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Abstract: In this study, we first show that the system of Frenet-likéedéntial equation characterizing timelike curves of ¢ans
breadth is equivalent to a third order, linear, differeintiguation with variable coefficients. Then, by using a reicapproximation
based on Bernstein polynomials, we obtain the set of solutfdhe mentioned differential equation under the givetidhtonditions.
Flsjrthermore, we discuss that the obtained results are leseatietermine timelike curves of constant breadth in Mimgki 3-space
Ej.
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1 Introduction

Curves of constant breadth firstly were introduced by L. Euwlel 778 [7]. F. Reuleaux gave the obtaining method some
curves of constant breadth in 1963 and led to be used in kitiesnaf machinery [3]. So far, in mathematics, many
geometers have obtained only geometric properties of dreepturves of constant breadth, but have had a few study on
space curves of constant breadth [1, 15, 16, 18]. A numbenrtefdsting properties of these curves in plane are included
in the works of Mellish [2]. M. Fujivara had obtained a prabléo determine whether there exist “space curve of
constant breadth” or not and he defined “breadth” for spaceesuand obtained these curves on a surface of constant
breadth [8]. Having been used the basic concepts [15] cardeawith the space curves of constant breadth, a integral
characterization of these curves [17, 11] has been obtaindda criterion for these curves has been determined [10].
Also the curves of constant breadth were extented to thesfiace and some characterizations were obtainedr{1].
addition, Akdogan and Magden [18] extended tbspace this kind of curves and they obtained some charaatierizs.

Also Aydin [16] obtained differential equation characterizing @s\of constant breadth in"End then she obtained
approximate solutions of this equation by using Taylor iRatollocation method. Studies in different spaces [9, 6] on
these curves are going on nowadays, currently. These careassed in the kinematics of machinary, engineering and
com design.

In this study, our first aim to establish differential eqoatdiscribing a timelike curve of constant breadth in Minlshiv
3-space. The second aim is to find an approximate solutioadb@s Bernstein polynomials of this differential equation
[12, 13].In this study we also analyzed the role of the obtained smititi determining these curves.
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2 Preliminaries
Bernstein polynomials of nth-degree are defined by

kip _ y\N—K
n) M, k=0,1,...,n

Bin () = (k R

where R is the maximum range of the inter{@IR] over which the polynomials are defined to form a completeshasi
[12].

The Minkowski 3-space is real vector spa&&rovided with the standart flat metric given by
g=—dx+d3+dx3

where(x1, X2, X3) is a rectangular coordinate system of Minkowski 3-spﬁ§eAn arbitrary vectorv = (V1,V2, V3) in

Ef can be timelike ifg(V,V) < 0 . Similarly, an arbitrary curvel = ﬁ(s) locally be timelike if all of its velocity
7/(3) are timelike. We say that a timelike vector is future poigtor past pointing if the first compound of the vector is
positive or negative, respectively [9].

Furthermore, for a timelike curv?(s) in spaceEf, the following Frenet formulas are given

?/ 0Kk 0][T
N|=|k 0 k||N
gl 0 -k O

wherek; andk; are the curvature and torsion of a timelike cuive respectively [6].

3 Differential equations characterizing timelike curves of constant breadth in Ef

In this section, we established differential equationgati®rizing the timelike curves of constant breadth. Theehz
our study is based on the following consepts for space cuof/esnstant breadth, which are presentedbyKose [14,
15] and M. Sezer [10, 11].

Let (C) be a unit speed timelike curve of the classaving parallel tangents t andl in opposite directions at the
opposite pointsx anda* of the curve. If the chord joining the opposite points of (€)aidouble-normal, then (C) has
constant breadth, and conversely, if (C) is a timelike cuofeconstant breadth, then every normal of (C) is a
double-normal. A simple closed timelike curve (C) of constareadth having parallel tangents in opposite directains
opposite points may be represented by the equation

() =T (9+m(9)T (8 +ma(s) N(9)+my(s) B(9) (1)

wherea and a* are opposite points, anﬁ, ﬁ, B denote the unite tangent, principal normal, binormal ataegic
point a, respectively. Here s denotes the arc length of (C) mn@), 1 <i < 3 are the differentiable functions of s.
Differentiating this equation with respect to s and usirggfinenet formulas of timelike curve we obtain

do”  —«ds dmy dmy dms
as —? as (1+E+m2kl)?+ (mlkl‘f‘a—nbkz) W+(m2k2+a)§
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SinceT =T at corresponding points of (C) we have

dmy ds

1+ —= ki = ——

+ds+mzl ds
dmp

ki + —= —mgky =

myky + g5~ Meke 0
dmg

ko4+—=0

MyK> + ds

By considering the curvature of the timelike curve defined by

_Ap dp
Amyas = as

whereA¢ is the angle of contengency. Hegpedenotes the angle between tangent of the curve (C) at the @p@hand a
given fixed direction. Also it is clear that

