http://dx.doi.org/10.20852/ntmsci.2018.277

Some topological properties of double Cesàro-Orlicz sequence spaces

Cenap Duyar¹ and Oguz Ogur²

Received: 15 May 2017, Accepted: 1 June 2017

Published online: 9 April 2018.

Abstract: The object of this paper is to introduce the double Cesàro-Orlicz sequence space $Ces_M^{(2)}$ using a Orlicz function M. Necessary and sufficient conditions under which the double Cesàro-Orlicz sequence space $Ces_M^{(2)}$ is nontrivial are presented. It is proved that double Cesàro-Orlicz sequence spaces $Ces_M^{(2)}$ are complete. Finally, it is obtained that if $\phi \in \Delta_2(0)$ then the space $Ces_M^{(2)}$ is separable and order continuous.

Keywords: Double sequence, double Cesàro-Orlicz sequence space, Luxemburg norm, Fatou property, order continuity.

1 Introduction

As usual, \mathbb{N} , \mathbb{R} and \mathbb{R}_+ denote the sets of positive integers, real numbers and nonnegative real numbers, respectively. A double sequence on a normed linear space X is a function x from $\mathbb{N} \times \mathbb{N}$ into X and briefly denoted by x = (x(i, j)). Throughout this work, w and w^2 denote the spaces of all single real sequences and double real sequences, respectively.

First of all, let us recall preliminary definitions and notations.

Definition 1. If for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that $||x_{k,l} - a||_X < \varepsilon$ whenever $k, l > n_{\varepsilon}$ then a double sequence $\{x_{k,l}\}$ is said to be converge (in terms of Pringsheim) to $a \in X$ [12].

A double sequence $\{x_{k,l}\}$ is called a Cauchy sequence if and only if for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that $|x_{k,l} - x_{p,q}| < \varepsilon$ for all $k,l,p,q \ge n_0$.

A double series is infinity sum $\sum_{k,l=1}^{\infty} x_{k,l}$ and its convergence implies the convergence by $\|.\|_X$ of partial sums sequence $\{S_{n,m}\}$, where $S_{n,m} = \sum_{k=1}^{n} \sum_{l=1}^{m} x_{k,l}$ (see [1], [6]).

Definition 2. If each double Cauchy sequence in X converges an element of X according to norm of X, then X is said to be a double complete space. A normed double complete space is said to be a double Banach space [1].

Definition 3. A Banach space $(X, \|.\|)$ which is a subspace of $w^{(2)}$ is said to be double Köthe sequence space if:

- (i) for any $x \in w^{(2)}$ and $y \in X$ such that $|x(i,j)| \le |y(i,j)|$ for all $i,j \in \mathbb{N}$, we have $x \in X$ and $||x|| \le ||y||$,
- (ii) there is $x \in X$ with $x(i, j) \neq 0$ for all $i, j \in \mathbb{N}$.

An element x from a double Köthe sequence space X is called order continuous if for any sequence (x_n) in X_+ (the positive cone of X) such that $x_n \leq |x|$ for all $n \in \mathbb{N}$ and $x_n \to 0$ coordinatewise, we have $||x_n|| \to 0$.

¹Department of Mathematics, Faculty Art and Science, Ondokuz Mayis University, Samsun, Turkey

²Department of Mathematics, Faculty Art and Science, Giresun University, Giresun, Turkey

A double Köthe sequence space *X* is said to be order continuous if any $x \in X$ order continuous. It is easy to see that *X* is order continuous if and only if $||x^*|| \to 0$ as $n, m \to \infty$, where

$$x^*(i,j) = \begin{cases} x(i,j), & if \ i \ge n+1 \text{ and } j \ge m+1\\ 0, & others \end{cases}$$

for any $x \in X$.

A double Köthe sequence space X has the Fatou property if for any sequence (x_n) in X_+ , and any $x \in w^{(2)}$ such that $x_n \to x$ coordinatewise and $\sup_n \|x_n\| < \infty$, we have that $x \in X$ and $\|x_n\| \to \|x\|$ [2].

