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Abstract: In this study, we first show that the system of Frenet-like differential equation characterizing timelike curves of constant
breadth is equivalent to a third order, linear, differential equation with variable coefficients. Then, by using a rational approximation
based on Bernstein polynomials, we obtain the set of solution of the mentioned differential equation under the given initial conditions.
Furthermore, we discuss that the obtained results are useable to determine timelike curves of constant breadth in Minkowski 3-space
E3

1.
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1 Introduction

Curves of constant breadth firstly were introduced by L. Euler in 1778 [7]. F. Reuleaux gave the obtaining method some

curves of constant breadth in 1963 and led to be used in kinematics of machinery [3]. So far, in mathematics, many

geometers have obtained only geometric properties of the plane curves of constant breadth, but have had a few study on

space curves of constant breadth [1, 15, 16, 18]. A number of interesting properties of these curves in plane are included

in the works of Mellish [2]. M. Fujivara had obtained a problem to determine whether there exist “space curve of

constant breadth” or not and he defined “breadth” for space curves and obtained these curves on a surface of constant

breadth [8]. Having been used the basic concepts [15] concerned with the space curves of constant breadth, a integral

characterization of these curves [17, 11] has been obtainedand a criterion for these curves has been determined [10].

Also the curves of constant breadth were extented to the E4- space and some characterizations were obtained [1].İn

addition, Akdoğan and Mağden [18] extended to En space this kind of curves and they obtained some characterizations.

Also Aydın [16] obtained differential equation characterizing curves of constant breadth in En and then she obtained

approximate solutions of this equation by using Taylor matrix collocation method. Studies in different spaces [9, 6] on

these curves are going on nowadays, currently. These curvesare used in the kinematics of machinary, engineering and

com design.

In this study, our first aim to establish differential equation discribing a timelike curve of constant breadth in Minkowski

3-space. The second aim is to find an approximate solution based on Bernstein polynomials of this differential equation

[12, 13].İn this study we also analyzed the role of the obtained solution in determining these curves.
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2 Preliminaries

Bernstein polynomials of nth-degree are defined by

Bk,n (x) =
(n

k

) xk(R− x)n−k

Rn , k= 0,1, . . . ,n

where R is the maximum range of the interval[0,R] over which the polynomials are defined to form a complete basis

[12].

The Minkowski 3-space is real vector spaceR3provided with the standart flat metric given by

g=−dx2
1+dx2

2+dx2
3

where(x1,x2, x3) is a rectangular coordinate system of Minkowski 3-spaceE3
1. An arbitrary vector−→v = (v1,v2, v3) in

E3
1 can be timelike ifg(−→v ,−→v ) < 0 . Similarly, an arbitrary curve−→α = −→α (s) locally be timelike if all of its velocity

−→α
′

(s) are timelike. We say that a timelike vector is future pointing or past pointing if the first compound of the vector is

positive or negative, respectively [9].

Furthermore, for a timelike curve−→α (s) in spaceE3
1, the following Frenet formulas are given









−→
T

′

−→
N

′

−→
B

′









=







0 k1 0

k1 0 k2

0 −k2 0













−→
T
−→
N
−→
B







wherek1 andk2 are the curvature and torsion of a timelike curve−→α , respectively [6].

3 Differential equations characterizing timelike curves of constant breadth in E3
1

In this section, we established differential equations characterizing the timelike curves of constant breadth. The base of

our study is based on the following consepts for space curvesof constant breadth, which are presented byÖ. Köse [14,

15] and M. Sezer [10, 11].

Let (C) be a unit speed timelike curve of the class C3 having parallel tangents t and t∗ in opposite directions at the

opposite pointsα andα∗ of the curve. If the chord joining the opposite points of (C) is a double-normal, then (C) has

constant breadth, and conversely, if (C) is a timelike curveof constant breadth, then every normal of (C) is a

double-normal. A simple closed timelike curve (C) of constant breadth having parallel tangents in opposite directionsat

opposite points may be represented by the equation

−→α ∗
(s) =−→α (s)+m1(s)

−→
T (s)+m2(s)

−→
N (s)+m3(s)

−→
B (s) (1)

whereα andα∗ are opposite points, and
−→
T ,

−→
N ,

−→
B denote the unite tangent, principal normal, binormal at a generic

point α, respectively. Here s denotes the arc length of (C) andmi (s) , 1 ≤ i ≤ 3 are the differentiable functions of s.

