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Abstract: Nanofluid thermal radiation in a semi porous channel is itigated in existence of magnetic field. Influence of thermal
radiation and Joule heating on energy equation is takenaic¢ount. Differential transform method is utilized to sobhis problem.
Effects of Reynolds number, Hartmann number, suction par@amEckert number, radiation parameter on flow and heasfeaare
presented. Results show that temperature gradient augmihtrise of Reynolds number, suction parameter, and Radiparameter.

Keywords: Semi porous channel, nanofluid, magnetic field, single phasgel, differential transform method.

Nomenclature

Bo Magnetic induction Pr Prandtl number

Rd Radiation parameter Qr Thermal radiation

Ha Hartmann number T Fluid temperature

Cp Specific heat capacity v, u Vertical and horizontal velocities
Greek symbols

o] Electrical conductivity Oe Stefan—Boltzmann constant

n Similarity independent variable a Thermal diffusivity

() Volume fraction of nanofluid Br mean absorption coefficient

o Surface tension % Dynamic viscosity

Subscripts

S Solid particles T Thermal quantity

f Base fluid 0 forn — oo

nf nanofluid 0 atn — 0

Solutal quantity

1 Introduction

Nanofluid was proposed as innovative way to enhance heafféraiKhan et al. [1] investigated nanofluid flow with slip
motion influence in existence of inclined magnetic field. &het al. [2] studied the electric double layer effect on two
phase flow in existence of magnetic field. Sheikholeslami @adji [3] presented various application of nanofluid in
their review paper. Sheremet et al. [4] simulated the udst&HD flow in an enclosure. They used FDM to simulate
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that paper. Sheikholeslami and Ganiji [5] investigated flaitbflow inside a porous cavity by means of new numerical
method. Ahmad and Mustafa [6] investigated the rotatingofiaid flow induced by an exponentially stretching. Their
results revealed that temperature gradient reduces wgmant of angular velocity. Sheikholeslami and Seyednezhad
[7] investigated magnetic field effect on nanofluid heatdfanin a porous cavity. Sheikholeslami and Rokni [8] stddie
the nanofluid convective flow in a porous cylinder. Impact @fgmetic nanofluid on film condensation was described by
Heysiattalab et al. [9]. They concluded tiNat enhances with reducing size of nanoparticle.

Selimefendigil and Oztop [10] examined nanofluid conjugaeduction-convection mechanism in a titled cavity. They
proved that temperature gradient augments with enhanceash®f number. Sheikholeslami and Ganji [11] investigated
nanofluid transportation in presence of external magneticce. Sheikholeslami et al. [12] investigated nanofluid/flo

in a porous media in existence of magnetic field. Sheikhafesét al. [13] utilized AGM for nanofluid flow between two
pipes. Influence of non-uniform Lorentz forces on nanofluefktyle has been studied by Sheikholeslami Kandelousi
[14]. He concluded that improvement in heat transfer regdwdéh rise of Kelvin forces. Sheikholeslami and Ganiji [15]
studied the electric field effect on nanofluid forced conieectSheikholeslami and Ganiji [16] demonstrated the efiéct
magnetic field on nanofluid natural convection. Sheikhal@sbnd Ganiji [17] presented the nanofluid transportatian in
curved cavity in presence of Lorentz forces. Several kinddgamoparticles have been used by several researchers
[18-24].

The aim of this article is to investigate impact of magnettdfion CuO- water nanofluid in existence thermal radiation.
Similarity transformation is utilized to find the ordinarifférential equations. Differential transform method ®sen to
simulate this paper.