It is known that for any Köthe sequence (function) space the Fatou property implies its completeness [10].

Definition 4. A function $\rho: X \to [0, \infty)$, where X is real vector space is called a modular if it is satisfies the following conditions:

- (i) $\rho(x) = 0$ if and only if x = 0;
- (ii) $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$.

The modular ρ is called convex if

(iv)
$$\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$$
 for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$.

For any modular ρ on X, the space

$$X_{\rho} = \{x \in X : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0^+\}$$

is called the modular space. If ρ is a convex modular, the function

$$||x|| = \inf \left\{ \lambda > 0 : \rho \left(\frac{x}{\lambda} \right) \le 1 \right\}$$

is norm on X_{ρ} , which is called the Luxemburg norm [11].

Definition 5. An Orlicz function is a function $M:[0,\infty)\to[0,\infty)$ which is continuous, nondecreasing and convex with M(0)=0, M(x)>0 for x>0 and $M(x)\to\infty$ as $x\to\infty$.

An Orlicz function M can always be represented in the following integral form: $M(x) = \int_0^x \eta(t) dt$, where η is known as the kernel of M, is right differentiable for $t \ge 0$, $\eta(0) = 0$, $\eta(t) > 0$ for t > 0, η is nondecreasing and $\eta(t) \to \infty$ as $t \to \infty$.

An Orlicz function M is said to be satisfied the Δ_2 -condition at zero ($M \in \Delta_2(0)$ for shortly) if there are T > 0 and a > 0 such that M(a) > 0 and $M(2u) \le TM(u)$ for all $u \in [0,a]$ [4], [9], [11]. For $1 \le p < \infty$, the Cesàro sequence space is defined by

$$Ces_p = \left\{ x \in w : \sum_{j=1}^{\infty} \left(\frac{1}{j} \sum_{i=1}^{j} |x(i)| \right)^p < \infty \right\},$$

equipped with norm

$$||x|| = \left(\sum_{i=1}^{\infty} \left(\frac{1}{j}\sum_{i=1}^{j} |x(i)|\right)^{p}\right)^{\frac{1}{p}}.$$

This space was first introduced by Shiue [14] It is very useful in the theory of matrix operators and others.

The arithmetic mean map σ is defined on w by the formula

$$\sigma x = (\sigma x(i))_{i=1}^{\infty}$$
 , where $\sigma x(i) = \frac{1}{i} \sum_{i=1}^{i} |x(j)|$

for any $i \in \mathbb{N}$ and $x \in w$. Given any Orlicz function M, the space

$$Ces_M = \{x \in w : \rho_M(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where

$$\rho_M(\lambda x) = \sum_{i=1}^{\infty} M\left(\frac{\lambda}{i} \sum_{j=1}^{i} |x(j)|\right)$$

which is called the Cesàro-Orlicz sequence space. This space equipped with the Luxemburg norm

$$||x||_{Ces_M} = \inf\left\{\lambda > 0 : \rho_M\left(\frac{x}{\lambda}\right) \le 1\right\}$$

([2]). In the case, when $M(u) = |u|^p$, $1 \le p < \infty$, we get the Cesaro sequence spaces Ces_p . The topological and geometric properties of Cesàro-Orlicz sequence spaces and their generalizations have been studied in [2], [3], [5], [7], [13], [14].

In this paper, for double sequences, we introduce sequence space $Ces_M^{(2)}$ using a Orlicz function M and obtain its some topological properties. The double sequence spaces $Ces_M^{(2)}$ is defined by follows;

Given any Orlicz function M, we define on $w^{(2)}$ the following two modulars;

$$I_M^{(2)}(x) = \sum_{n=-1}^{\infty} M(|x(n,m)|) \text{ and } \rho_M^{(2)}(x) = I_M^{(2)}(\sigma^{(2)}x)$$

where

$$\sigma^{(2)}x = \left(\sigma^{(2)}x(n,m)\right), \ \sigma^{(2)}x(n,m) = \frac{1}{nm}\sum_{i,j=1}^{n,m}|x(i,j)|.$$