Differentiating this equation with respect to s and using the Frenet formulas of timelike curve we obtain

d−→α ∗

ds
=
−→
T

∗ ds∗

ds
=

(

1+
dm1

ds
+m2k1

)

−→
T +

(

m1k1+
dm2

ds
−m3k2

)

−→
N +(m2k2+

dm3

ds
)
−→
B
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Since
−→
T =−

−→
T

∗
at corresponding points of (C) we have

1+
dm1

ds
+m2k1 =−

ds∗

ds

m1k1+
dm2

ds
−m3k2 = 0

m2k2+
dm3

ds
= 0

By considering the curvature of the timelike curve defined by

lim
∆s→0

∆ϕ
∆s

=
dϕ
ds

= k1(s)

where∆ϕ is the angle of contengency. Hereϕ denotes the angle between tangent of the curve (C) at the point α(s) and a

given fixed direction. Also it is clear that

ϕ (s) =
s

∑
0

k1(s)ds

The distance d between the opposite pointsα∗ (s) andα (s) of the curve is the breadth of the curve and is constant, that is

d2 = d2 = α∗−α 2 =−m2
1+ m2

2+ m2
3 = const.

On the other hand, the coefficientsm1, m2 andm3 may be obtained by the system

m1
′
=−m2− f (ϕ)

m2
′
= ρk2m3−m1 (2)

m3
′
=−ρk2m2

which is the system describing the timelike curves of constant breadth.f (ϕ) = ρ +ρ∗ and,

ρ =
1
k1

andρ∗ =
1
k∗2

denote the radii of curvaturesα(s) andα∗(s), respectively. Here (‘) denotes the differentiation with respect toϕ . Also,

the vector
−→
d is the double normal of the curve (C) of constant breadth. First, it is clear that

m2 =−m
′

1− f (ϕ) (3)

On the other hand, by using the second equation of the system (2) we obtain the following differential equation:

m3 =
1

ρk2
m

′

2+
1

ρk2
m

1
(4)

By using the derivative of the equation (3), we obtain the following differential equation:

m3 =−
1

ρk2
m

′′

1+
1

ρk2
m1+

1
ρk2

f
′
(ϕ) (5)
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Also, it is clear that in the third equation of the system (2)

m2 =−
1

ρk2
m3

′
(6)

Here, by using the equality of the equations (3) and (6) following equation is obtained

m
′

1−
1

ρk2
m

′

3+ f (ϕ) = 0 (7)

Finally, by using derivative of the equation (5), when F is as follows

F =−(ρk2) f
′′
+(ρk2)

′
f
′
− (ρk2)

3 f

we obtain the third order, linear, differential equation with variable coefficients as follows

(ρk2)m
′′′

1 − (ρk2)
′
m

′′

1+(ρk2)
(

(ρk2)
2−1

)

m
′

1+(ρk2)
′
m1 = F (8)

As a result, it is clearly seen that the system (2) characterizing the timelike curves of constant breadth can be reduced to

the linear differential equation (8). Furthermore, we can write this equation in the general form

m

∑
k=0

Qk (s)y
(k) (s) = F, m= 2, 3, . . . (9)

whereQk(s) are continuous functions of the expression(ρk2).

4 Bernstein series method

In this section we will explain the Bernstein series solution method for the solution of the differential equations defined

as follows.

m

∑
k=0

Pk (s)y
(k) (s) = g(s), 0≤ s≤ R. (10)

Let f be a solution of Eq. (10). We wish to approximate f by

pn (s) =
n

∑
k=0

akBk,n (s) , n≥ 1 (11)

such thatpn (s) satisfies Eq. (10) on the nodes 0< si < si+1 < · · · < si+d < R. Putting pn (s) into Eq. (10), we get the

system of linear equations depending ona0, a1, . . . , an.