2 Governing equation

Steady nanofluid flow and heat transfer in a semi porous chénoensidered. Fig. 1 shows the geometry and boundary
conditions. Constant vertical magnetic field effect hasnbaeplied. Effects of thermal radiation and Joule heating on
temperature distribution are taken into account. The Igege is hot and the upper one is cold. Continuity, Naviekeso
and energy equations are presented as follows:

Jdu ov

ﬂ + a_y =0 (1)
du du i, d%u
ov dv\  dp 0%
Pnf(Ua—)(ﬁLVa—}/)a—eran(W) 3
oT  aT 0T 2.2 00
(pCp)nf (UW +Va—y) = knf (d—yz) +O'nfBo u-— a—y, (4)

where the radiation heat fluy is considered according to Rosseland approximation suathgth= —%%—T; where

Os, Br are the Stefan—Boltzmann constant and the mean absorpieffictient, respectively [27]. The fluid-phase
temperature differences within the flow are assumed to biiciguitly small so thaff* may be expressed as a linear
function of temperature. This is done by expandigin a Taylor series about the temperatligeand neglecting higher
order terms to yieldT 4 = 4T2T — 3T,
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The effective density, effective heat capacity and eleaticonductivity of the nanofluid are defined as:

pnt = (1—@)ps + @pp,

(PCplnt = (1— @) (pCp)t + @ (PCp)p, ®)
Onf 3(5_? - 1) ¢

o () (209

The KKL (Koo-Kleinstreuer-Li) correlation has been utéd for viscosity of nanofluid

Hetf = Hstatic+ HUBrownian= Hstatic + kBrokwnian X é-)l_f
f It
KbT /
Krownian= 5 x 104(ppfcp,f g (T7 ¢7dp)
Ppdp
G/ (T.9.0p) = (a1 2cin (d) + asin () + &l (@) n (dy) +asIn (d)?) In (T ©

+ (aG +a7In (dp) + agIn (@) +agIn (@) In (dy) + aoln (dp)z) .

The related coefficient and properties of Cuo-water narifupresented in table 1 and 2. Maxwell model and Hamilton—
Crosser model for irregular particle geometries by intiidg a shape factor can be expressed as

knt _ kp+ (m+ ki — (m+ 1) @ (ki —kp)
k kp+ (M-+ 1) ks + @ (ks —kp)

()

in whichk, andkrare the conductivities of the particle material and the Iilage. In this equatiorfm” is shaper factor.
Table 3 shows the different values of shape factors for varghapes of nanopatrticles.

Boundary conditions are:

u=bxv=-vy, T=Tp aty=-a
u=0,v=0,T=T, at y=+a (8)

whereb < 0 for shrinking walls channel artzi> O for stretching walls. Similarity transformation methaaktbeen utilized
for obtain ordinary differential equations. The followingn dimensional parameters are introduced:

y / T *Tl
==, u= bxf = —abf 6= 9
n =3, u=bxf(n), v=—abf(n), T 9)
By using the above transformation, the final equations at&ieéd as follows:
i A A
vV _ a2 e _REL (¢ ) = 1
a A Az( )=0 (10)
4 Az Pr Ag 2
1+—Rd> 0" +Pr—=f0 + Ha?Ec— —f? =0, 11
( 3A4 A4 R A (1D
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whereR Ha, Rd,Ec, Pr are stretching Reynolds number, Hartman number, Radigtarameter, Eckert number and
Prandtl number. These constant parameters are defined as:

2
R= au—b Ha—Boa, /%,Rd: 4073/ (Brks)
f f

pi(bx? | ab(pCp),

Ec= ,Pr= , 12
(pCp) AT k¢ (12)
Pnt Hnt (PCp)ny Knt Ont
A :_7A :_aA = 5 :_,A = —.
YT T (pCy); A= P Of
Moreover, boundary conditions becomes
f'(-1) =1, f'(1)=0,0(-1) =1,
f(-)=A=" f(1)=0,6(1)=0. (13)

ab’

3 Differential transform method (DTM)

3.1 Basic idea

Basic definitions and operations of differential transfation are introduced as follows. Differential transforinatof
the functionf (n) is defined as follows:

1 [d¥f
"0 =g [T .