Let M be an Orlicz function. The double Cesàro-Orlicz sequence space $Ces_M^{(2)}$ is defined by

$$Ces_M^{(2)} = \left\{ x \in w^{(2)} : \rho_M^{(2)}(\lambda x) < \infty \text{ for some } \lambda > 0 \right\}$$

where $ho_M^{(2)}$ is convex modular defined as above. This double sequence space is a normed space equipped with Luxemburg

$$||x||_M = \inf\left\{\lambda > 0 : \rho_M^{(2)}\left(\frac{x}{\lambda}\right) \le 1\right\}.$$

2 Conclusion

Theorem 1. The following conditions are equivalent:

(1)
$$Ces_M^{(2)} \neq \{0\}$$
,

(1)
$$Ces_{M}^{(2)} \neq \{0\},$$

(2) $\exists n_{1}, m_{1} \sum_{n=n_{1}}^{\infty} \sum_{m=m_{1}}^{\infty} M\left(\frac{1}{n.m}\right) < \infty,$

(3)
$$\forall k > 0, \exists n_k, m_k \sum_{n=n_k}^{\infty} \sum_{m=m_k}^{\infty} M\left(\frac{k}{n.m}\right) < \infty.$$

Proof. $(1)\Rightarrow (2)$. Let $Ces_M^{(2)}\neq \{0\}$. Then there is $z\in Ces_M^{(2)}$ such that $z\neq 0$. Since $z\neq 0$, there exists $l_1,\ l_2\in \mathbb{N}$ such that $z(l_1,l_2)\neq 0$. Therefore $y=(y(i,j))\in Ces_M^{(2)}$, where

$$y(i,j) = \begin{cases} z(i,j), & if \ i = l_1, j = l_2 \\ 0, & others \end{cases}$$

and consequently $x = (x(i, j)) \in Ces_M^{(2)}$, where

$$x(i,j) = \begin{cases} 1, & \text{if } i = l_1, j = l_2 \\ 0, & \text{others} \end{cases}.$$

Hence there exists k > 0 such that

$$\rho_{M}^{(2)}(kx) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) = \sum_{n=l_1}^{\infty} \sum_{m=l_2}^{\infty} M\left(\frac{k}{n.m}\right) < \infty.$$

We consider two different cases for k > 0.

(i) k > 1. Then we have $\frac{1}{n.m} < \frac{k}{n.m}$ for all $n, m \in \mathbb{N}$. Since the Orlicz function M is nondecreasing, we get $M\left(\frac{1}{n.m}\right) < M\left(\frac{k}{n.m}\right)$ for all $n, m \in \mathbb{N}$. Hence

$$\sum_{n=l_1}^{\infty}\sum_{m=l_2}^{\infty}M\left(\frac{1}{n.m}\right)<\sum_{n=l_1}^{\infty}\sum_{m=l_2}^{\infty}M\left(\frac{k}{n.m}\right)<\infty.$$

So if we take $n_1 = l_1$ and $m_1 = l_2$, the condition (2) is satisfied for k > 1. (ii) 0 < k < 1. Then there exists $s \in \mathbb{N}$ such that $\frac{1}{s^2} \le k$ and so we have $\frac{1}{s^2 \cdot n \cdot m} \le \frac{k}{n \cdot m}$ for all $n, m \in \mathbb{N}$. Since the Orlicz function M is nondecreasing, we get

$$\sum_{n=l_1}^{\infty} \sum_{m=l_2}^{\infty} M\left(\frac{1}{s^2.n.m}\right) \leq \sum_{n=l_1}^{\infty} \sum_{m=l_2}^{\infty} M\left(\frac{k}{n.m}\right).$$

Thus.