Assume Eq.(10) has a solution, f. Let us consider the Eq. (10) and find the matrix forms of each term in the equation.

First we can convert the Bernstein series solutiony= pn (s) defined by (11) and its derivativesy(k)(s) to matrix forms

y(s) = Bn(s)A and y(k) (s) = Bk
n (s)A (12)

where

Bn(s) =
[

B0,n(s) B1,n(s) . . . Bn,n(s)
]

, A=
[

a0 a1 . . . an

]T
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On the other hand, it can be written[Bn(s)]
T as[Bn(s)]

T = D(S(s))T or

Bn(s) = S(s)DT (13)

where

D =













d00 d01 · · · d0n

d10 d11 · · · d1n
...

dn0

...

dn1

. . .

· · ·

...

dnn













and

di j =

{

(−1) j−i

Rj

(n
1

)

(

n−i
j−i

)

, i ≤ j

0, i > j.

It is clearly seen that that the relation between the matrixS(s) and its derivativeS(1)(s) is

S(1) (s) = S(s)B

where

B=





































0 1 0

0 0 2

0

0
...

0

0

0

0

0

0
...

0

0

0

0

0

0
...

0

0

0

0

0 0 · · ·

0 0 · · ·

3

0
...

0

0

0

0

0

4
...

0

0

0

0

· · ·

· · ·
...

· · ·

· · ·

· · ·

· · ·

0 0 0

0 0 0

0

0
...

n−2

0

0

0

0

0
...

0

n−1

0

0

0

0
...

0

0

n

0





































To obtain the matrixS(k)(s) in terms of the matrixS(s), we can use the following procedure:

S(2) (s) = S(1) (s)B = S(s)B2

...

S(k) (s) = S(k−1) (s)B = · · ·= S(s)Bk

(14)

Consequently, by substituting the matrix forms (13) and (14) into (12), we have the matrix relation.

y(k) (s) = S(s)BkDTA. (15)

Substituting the matrix relation (15) into (10) and then simplifying, we obtain the matrix equation

m

∑
k=0

Pk (s)S(s)BkDTA= g(s) . (16)

By using the nodes{si ; i = 0,1, . . . ,n;0< s0 < s1 < · · ·< sn < R} in (16) we get the system of matrix equations

m

∑
k=0

Pk (sj)S(sj )BkDTA= g(sj ) , j = 0,1, . . . ,n
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or briefly the fundamental matrix equation

m

∑
k=0

PkSBkDTA= G (17)

where

Pi =



























Pi (s0) 0 0

0 Pi (s1) 0

0
...

0

0

0
...

0

0

Pi (s2)
...

0

0

· · · 0 0

· · · 0 0

· · ·

· · ·
.. .

· · ·

· · ·

0
...

Pi (sn−1)

0

0
...

0

Pi (sn)



























, G=













g(s0)

g(s1)
...

g(sn)













, S=













S(s0)

S(s1)
...

S(sn)













=













1 s0 s2
0

1 s1 s2
1

...

1

...

sn

...

s2
n

. . . sn
0

. . . sn
1

. . .

. . .

...

sn
n













Hence, the fundamental matrix Eq. (17) corresponding to (11) can be written in the form

WA= G or [W;G] = A, W = [Wkh] , k,h= 0,1, . . . ,n (18)

where

W =
m

∑
k=0

PkSBkDT

Here (18) corresponds to a system of(n+1) linear algebraic equations with unknown coefficientsa0, a1, . . . ,an. Now let

us obtain the matrix equation of the conditions by means of the relation (15), as follows

S(0)BkDTA= [αk] k= 0,1, . . . ,m−1

or

S(0)BkDTA= [βk] k= 0,1, . . . ,
m
2
−1

S(R)BkDTA= [γk] k= 0,1, . . . ,
m
2
−1

On the other hand, the matrix forms for the conditions can be written as

UkA= [αk] or [Uk ;αk ] , k= 0,1, . . . ,m−1 (19)

or

UkA= [βk] or [Uk ;βk ] , k= 0,1, . . . ,
m
2
−1 (20)