(s = ikl(s)ds
The distance d between the opposite pointss) anda (s) of the curve is the breadth of the curve and is constant, shat i
d®=d?= a*—a?=—m+ mj+ mg = const
On the other hand, the coefficiemts, m, andmg may be obtained by the system

m = —mp— f(¢)
my = pkomg —my (2)
mg = —pkomyp

which is the system describing the timelike curves of cantdteeadthf (¢) = p + p* and,

—iand 1

denote the radii of curvatures(s) anda*(s), respectively. Here (‘) denotes the differentiation witsgect tog . Also,
the vectorﬁ is the double normal of the curve (C) of constant breadtistFt is clear that

my=—my — () (3)

On the other hand, by using the second equation of the sy&ene(obtain the following differential equation:

rr13:—2n12+—m 4)

—1'(9) (5)
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Also, it is clear that in the third equation of the systezh (

1
6
m pkzms (6)

Here, by using the equality of the equatioBsdnd @) following equation is obtained
My — =+ £(¢) = 0 @
1 ka m;
Finally, by using derivative of the equatioB)( when F is as follows

F=—(pko) " + (pko) ' — (ko)1

we obtain the third order, linear, differential equatiottwiariable coefficients as follows

(Pk2) My — (pke) my + (pke) ((Pk2) 1) My + (pky) 'y = F ®)

As aresult, it is clearly seen that the systéfpaharacterizing the timelike curves of constant breadthtzareduced to
the linear differential equatior8). Furthermore, we can write this equation in the generahfor

kiQk (S)y(k) (ss=F, m=2 3, ... 9)

whereQ(s) are continuous functions of the expressiphy).

4 Bernstein series method

In this section we will explain the Bernstein series solutmethod for the solution of the differential equations dedin
as follows.

R(y¥ () =g(s), 0<s<R (10)
Let f be a solution of Eg.10). We wish to approximate f by
n
pn(s) = ;akBkyn (s), n>1 (12)
k=

such thatpy (s) satisfies Eq.10) on the nodes & s < S41 < -+ < S44 < R Putting pn (s) into Eq. (L0), we get the
system of linear equations dependingagn ay, ..., an.

Assume EqJ10) has a solution, f. Let us consider the E§0Y and find the matrix forms of each term in the equation.
First we can convert the Bernstein series solufienpy, (s) defined by (1) and its derivativeg¥ (s) to matrix forms

y(S) =Bn(s)A and y¥ (s) = BX(s)A (12)

where T
Bn () = [Bo,n(s) B1n(S) ... Bun(S) ] A— [ao ar ... an}

(© 2018 BISKA Bilisim Technology
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On the other hand, it can be writtéBn(s)]" as[Bn(s)]" = D(S(s))" or

Bn(s) = S(s)D' (13)
where
doo do1 - don
B dig di1 -+ dip
an dnl dnn
and i
—_1)l-! i . .
dij = (_"")’—(2)(?*:)’ =
0, i>j.

Itis clearly seen that that the relation between the m&isy and its derivatives™ (s) is

where _ _
0 1 0 0 0 - 0 0 0
0 0 2 0 O 0 0 0
0 0 O 3 0 0 0 0
0 0 O 0 4 0 0 0
B=| : : : :
0 0 O 0 O n-2 0 0
0 0 O 0 O 0 n-1 0
0 0 O 0 O 0 0 n
0 0 O 0 O 0 0 0

To obtain the matrixg® (s) in terms of the matrixg(s), we can use the following procedure:

S2(s) =SV (s)B = 9S(s)B?