$$\begin{split} \sum_{n=sl_1}^{\infty} \sum_{m=sl_2}^{\infty} M\left(\frac{1}{n.m}\right) &= \sum_{n=sl_1}^{\infty} \left\{ M\left(\frac{1}{n.(sl_2)}\right) + M\left(\frac{1}{n.(sl_2+1)}\right) + M\left(\frac{1}{n.(sl_2+2)}\right) + \dots + M\left(\frac{1}{n.(sl_2+(s-1))}\right) \right. \\ &\quad + M\left(\frac{1}{n.(s(l_2+1))}\right) + M\left(\frac{1}{n.(s(l_2+1)+1)}\right) + \dots + M\left(\frac{1}{n.(s(l_2+1)+(s-1))}\right) + \dots \right\} \\ &\leq \sum_{n=sl_1}^{\infty} \left\{ M\left(\frac{1}{n.(sl_2)}\right) + M\left(\frac{1}{n.(sl_2)}\right) + M\left(\frac{1}{n.(sl_2)}\right) + \dots + M\left(\frac{1}{n.(sl_2)}\right) \right. \\ &\quad + M\left(\frac{1}{n.(s(l_2+1))}\right) + M\left(\frac{1}{n.(s(l_2+1))}\right) + \dots + M\left(\frac{1}{n.(s(l_2+1))}\right) + \dots \right\} \\ &= \sum_{n=sl_1}^{\infty} \left\{ s. M\left(\frac{1}{n.(sl_2)}\right) + s. M\left(\frac{1}{n.(s(l_2+1))}\right) + \dots \right\} \\ &= \sum_{n=sl_1}^{\infty} \left\{ s. \sum_{m=l_2}^{\infty} M\left(\frac{1}{n.(sm)}\right) \right\} = s. \sum_{m=l_2}^{\infty} \left\{ \sum_{n=sl_1}^{\infty} M\left(\frac{1}{m.(sn)}\right) \right\} \\ &\leq s. \sum_{m=l_2}^{\infty} \left\{ s. \sum_{n=l_1}^{\infty} M\left(\frac{1}{m.(s^2.n)}\right) \right\} = s^2. \sum_{m=l_2}^{\infty} \sum_{n=l_1}^{\infty} M\left(\frac{1}{s^2.m.n}\right) \right. \\ &\leq s. \mathcal{S}$$

If we take $n_1 = s.l_1$ and $m_1 = s.l_2$, the proof is completed.

 $(2) \Rightarrow (3)$. Let the condition (2) be satisfied. Then there exist $n_1, m_1 \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} \sum_{m=\infty}^{\infty} M\left(\frac{1}{n.m}\right) < \infty$. We consider two different cases for k > 0.

(i) 0 < k < 1. Then we have $\frac{k}{n.m} < \frac{1}{n.m}$ and

$$\sum_{n=n_1}^{\infty}\sum_{m=m_1}^{\infty}M\left(\frac{k}{n.m}\right)<\sum_{n=n_1}^{\infty}\sum_{m=m_1}^{\infty}M\left(\frac{1}{n.m}\right)<\infty.$$

Taking $n_k := n_1$ and $m_k := m_1$ we get $\sum_{n=n_k}^{\infty} \sum_{m=m_k}^{\infty} M\left(\frac{k}{n.m}\right) < \infty$. (ii) k > 1. Then there exists $s \in \mathbb{N}$ such that $k \le s$. Let define $n_k := n_1.s$ and $m_k := m_1.s$. Hence we have

$$\begin{split} \sum_{n=n_k}^{\infty} \sum_{m=m_k}^{\infty} M\left(\frac{k}{n.m}\right) &\leq \sum_{n=n_k}^{\infty} \sum_{m=m_k}^{\infty} M\left(\frac{s}{n.m}\right) = \sum_{n=n_1.s}^{\infty} \left\{\sum_{m=m_1.s}^{\infty} M\left(\frac{s}{n.m}\right)\right\} \\ &= \sum_{n=n_1.s}^{\infty} \left\{M\left(\frac{s}{n.(s.m_1)}\right) + M\left(\frac{s}{n.(s.m_1+1)}\right) + \dots + M\left(\frac{s}{n.(s.(m_1+1)+1)}\right) + \dots + M\left(\frac{s}{n.(s.(m_1+1)+(s-1))}\right) + \dots \right\} \\ &+ M\left(\frac{s}{n.(s.(m_1+1)+(s-1))}\right) + \dots \right\} \\ &\leq \sum_{n=n_1.s}^{\infty} \left\{s.M\left(\frac{1}{n.m_1}\right) + s.M\left(\frac{1}{n.(m_1+1)}\right) + \dots \right\} \\ &= \sum_{n=n_1.s}^{\infty} \left\{s.\sum_{m=m_1}^{\infty} M\left(\frac{1}{n.m}\right)\right\} = s.\sum_{m=m_1}^{\infty} \left\{\sum_{n=n_1.s}^{\infty} M\left(\frac{1}{n.m}\right)\right\} \\ &\leq s^2.\sum_{n=n_1.s=n_2.s}^{\infty} \sum_{m=m_1.s=n_2.s}^{\infty} M\left(\frac{1}{n.m}\right) < \infty. \end{split}$$