VkA= [γk] or [Vk ;γk ] , k= 0,1, . . . ,
m
2
−1

where

Uk = S(0)BkDT =
[

uk0 uk1 · · · ukn

]

Vk = S(R)BkDT =
[

uk0 uk1 · · · ukn

]

c© 2018 BISKA Bilisim Technology
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Replacing the row matrices19or 20by any m rows of the matrix18, we get the augmented matrix
[

W̃;G̃
]

as

[

W̃;G̃
]

=

































w00 w01 . . .

w10 w11 . . .
...

w(n−m)0

u00

u10
...

u(m−1)0

...

w(n−m)1

u01

u11
...

u(m−1)1

...

· · ·

. . .

. . .
...

· · ·

w0n ; g(s0)

w1n ; g(s1)
...

w(n−m)n

u0n

u1n
...

u(m−1)n

...

;

;

;

;

...

g(sn−m)

α0

α1
...

αm−1

































or

[

W̃;G̃
]

=

































































w00 w01 . . .

w10 w11 . . .

...

w(n−m)0

u00

u10
...

u(m
2 −1)0

v00

v10
...

v(m
2 −1)0

...

w(n−m)1

u01

u11
...

u(m
2 −1)1

v01

v11
...

v(m
2 −1)1

...

· · ·

. . .

. . .
...

· · ·

· · ·

· · ·

· · ·
...
...

· · ·

w0n ; g(s0)

w1n ; g(s1)

...

w(n−m)n

u0n

u1n
...

u(m
2 −1)n

v0n

v1n
...

v(m
2 −1)n

...

;

;

;

;

;

;

;
...
...

;

...

g(sn−m)

β0

β1
...

β m
2 −1

γ0

γ1
...

γ m
2 −1

































































Note thatrankW̃ = rank
[

W̃;G̃
]

= n+1 in the case of the exact solutionf ∈Cn+1(0,R). As a result we can write

A= (W̃)
−1G̃

and hence the elementsa0, a1, . . . ,an of A are uniquely determined.

5 The solution of differential equations characterizing the timelike curves of constant breadth

in E3
1

(ρk2) = t

P0 = t
′
,P1 =−t + t3,P2 =−t

′
,P3 = t and y= m1.

Using the above equations we can rewrite the differential equation (8) characterizing the timelike curves of constant

breadth as fallows;

m

∑
k=0

Pk (s)y
(k) (s) = F (s) , m= 3, 0≤ s≤ 2π (21)

c© 2018 BISKA Bilisim Technology
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Let f be a solution of Eq. (21) . We wish to approximatef by

pn (s) =
n

∑
k=0

akBk,n (s) , n= 4 (22)

such thatpn (s) satisfies Eq. (21) on the nodes 0≤ s0 < s1 < · · · < s4 ≤ 2π . Here we take n = 4 for simplicity. Putting

pn (s) into Eq. (21), we get the system of linear equations depending ona0, a1, . . . , a4. Let us consider the Eq. (21) and

find the matrix forms of each term in the equation. First we canconvert the Bernstein series solutiony= pn(s) defined by

(22) and its derivativesy(k)(s) to matrix forms, forn= 4 andk= 0,1,2,3.

y(s) = B4(s)A and y(k) (s) = Bk
4 (s)A (23)

where

B4(s) =















B0,0(s) B1,0(s)

B0,1(s) B1,1(s)

· · ·

· · ·

B4,0(s)

B4,1(s)

...
...

. . .
...