: (14)
Sk (s) =Sk V(B =-.. = Ys)B"
Consequently, by substituting the matrix formi8)and (L4) into (12), we have the matrix relation.
y (s) = S(s)BXDTA. (15)
Substituting the matrix relatiori 6) into (10) and then simplifying, we obtain the matrix equation
m
Z)H( (s)S(s)B*DTA=g(s). (16)
k=

By using the node$s;;i =0,1,...,n0< s < 51 < -+ < & < R} in (16) we get the system of matrix equations

iwsj)s&j)BkDTAg(s,—), =0.1....n
k=

(© 2018 BISKA Bilisim Technology
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or briefly the fundamental matrix equation

g RSED'A=G
k=0

where
R(so) O 0 8 8
0O R(st) O 9(s0) S(s0)
. 0 0 R(x) 0 ? e- g(s1) . S(s1)
o 0 0 R(s-1) O 9(sn) S(sn)
o 0 o0 0 PR(s)

Hence, the fundamental matrix EQ.7j corresponding tol(1) can be written in the form
WA=G or W;G]=A W=Wq|, kh=0,1,....n

where

W= S ASEDT
kZO

1s $
1s s

15 ¢

(17)

(18)

Here (L8) corresponds to a system @f+ 1) linear algebraic equations with unknown coefficieasay, . .. ,an. Now let

us obtain the matrix equation of the conditions by meansefdhation (5), as follows
S(0)B"D'A=[ay] k=0,1,....m—1

or
S(0)BDTA=[B] k=0,1,...,

S(RBDTA=[y] k=0,1,...,

On the other hand, the matrix forms for the conditions can bigem as

UA=[ax] or [Ug;ox], k=0,1,....m—1

or
m
VA= [\] or Mci%], k:O,l,...,ngfl
where

U = S(O) BkDT = {Uko U1 --- Ukn }

Vi =S(R)B*D" = [Uko Ui - Ukn}

(19)

(20)

(© 2018 BISKA Bilisim Technology
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Replacing the row matriceld or 20 by any m rows of the matriz8, we get the augmented matrﬂw; G] as

Woo Wor ... Won ;  9(%0)
W10 Wir Wi g(s1)
[ A/ G} — W(nfm)O W(nfm)l T W(nfm)n g(&fm)
' Uoo Uo1 e Uon ’ (o s}
Uio U1 e U1n ' ai
[ Um-10 Um-11 - Um-1)n Om-1 |
or -~ -
Woo Wo1 ... .
Wig Wi1 . Won ; 9(s0)
Win ;o 9(s1)
W(n-m)o Win-m)1 Wn—mn 9(sh—m)
Uoo Uo1 Uon ’ Bo
L. U1o U11 U1n ’ B1
W: 6] = 5 S
Up-10  Yp-1) Uip_1)n . By
Voo Vo1 Von ; Yo
Vio Vi1 Vin i
Vg0 V(3 Vig-yn . V31

and hence the elemerds, ay,...,a, of A are uniquely determined.

5 The solution of differential equations characterizing the timelike curves of constant breadth
in E3

(pko) =t

P= t/, P =t +t3, P, = 7'[/, P;=t and y=m.
Using the above equations we can rewrite the differentialiqgn @) characterizing the timelike curves of constant
breadth as fallows;

m

ZOPk(s)y“() (s)=F(s), m=3,0<s<2m (21)
k=

(© 2018 BISKA Bilisim Technology
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Let f be a solution of Eq.Z1) . We wish to approximaté by

n
Pn(s) =) aBn(s), n=4
k=0

(22)

such thatp, (s) satisfies Eq.Z1) on the nodes & 5 < 51 < -+ < & < 271. Here we take n = 4 for simplicity. Putting
pn () into Eq. 1), we get the system of linear equations dependingg®ray, ..., as. Let us consider the Eq2() and
find the matrix forms of each term in the equation. First we@amvert the Bernstein series solutipa: p, (s) defined by

(22) and its derivativeg\ (s) to matrix forms, fom= 4 andk = 0,1, 2, 3.
y(S) =Ba(9)A and y¥ (s) =Bf(s)A
where

Boo(S) Bro(s) -+ Bao(s)
Bo’l(S) Blyl(S) B4’1(S)

Ba(s) = o L ,Az[aoal...a4

Bo4(S) Bra(s) -+ Baa(s)

On the other hand, it can be writtéBy(s)]" as[Ba(s)]” =D(S(s))" or
B4 (S) = S(S) DT.