 $(3) \Rightarrow (1)$. Let the condition (3) holds. By assumption, there exist $n_1, m_1 \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} \sum_{m=n}^{\infty} M\left(\frac{1}{n.m}\right) < \infty$ for k=1. Define x = (x(i, j)) such that

$$x(i,j) = \begin{cases} 1, & \text{if } i = n_1, j = m_1 \\ 0, & \text{others} \end{cases}$$

Clearly, $x \in w^{(2)}$ and

$$\rho_M^{(2)}(kx) = \rho_M^{(2)}(x) = \sum_{n=n_1}^{\infty} \sum_{m=m_1}^{\infty} M\left(\frac{1}{n.m}\right) < \infty.$$

Hence $x \in Ces_M^{(2)}$, which implies $Ces_M^{(2)} \neq \{0\}$.

Theorem 2.Let M be Orlicz function. For the conditions:

- (1) $\liminf_{t\to 0} \frac{t.M'(t)}{M(t)} > 1$,
- (2) $\exists \varepsilon > 0, \exists A > 0, \exists u_0, \forall 0 \le u \le u_0 \ M(u) \le A.u^{1+\varepsilon},$ (3) $\exists n_1, m_1 \sum_{n=n_1}^{\infty} \sum_{m=m_1}^{\infty} M\left(\frac{1}{n.m}\right) < \infty.$

we have the implications $(1) \Rightarrow (2) \Rightarrow (3)$.

 $Proof.(1) \Rightarrow (2)$. (see [2]).

 $(2) \Rightarrow (3)$. Let the condition (2) holds. Since $\frac{1}{n.m} \to 0$, there exists $N \in \mathbb{N}$ such that $\frac{1}{n.m} \le u_0$ for all $n, m \ge N$. Hence, we get

$$\sum_{n=N}^{\infty} \sum_{m=N}^{\infty} M\left(\frac{1}{n.m}\right) \leq \sum_{n=N}^{\infty} \sum_{m=N}^{\infty} A. \left(\frac{1}{n.m}\right)^{1+\varepsilon}$$
$$\leq A. \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{1}{n.m}\right)^{1+\varepsilon}$$
$$< \infty.$$

This completes the proof.

Theorem 3. Let M_1 and M_2 be Orlicz functions. If there exist b > 0, $t_0 > 0$ such that $M_2(t_0) > 0$ and $M_2(t) \le M_1(b.t)$ for all $t \in [0,t_0]$ then $Ces_{M_1}^{(2)} \subset Ces_{M_2}^{(2)}$.

Proof. We may assume that $b \ge 1$ and defining u = b.t we get

$$M_2\left(\frac{u}{b}\right) \le M_1(u) \tag{1}$$

for all $u \in [0, b.t_0]$. Let $x \in Ces_{M_1}^{(2)}$. Then there exists $\lambda > 0$ such that $\rho_{M_1}^{(2)}(\lambda . x) < \infty$. Define

$$A_{\scriptscriptstyle X} = \left\{ (n,m) \in \mathbb{N} imes \mathbb{N} : rac{\lambda}{n.m} \sum_{i=1}^n \sum_{j=1}^m |x(i,j)| > b.t_0
ight\}$$