B0,4(s) B1,4(s) · · · B4,4(s)















, A=
[

a0 a1 . . . a4

]T

On the other hand, it can be written[B4(s)]
T as[B4(s)]

T = D(S(s))T or

B4 (s) = S(s)DT . (24)

Where for

di j =
(−1) j−i

Rj

(n
1

)

(

n−i
j−i

)

, i ≤ j

0, i > j

the matrix D is calculated as follows

D =

















1

0

0

−2/π
2/π
0

3/2π2 −1/2π3 1/16π4

−3/π2 3/2π3 −1/4π4

3/2π2 −3/2π3 3/8π4

0 0 0 1/2π3 −1/4π4

0 0 0 0 1/16π4

















It is clearly seen that that the relation between the matrixS(s) and its derivativeS(1)(s) is

S(1) (s) = S(s)B

B=

















0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0

















and S(s) =
[

1 s ss2 s3 s4
]

.
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To obtain the matrixS(k)(s) in terms of the matrixS(s), we can use the following procedure:

S(2) (s) = S(1) (s)B = S(s)B2

...

S(3) (s) = S(2) (s)B = · · ·= S(s)B3

(25)

where

B2 =















0 0 2 0 0

0 0 0 6 0

0 0 0 0 12

0 0 0 0 0

0 0 0 0 0















and B3 =















0 0 0 6 0

0 0 0 0 24

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















Consequently, by substituting the matrix forms (24) and (25) into (23), we have the matrix relation.

y(s) = S(s)DTA

y(1) (s) = S(s)BDTA

y(2) (s) = S(s)B2DTA

y(3) (s) = S(s)B3DTA

(26)

Substituting the matrix relation26 into 21and then simplifying, we obtain the matrix equation

m

∑
k=0

Pk (s)S(s)BkDTA= g(s) (27)

By using the nodes{si ; i = 0,1, . . . ,4;0≤ s0 < s1 < · · ·< s4 ≤ 2π} in (27) we get the system of matrix equations

m=3

∑
k=0

Pk (si)S(si)BkDTA= g(si) , i = 0,1, . . . ,4

where s0= 0,s1=
π
2 ,s2=π ,s3=

3π
2 ,s4= 2π and

P0 (si) =















P0(0)

0

0

0

0

0

p0 (π/2)

0

0

0

0

0

P0(π)
0

0

0

0

0

P0 (3π/2)

0

0

0

0

0

P0(2π)















P1(si) =















P1 (0)

0

0

0

0

0

P1(π/2)

0

0

0

0

0

P1(π)
0

0

0

0

0

P1(3π/2)

0

0

0

0

0

P1(2π)















P2(si) =















P2 (0)

0

0

0

0

0

P2(π/2)

0

0

0

0

0

P2(π)
0

0

0

0

0

P2(3π/2)

0

0

0

0

0

P2(2π)
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P3(si) =















P3 (0)

0

0

0

0

0

P3(π/2)

0

0

0

0

0

P3(π)
0

0

0

0

0

P3(3π/2)

0

0

0

0

0

P3(2π)















S(si) =















S(s0)

S(s1)

S(s2)

S(s3)

S(s4)















=















1

1

1

1

1

0

(π/2)

(π)
(3π/2)

(2π)

0

(π/2)2

(π)2

(3π/2)2

(2π)2

0

(π/2)3

(π)3

(3π/2)3

(2π)3

0

(π/2)4

(π)4

(3π/2)4

(2π)4















,F (si) =















f (0)

f (π/2)

f (π)
f (π/2)

f (2π)















The fundamental matrix equation can be written briefly as

m

∑
k=0

PkSBkDTA= G. (28)

Hence, the fundamental matrix Eq. (28) corresponding to (22) can be written in the form

WA= F or [W;F ] = A, W = [Wkh] , k,h= 0,1, . . . ,4 (29)

where

W =
m

∑
k=0

PkSBkDT

Here, the Eq.29corresponds to a matrix of type (5x5). Now let us obtain the matrix equation of the conditions by means

of the relation26, as follows

S(0)BkDTA= [αk] , k= 0,1,2

Firstly, the matrix forms for the conditions can be written as

UkA= [αk] or [Uk ;αk ] , k= 0,1,2 (30)

where for

U0 = S(0)DT =
[

u00 u01 · · · u04

]

=
[

1 0 0 0 0
]