Where for L
—_1)l-! i . .
dij = ( R>J (2)(1:)’ =
0, P> ]

the matrix D is calculated as follows

1 —-2/m  3/2m® -1/2m 1/16m*
0 2/m -3/ 3/2m -1/4n*
D=|0 © 3/2m —3/2m® 3/8m*
0 O 0 1/2m® -1/4m*
0 O 0 0 1/16m*

Itis clearly seen that that the relation between the m&f#} and its derivatives?(s) is

010 00
002 00

B=| 000 30 andS(s):[lss%zs?sﬂ.
000 04
000 00

(23)

(24)

(© 2018 BISKA Bilisim Technology
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To obtain the matrix8® (s) in terms of the matrixs(s), we can use the following procedure:
S?(s) =SV (s)B = S(s)B?
: (25)
S®(s) =S (s)B=--- = (9)B®
where
00200 0006 O
0006 O 00O0O024
B°=({0 00 0 12 and B =|{0 0 0 0 O
000O0TO 000O0TO
000O0TO 000O0TO
Consequently, by substituting the matrix forn2gand 5) into (23), we have the matrix relation.
y(s) =S(s)DTA
D (g) = T
y2 (s) =S(s) BzDTA (26)
y? (s) =S(s)B°DTA
y® (s) =S(s)B°DTA
Substituting the matrix relatio?6 into 21 and then simplifying, we obtain the matrix equation
m
S R(9)S(9BDTA=g(s) (27)

k=0

By using the node$s;;i =0,1,...,4;,0< 5 < s < --- <& < 211} in (27) we get the system of matrix equations

m=3
Y A(s)S(s)B*DTA=g(s), i=0,1,...,4
k=0

where g= 0,51=7, =11, 5=, 5= 2mrand

P(0) 0 0 0 0
0 po(rr/2) O 0 0
Po(s)=1| O 0  Ry(m) 0 0
0 0 0 m@Bm2 0

. 0 0 0 0 Po(2m) |

[PL(0) O 0 0 0 7
0 P (m/2) 0 0 0
P(s)=| 0 0 P(m O 0
0 0 0 P(3m/2) 0

) 0 0 0 PL(2m) |

[P(0) 0 0 0 0 ]
0 Ry(m/2) 0 0 0
P(s)=| O 0 P(m 0 0
0 0 0 R@Bm2) 0

) 0 0 0 Py (2m) |

(© 2018 BISKA Bilisim Technology
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P;(0) 0 0 0 0
0 P(m/2) O 0 0
Py(s)=| O 0 Ps(m) 0 0
0 0 0 P3(3m/2) 0
0 0 0 0 Ps(2m)
S(so) 1 0 0 0 0 f(0)
S(s1) 1 (m2)  (m2?  (m/2° (w2 f(m/2)
Ss)=| S |={1 m @ @ " | FE)=| f(m
S(se) 1 (3m/2) (3m/2° (3m2° (3n/2)" f(m/2)
S(sy) 1 (2m ecm?  (@em®  (en? f(2m)
The fundamental matrix equation can be written briefly as
g RSED'A=G. (28)
K=0

Hence, the fundamental matrix EQ8j corresponding to22) can be written in the form

WA=F or [W;F]=A W=Wg4], kh=0,1,....4 (29)
where m
W= Y RSED'"
kZO

Here, the Eq29 corresponds to a matrix of type (5x5). Now let us obtain thérimaquation of the conditions by means
of the relation26, as follows
S(0)B*DTA= [ay], k=0,1,2

Firstly, the matrix forms for the conditions can be written a
UA=[ay] or [Ug;oax], k=0,1,2 (30)
where for

Uo = S(0)DT = [uooum um} - [10000}
U =S(0)B'DT = [uo s - ung | = [~2/m2/m000]
Uz = S(0)B?D" = | U0 U1 -+ Upg | = |12/ —6/7 3/ 00 |

Replacing the row matrice®0 by any m rows of the matri9, we get the augmented matl{M/; G] as

Woo Wo1 Wo2 Wo3 Wog ; T(0)

N Wio W11 Wi Wiz Wag ; f(7T/2)
[Wi }: Uoo Uo1 Up2 Up3z Upa ; Oo
Uio U11 Uiz U1z U4 ; 01
Uzo U21 U2z U3z U4 , Q2

(© 2018 BISKA Bilisim Technology
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wherew;; (i=0,1 j=0,1,...,4) obtained as follows;

oo =1 (0) — 2[~4(0) +3(0)] + [t (0)] ~ ~5(0

w01:73T [—t(0)+t3(0)] — % {ft/ (0)} + %t 0)
WOF% 0] - %t 0)
Wogz%t(O) Wos = O,
wo= g5 (5) 33 (5) ¢ (3)] + et (B -7t (5)
=20 () () )
128 (g) %[_ (2)“3(;”_%[_t/(g)]_%tg)
ws =gt (3) + [ 1(5) 0 (5)] + 2ol (3)
wia= 5t (3) * 331 (5) 0 (5) ]+ gt (3 + st (5)-