In (14),f (n) is the original function an& (k) is the transformed function which is called the T-functidgng also called
the spectrum of thé (n) atn = no, in thek domain). The differential inverse transformatiorfofk) is defined as:
f(n)=" Fkn-no (15)
K=0

by combining (14) and (15) f{) can be obtained:

_ o [#m] (n-no)*
f(fl)kzo[ ank ]MG T (16)

Equation (16) implies that the concept of the differentiahsformation is derived from Taylor's series expansian, b
the method does not evaluate the derivatives symboliddiiyvever, relative derivatives are calculated by an iteeati
procedure that is described by the transformed equatiotieairiginal functions. From the definitions of (14) and (15)
it is easily proven that the transformed functions complihwie basic mathematical operations shown in below. In real
applications, the functiofi () in (16) is expressed by a finite series and can be written as:

N

f(n)= Z)F(k)(” —no)*. (17)

k=
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Equation (17) implies that (n) = Y\ _n.1 (F(k)(r) — no)k) is negligibly small, wherd is series size.

Theorems to be used in the transformation procedure, whachbe evaluated from (14) and (15), are given below
(Table4).

3.2 Solution with differential transformation method

Applying the differential transforms for Egs. (10-11) give

(k+1)(k+2)(k+3)(k+4)F[k+4] — Hazﬁ—z "(k+1)(k+2)F[k+2]

k

SR Y (Mt 1)(m+ 2F M2 (k-m+ DFk-me1) o
2 m=0

F[O] = a1, F[1] = ap,F[2] = a3, F[3] = a4 (19)

k

4 A
<1+ @Rd) (k+2)(k+1)0k+ 2] + PrA—i ngo((m 1)@[m+ 1]F[k—m))

+Ha’Ec—

ii (m+1)F[m+1](k—m+1)F[k—m+1]) =0 (20)

O[0] =as, O[1] = as. (21)
According to previous equations:

1 1 _A 1 A
Fl4) = 1—2Ha A—a3+ 12RA ayag— 4RA a; as, (22)

1. ,A 1 A, 1 A ,As 1/ A\
FI[5 Ha— —RZa2- —_REH&22ajazt+ —(R—= ) a
5= ogHa A, 2t 30RA, B 5ot 18 A, a8t 55\ Ry, ) 8%

Pr

. - _ 2
O[0] = as, O[1] = a6,0[2] = 157R(3A4+4Rd) (RAsaqas + Ha?AsEca),
Pr
O3] =05——— (—3RAA; arag — 4RAgaag Rd+ 3a2PrAg2agR+ 23
3] R(3A4+4Rd)2( AeAs axap — 4RAg @85 1PrAs“as (23)

3a; PrHa® EcAgAsas — 12Ha’Ecapag AsAy — 16Ha’EcaazAsRd) | ...
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Finally we have:

1 A 1 _A 1 A
F (n) - a]_+a.2n +a3n2+a4n3+ (1—2Ha2A—za3+ 1—2RA—;a2a3— ZRA—;alaz;) n4+ (24)
_ 4 Pr 2 2
O(n)=as+agn + ( 1'5R(3A4+4Rd) (RAga1a6 + Ha A5Eca§)> ne+... (25)

According to following equations and boundary conditioasay, as,as,as,as can be obtained. By inserting obtained
a1, 8,83, a4, 85,3 INto Equations (24-25), it can be obtained the expressida (@f)and® (n) which are transform of
f (n)and (n), respectively.

4 Results and discussions

Influence of thermal radiation on Magnetohydrodynamic Gu&er nanofluid flow and heat transfer in a semi porous
channel with stretching wall is investigated. Influence ofil@ heating on energy equation is taken into account. The
ordinary differential equations are obtained by meansrofiarity transformation. Differential transform methddTM)

is chosen for solving final ODEs. Fig. 2 illustrates the vesfions of presented result with those of obtained in previo
works ([28] and [29]). As depicted in this figure, the currttAPLE code has good accuracy.