U1 = S(0)B1DT =
[

u10 u11 · · · u14

]

=
[

−2/π 2/π 0 0 0
]

U2 = S(0)B2DT =
[

u20 u21 · · · u24

]

=
[

12/π2 −6/π2 3/π2 0 0
]

Replacing the row matrices30by any m rows of the matrix29, we get the augmented matrix
[

W̃;G̃
]

as

[

W̃;G̃
]

=

















w00 w01 w02 w03 w04 ; f (0)

w10 w11 w12 w13 w14 ; f (π/2)

u00

u10

u20

u01

u11

u21

u02

u12

u22

u03

u13

u23

u04

u14

u24

;

;

;

α0

α1

α2
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where,wi j (i = 0,1 j = 0,1, . . . ,4) obtained as follows;

w00 = t
′
(0)−

2
π
[−t (0)+ t3(0)]+

3
π2 [−t

′
(0)]−

3
π3 t (0)

w01=
2
π
[

−t (0)+ t3(0)
]

−
6

π2

[

−t
′
(0)
]

+
9

π3 t (0)

w02=
3

π2

[

−t
′
(0)
]

−
9

π3 t (0)

w03 =
3

π3 t (0) , w04 = 0,

w10 =
81
256

t
′
(π

2

)

−
27

32π

[

−t
(π

2

)

+ t3
(π

2

)]

+
27

16π2 [−t
′
(π

2

)

]−
9

4π3 t
(π

2

)

w11 =
27
64

t
′
(π

2

)

−
9

4π2 [−t
′
(π

2

)

]+
6

π3 t
(π

2

)

w12 =
27
128

t
′
(π

2

)

+
9

16π

[

−t
(π

2

)

+ t3
(π

2

)]

−
3

8π2 [−t
′
(π

2

)

]−
9

2π3t
(π

2

)

w13 =
3
64

t
′
(π

2

)

+
1

4π

[

−t
(π

2

)

+ t3
(π

2

)]

+
3

4π2 [−t
′
(π

2

)

]

w14 =
1

256
t
′
(π

2

)

+
1

32π

[

−t
(π

2

)

+ t3
(π

2

)]

+
3

16π2 [−t
′
(π

2

)

]+
3

4π3 t
(π

2

)

.

As a result we can write

A= (W̃)
−1G̃=

















0 0 1 0 0

0 0 1 π/2 0

0

R

Y

0

0

Z

−2 π π2/3

T K V

Q L C































f (0)

f (π/2)

α0

α1

α2















where

R= 1/w03,T = 2w02−w00−w01/w03, K =−π(w01+2w02)/2w03

V =−π2w02/3w03,Y =−w13/w03w14, Z = 1/w14

Q=−w13(w10+w11−2w12)+w13(w00+w01−2w02)/w03w14

L =−πw03(w11+w12)+πw13(w01+2w02)/2w03w14

C= π2 (w13w02−w03w12)/w03w14

and hence the elementsa0, a1, . . . ,a4 of A are uniquely determined as follow

a0 = α0

a1 = α0+
π
2

α1

a2 =−2α0+πα1+
π2

3
α2

a3 = R f (0)+Tα0+Kα1+Vα2

a4 =Y f (0)+Z f
(π

2

)

+Qα
0
+Lα1+Cα2.

If we put thisa4 unknowns in equation (22), we obtain the Bernstein series solutiony= pn(s) = m1 of the Eq. (21).
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6 The probed of differential equations characterizing timelike curves of constant breadth in E3
1

We found that the expression is y= m1 coefficient which is determined the timelike curves of constant breadth inE3
1. Also

m2 coefficient is finded with method similar under the same initial conditions. For this first, it is clear that in the second

equation of the system (2)

m1 =ρk2m3−m2
′
. (31)

We used where the first equation of the system (2), the derivative of the equation (31)

−m2
′′
+(ρk2)

′
m3+(ρk2)m

′

3 =−m2− f (32)

Also, it is clear that in the second equation of the system (2)

m3=
m2

′
+m1

ρk2
(33)