As a result we can write

Wiz =

00 10 O £(0)
00 1 m/20 f(m/2)
A=W)'6=|0 0 -2 nn¥3 o
RO T KV o
YZ Q L C az

where

R=1/wo3, T = 2Wp2 — Woo — Wo1/Wo3, K = —TT(Wo1+ 2Wp2)/2Wo3
V = —1PWo2/3Wo3, Y = —Wi3/WoaWia, Z=1/Wig

Q= —Wi3(W10+ W11 — 2W12) + Wi3(Woo + Wo1 — 2Wo2) /Wo3Wi4

L = — oz (W11 + Wi2) + TTWi3(Wo1 + 2Wo2) / 2Wo3Waa

C = 17 (W13Wo2 — Wo3Wi2) /WoaWi4
and hence the elemerdg, ay,...,a4 of A are uniquely determined as follow

adp = o
T
a;=0p+ Eal
2
a = —20ag+ 1a + Eaz
az=Rf(0)+Tay,+Kai+Vay

a4:Yf(O)+Zf( )+Qa + Loty + Cat.

If we put thisas unknowns in equatior2@), we obtain the Bernstein series solutpa: pn (s) = my of the Eq. 21).

(© 2018 BISKA Bilisim Technology
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6 The probed of differential equations characterizing timelike curves of constant breadth in Ef

We found that the expression issym, coefficient which is determined the timelike curves of cansbreadth ir’Ef. Also
my coefficient is finded with method similar under the sameahitonditions. For this first, it is clear that in the second
equation of the systen2)

My =pkomg—m, . (31)
We used where the first equation of the syst@nthe derivative of the equatioB)
*mZNJr(sz)/m3+(pk2)m/3: —mp — f (32)
Also, itis clear that in the second equation of the syst&m (

oy my

G (33)

By using the third equation of the syste®) &nd the equatior8@) in the equation32), we obtain the following differential
equation:

plomy’ — (pkz) Mz + [(pkz)*—pkz]m, — (pko) my — pkaf =0
Here,my is conjugated and then by using derivative of the expressimained, we obtain the following differential
equation;

!

P v ( ;okz/)/_1 . l(psz—/pkz] N l(psz—/pkz} -
(Pka) (Pka) (Pka) (Pka)

!

< pk2,> fo Py (34)
(Pk2) (Pk2)

By using the equatior8@) and the first equation of the systef) {ollowing equation is obtained

/

pkz " pkz /71 " (pkz)spk2‘| ’ (pkz)sfpkz / 1 B < pkz ) T
(o) Jr[((sz)/) ]mz +l o ] e T k) T
_ Pl g 35

(pk) 59

Finally, while (pky) =t and F as follows:

F— ( pkz,) Cqf gy PRy
(Pka) (pk2)
we obtain the third order, linear, differential equatiottwiariable coefficients as follows

£\ s T3—t] Bt
(¢) 3 [ s () +2

t/

t m
t—,mz + m=F (36)

(© 2018 BISKA Bilisim Technology



=
CMMA 3, No. 2, 9-22 (2018) htmsci.com/cmma BISKA 21

This equation is differential equation with unknown characterizing timelike curves of constant breathfn

Also, mg coefficient is finded with method similar under the same ahitionditions. First, it is clear that in the third
equation of the systen®)

1 /
M= —— 37
e (37)
We used where the second equation of the sys@nthe derivative of the equatioBT)
my= 1 mg”+(——1 )/mg/—(pk ymg (38)
ke pka 2

By using the derivative of the equatioB) in the first equation of the systerd)( we obtain the following differential
equation:

/

1 " 1 ' " (pkz)/ 1 ’ /
—y +2(— mg + - + — +pk ms + k ||B—f 39
pka (sz) < (pk2)2> pre (ple) (39)

pka
Finally, while (pk2) = t we obtain the third order, linear, differential equatioithavariable coefficients as follows:

1 " 1/ 4 t/ / 1 !/ !
e 2(7) me (—t—z) +3Ht M ttmg = f (40)

This equation is differential equation with unknows characterizing the timelike curves of constant breadt&in

7 Corollary

By using Bernstein series solution method, the solutionbede equations86) and @0) are approximately obtained. If
we use thesen, (i = 1,2,3) coefficients, which we have calculated, in equatiin= —m? + m% 4+ mg , we get the
constant value of the breadth of the curvéih

Thus, we obtain general expression connected with torsidrcarvature of a timelike curve of constant breathfn

Also, in this work, the motion point is a system of differettequations like Frenet. With the similar idea, the equmtio
characterizing timelike curves of constant breadth inmatisional Minkowski space can be obtained. And the equation
obtained by the same solution method can be examined.
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