Influences of nanofluid volume fraction, shape of nanopagjdHartmann number, suction parameter, Eckert number,
radiation parameter on velocity profile, temperature peadile presented in graphs and tables. Influences of shape of th
nanoparticles on Nusselt number is shown in Table 5. Satp®iatelet leads to find the maximum Nusselt number.
Therefore, Platelet nanoparticle has been selected ftiveluinvestigation. Influence of volume fraction of nanaflon
temperature profile is depicted in Fig. 3. Temperature prafidcreases with rise nanofluid volume fraction. So thermal
boundary layer thickness has reverse relationship witlofhaid volume fraction. Effect of Reynolds number on velgcit
and temperature profiles is shown in Fig. 4. Vertical velo@hd temperature profiles decreases with increase of
Reynolds number. Horizontal velocity near the bottom waltrgases with increase of Reynolds number while opposite
trend is observed near the upper wall. Fig. 5 exhibits thecefif Hartmann number on velocity and temperature profiles.
Temperature profile enhances with increase of Hartmann aurAlso velocity reduces with increase of Lorentz forces.
Fig. 6 shows the effect of suction parameter on velocity ardperature profiles. Temperature and vertical velocity
profiles enhances with rise of suction parameter. Horizomtlcity reduces with augment of suction parameter. Also
the minimum point of velocity shift to lower wall.

5 Conclusions

Effect of magnetic field on forced and thermal radiation hestsfer in a channel is examined considering Joule heating
effect. Roles of nanofluid volume fraction, shape of nantiglas, Hartmann number, suction parameter, Eckert number

radiation parameter are discussed. As Hartman number akeftBauumber increases, Nusselt number decreases while
opposite trend is observed for skin friction coefficientséit can be found that Nusselt number increases with augment
of Reynolds number, suction parameter, Radiation paramete
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Fig. 1: Geometry of the problem
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Fig. 2. Comparison of the velocity and temperature profiles betvileempresent work and (a) [28]; (b) [29] for different
values ofPr whenA = 0.5, M =1, R=0.5andKr =0.5.
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Fig. 3: Effect of nanofluid volume fraction on temperature profileeniR = 1, Ha=1,Rd=0.5,A =1, Ec=0.5,m=
5.7,Pr=6.2.
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Fig. 4. Effect of Reynolds number on velocity and temperature @sfil
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Fig. 5: Effect of Hartmann number on velocity and temperature @sfil
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Fig. 6: Effect of suction parameter on velocity and temperaturéipso

Table 1: Thermo physical properties of water and nanopatrticles.

p(kg/m?)  Cp(j/kgk)  k(W/mKk) dp(nm) o(Q-m?
Pure water 997.1 4179 0.613 - 0.05
CuO 6500 540 18 29 1010
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Table 2: The coefficient values @&8uO— Waternanofluids.

Coefficient values CuO—Water
ai -26.593310846
a -0.403818333
az -33.3516805
a -1.915825591
as 6.42185846658E-02
as 48.40336955
ay -9.787756683
ag 190.245610009
ag 10.9285386565
aio -0.72009983664

Table 3: The values of shape factor of different shapes of nanopestic

Spherical @ 3
m il
Platelet 9 5.7

Cylinder [ — 4.8

Brick D 37

Table 4: Some of the basic operations of Differential transformatizethod.

Original function Transformed function
f(n)=ag(n)+pBh(n) Flkl=aGk+pHK
f(n) =287 Fik = &N Glk4n]
f(n) =g(n)h(n) FIK=Sm oF[MHk—m
f(1) = sin(wn +a) Flkd = § sin(%% +a)
f(1) = cogmn +a) FIK = % cos % +a)
f(n) = e FIN =%
F(n)=@1+n)" F K = Mm=)(m-kid)

m 1,k=m
f(n)=n FIK =d(k m):{o’k#m
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Table 5: Nusselt number for various shape of the nanopatrticles tthen 1, Rd=0.5,A = 1,Ec=0.5, ¢ = 0.04,m=
5.7,Pr=6.2.

R Spherical Platelet Cylinder Brick

1 1.735301 1.815146 1.790366 1.757658
1.5 3.21957 3.259504 3.247116 3.230759

2 3.892636  3.91125 3.905465 3.897842
25 4.236621 4.241594 4.240018 4.237987
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