By using the third equation of the system (2) and the equation (33) in the equation (32), we obtain the following differential

equation:

ρk2m2
′′
− (ρk2)

′
m2

′
+[(ρk2)

3−ρk2]m2− (ρk2)
′
m1−ρk2 f = 0

Here,m1 is conjugated and then by using derivative of the expressionobtained, we obtain the following differential

equation;

m1
′
=

ρk2

(ρk2)
′ m2

′′′
+





(

ρk2

(ρk2)
′

)′

−1



m2
′′
+

[

(ρk2)
3−ρk2

(ρk2)
′

]

m2
′
+

[

(ρk2)
3−ρk2

(ρk2)
′

]′

m2

−

(

ρk2

(ρk2)
′

)′

f −
ρk2

(ρk2)
′ f

′
(34)

By using the equation (34) and the first equation of the system (2) following equation is obtained

ρk2

(ρk2)
′ m2

′′′
+





(

ρk2

(ρk2)
′

)′

−1



m2
′′
+

[

(ρk2)
3−ρk2

(ρk2)
′

]

m2
′
+[(

(ρk2)
3−ρk2

(ρk2)
′ )

′

+1]m2− [

(

ρk2

(ρk2)
′

)′

−1] f

−
ρk2

(ρk2)
′ f

′
(35)

Finally, while(ρk2)= t and F as follows:

F =





(

ρk2

(ρk2)
′

)′

−1



 f +
ρk2

(ρk2)
′ f

′

we obtain the third order, linear, differential equation with variable coefficients as follows

t

t′
m2

′′′
+

[

(

t

t′

)′

−1

]

m2
′′
+

[

t3−t

t′

]

m2
′
+

[

(

t3−t

t′

)

′

+1

]

m2 = F (36)
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This equation is differential equation with unknownm2 characterizing timelike curves of constant breadth inE3
1.

Also, m3 coefficient is finded with method similar under the same initial conditions. First, it is clear that in the third

equation of the system (2)

m2=−
1

ρk2
m3

′
(37)

We used where the second equation of the system (2), the derivative of the equation (37)

m1=−
1

ρk2
m3

′′
+

(

−
1

ρk2

)′

m3
′
−(ρk2)m3 (38)

By using the derivative of the equation (38) in the first equation of the system (2), we obtain the following differential

equation:

1
ρk2

m3
′′′
+2(

1
ρk2

)

′

m3
′′
+





(

−
(ρk2)

′

(ρk2)
2

)′

+
1

ρk2
+ρk2



m3
′
+(ρk2)

′
m3 = f (39)

Finally, while(ρk2)= t we obtain the third order, linear, differential equation with variable coefficients as follows:

1
t
m3

′′′
+2(

1
t
)

′

m3
′′
+





(

−
t
′

t2

)′

+
1
t
+ t



m3
′
+t

′
m3 = f (40)

This equation is differential equation with unknownm3 characterizing the timelike curves of constant breadth inE3
1.

7 Corollary

By using Bernstein series solution method, the solutions ofthese equations (36) and (40) are approximately obtained. If

we use thesemi , ( i = 1,2,3) coefficients, which we have calculated, in equationd2 = −m2
1 + m2

2 + m2
3 , we get the

constant value of the breadth of the curve inE3
1.

Thus, we obtain general expression connected with torsion and curvature of a timelike curve of constant breadth inE3
1.

Also, in this work, the motion point is a system of differential equations like Frenet. With the similar idea, the equation

characterizing timelike curves of constant breadth in 4-dimensional Minkowski space can be obtained. And the equation

obtained by the same solution method can be examined.
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[6] J. Walrave,Curves and SurfaceṡIn Minkowski Space,Ph. D. Thesis (1995), K. U. Leuven, Faculty Of Sciences, Leuven.

[7] L. Euler,De Curvis trangularibis,Acta Acad. Petropol, (1778, 1780), 3-30.

[8] M. Fujivara, On Space Curves Of Constant Breadth, Thoku Math. J.(5), (1914), 179-184.
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