiéx) = €. In this example, Jacobi parameters are taken
arbitrarily as{ = —0.2,n = 0.3. WhenN = 3 is chosen, the Jacobi polynomial solution is obtained bs#s.

(—0.2,0.3)

uj (X) = 0,0208136421% 2,697072578+ 1, 251781926+ 0,2725955734x — 1)°

By using error estimation algorithm given in Section 4, th@eestimation function is obtained as;

(—0.2,0.3)

eje 2% (x) = — 0,02069494154-0,0210895478 + 0, 1061028508 — 1) + 0,1754317228 — 1)

+0,103709896%x — 1)* +0,0136860772% — 1)°

The absolute error estimation function that we found abmiaaides with the absolute error function of the Jacobi
polynomial method, as seen in Figure 2. By adding the erimasion function to the basic Jacobi solution, we obtain
the advanced Jacobi polynomial solution as follows,

uge 2% (x) =uy 0209 (x) + € 2%¥ (x) = 0,00011870056- 2, 718162124+ 1,35788477Tx — 1)2

+0,4480272962x — 1)° +0,103709896% — 1)* + 0,0136860772& — 1)°

Better results are achieved by this advanced Jacobi polighamiution when compared with the basic Jacobi solution
method, taking into consideration the same number of teFigsire 3 illustrates a comparison of absolute errors of the
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1E-3
— = = Absolute error estimation /.""‘ \
BEZ 1 et Absolute actual error f." \-\
i [
/ \
BE-4 - — i \
R = / i
# EY f-" “\_ ¥ !
aea | [ b & e i i
] / N\ ! [
f \ 7/ \ / il
." X /! % i I i
24 o f TR, i t
! \\ J'} T \i
! J \J H
\ : L]
OE+0 / . ; Y ¥
o 0.2 o4

0,6 D..E
. . ~0.2,0.3) ;
Fig. 2. Comparison of the absolute actual err‘e& (x)‘ with the absolute
Example 3

error estimati#eé;o'z’os) (x)‘ for

basic and advanced Jacobi methods.

4E-6
----- Absolute errors of initial Jaco bi method -
Fu
= = = Absplute errors of improved lacobi method ;" \
i L]
3E6 4
h (]
Il Fa "
:I !‘ l\ ‘:
’EE A
J(*‘.\. "' i 'I.1I
AN ! "
! 'y / I! 1‘!
1E-6 - ;"r ‘\“,, ‘/'""\\ i l,'n
v - 4 Y ey -y 1"
l‘j “" ’ \\ ¢ P \\\/’ Nyt A '!
1 Ve emsg ;4:' - . i, Y ,’K\ ; "
LV b I . # [
OE+0 — £ o — :
o 0.2 0.4 0.6 0,8 1
: : ; : -0.2,0.3 : :
Fig. 3: Comparison of the absolute actual errors of the basic Jasmbiion ‘eg ’ )(x)’ with the advanced Jacobi
: (—0.2,0.3)
solution|E; 5 (x)| for Example 3

The maximum error for the basic Jacobi methuﬁii”) can be assessed as,

ES = [Julé™ (%) — u(x)[Joo = max] [ulé (x) — u(x
N N N

a<x<p} (48)
Table 3 exhibits the maximum erroEﬁf’”) for specific values o where the maximum error reduces rapidlyNs
increases.

By modifying Eq. @8), we define maximum error for advanced Jacobi meth{éia) as,

E,(\E'a) _ ||u(57’7)

it 00 = u 9o == ma{ |uid (9 —u(x

a<x<p} (49)
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Table 3: The maximum absolute error of basic Jacobi melﬁhﬁ)‘z’o‘s) for Example 3

N 5 10 15 20 25 30

E *%%¥ 35le—06 174e—12 756e—18 262 —23 89%—29 22le—34

Table 4 displays the maximum errcEﬁf,;;]) for specific values oM and a constant value df.
The maximum errors reduce rapidly Bincreases. Comparing the values in Tables 3 and 4, it seéththanaximum
errors of advanced Jacobi polynomial solution are lesstthase of the basic Jacobi solution.

Table 4: The maximum error of advanced Jacobi met qaf;?fﬁz) for Example 3

N 3 8 13 18 23 27

Exin2 27406 515e—14 175¢-21 38%—30 27%-39 806e—49

The absolute errors of the basic and advanced Jacobi meth@dempared with Tau method in Table 5.

Table 5: Comparison of the absolute errors of the advanced Jacobiometith other numerical method for Example 3

Tau method11] Present method

n Standartbase Chebysevbase Legendrebase Jacoljibase0.2,n =0.3)

-0.2,03 -02,0.3
(-0203) Eéizﬁn, )
5 6.73e— 04 321e—04 313e-04  351e-06 274e—06
10 381e—-07 20% - 07 222e—07 174e—12 515%-14
15 541e—10 354e—10 298 —-10 7.56e— 18 175%-21
20 648-12 411e—12 459 —12 262e—23 389%—-30
25 714e—14 60le— 14 586e—14  89%-29 27% -39
30 402-15 26le—15 244e—15 22le—34 806e—49
Example 4. Consider the linear VIDE]]
2 1 11 1 1 /X
u@ (x) —u(X) = —= + x4+ =& — X%+ —/ tetu(t)dt, 0<xt<1 (50)
3 3 3 9 3Jo

subject to the initial conditions
u(0) =1, w(0)=1, w(0)=2, ur(0)=3.

with the exact solutioru(x) = 1+ x€. Eq. 60) is solved by the advanced Jacobi method under the giveralinit
conditions. Table 6 compares the results with those of tres@ecollocation method.
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Table 6: Comparison of the absolute maximum errors of Bessel cdilmtanethod and advanced Jacobi metidd=
n=0)

N 8 9 10 11 12

BesselBase [2] D5e—5 105% -5 280e—8 12le—9 876e—12

Jacobi Base bde—-6 730e—8 366e—9 128—-10 524e—-12

6 Conclusion

We advanced the previously used Jacobi matrix method for MWEY. Thereupon, we transformed the orthogonal
Jacobi polynomials from algebraic form to matrix form anthstituted them into the WSVIDE together with the mixed

conditions. Hence, the matrix form of WSVIDE was obtaineal] #he desired approximate solution was extracted by
performing various matrix operations. Furthermore, ancieffit error estimation algorithm is developed and it is

employed to obtain a corrected/advanced solution.

The majority of the former research deals with approximegiaising Gegenbauer, Chebyshev, and Legendre
polynomials. On the contrary, the present study introdaceadvanced Jacobi polynomial solution which comprehends
these polynomial solutions entirely.

Numerical test examples are given to illustrate the acguaad the implementation of the method; the results support
the claim. The accuracy of our advanced solution can be duitihproved exploiting the proposed error estimation
algorithm based on residual function.
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