. The set A_x is finite, because otherwise we have

$$\rho_{M_{1}}^{(2)}(\lambda.x) \ge \sum_{(n,m)\in A_{x}} M_{1}\left(\frac{\lambda}{n.m} \sum_{i=1}^{n} \sum_{j=1}^{m} |x(i,j)|\right) > \sum_{(n,m)\in A_{x}} M_{1}(b.t_{0}) > \sum_{(n,m)\in A_{x}} M_{2}(t_{0}) = \infty$$

by (1) and this gives a conradiction. Let take $\lambda^* = \frac{c}{h}$ for c enough, we get

$$\rho_{M_2}^{(2)}(\lambda^*.x) \le \rho_{M_1}^{(2)}(c.x) \le \rho_{M_1}^{(2)}(\lambda.x) < \infty$$

which implies $x \in Ces_{M_2}^{(2)}$.

Theorem 4. If $x \in w^{(2)}$, $\{x_n\} \subset Ces_M^{(2)}$, $\sup_n \|x_n\| < \infty$ and $0 \le x_n \uparrow x$ coordinatewise, then $x \in Ces_M^{(2)}$ and $\|x_n\| \to \|x\|$.

Proof. Assume that $x_n \in Ces_M^{(2)}$, $\sup_n \|x_n\| < \infty$ for all $n \in \mathbb{N}$ and $0 \le x_n(i,j) \uparrow x(i,j)$ for each $i,j \in \mathbb{N}$. Denote $A = \sup_n \|x_n\|$. It is known that $\|x_n\| \le A < \infty$ for all $n \in \mathbb{N}$ and so we have $0 \le \frac{x_n}{A} \le \frac{x_n}{\|x_n\|}$. Hence $\rho_M^{(2)}\left(\frac{x_n}{A}\right) \le 1$ and since the modular $\rho_M^{(2)}$ is monotone, we get $\rho_M^{(2)}\left(\frac{x_n}{A}\right) \le \rho_M^{(2)}\left(\frac{x_n}{\|x_n\|}\right) \le 1$.

Since $x_n(i,j) \uparrow x(i,j)$ for each $i,j \in \mathbb{N}$, we have $\frac{x_n(i,j)}{A} \to \frac{x(i,j)}{A}$ for each $i,j \in \mathbb{N}$. By the Beppo Levi Theorem we get

$$\rho_M^{(2)}\left(\frac{x}{A}\right) = \lim_{n \to \infty} \rho_M^{(2)}\left(\frac{x_n}{A}\right) = \sup_{n \to \infty} \rho_M^{(2)}\left(\frac{x_n}{A}\right) \le 1$$

which means that $x \in Ces_M^{(2)}$ and $||x|| \le A$. Since $x_n \uparrow x$ coordinatewise and monotonicity of the norm, we get $\sup_n ||x_n|| \le ||x||$ and so $||x|| = \sup_n ||x_n|| = \lim_{n \to \infty} ||x_n||$.

By the above theorem, we have that the space $Ces_M^{(2)}$ has Fatou property. Consequently, the double Cesàro-Orlicz sequence space $Ces_M^{(2)}$ is a Banach space.

Theorem 5. Define

$$A_{M}^{(2)} = \left\{ x \in Ces_{M}^{(2)} : \forall k > 0, \exists n_{k}, m_{k} \sum_{n=n_{k}}^{\infty} \sum_{m=m_{k}}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) < \infty \right\}.$$

Then following assertions are true:

(1) $A_M^{(2)}$ is a closed separable subspace of $Ces_M^{(2)}$,
(2) $A_M^{(2)} = cl \left\{ x \in Ces_M^{(2)} : x(i,j) \neq 0 \text{ for only finite number of } i,j \in \mathbb{N} \right\}$,

(3) $A_M^{(2)}$ is the subspace of all order continuous elements of $\operatorname{Ces}_M^{(2)}$

Proof. (1) It is easy to see that $A_M^{(2)}$ is a subspace of $Ces_M^{(2)}$. We will show that $A_M^{(2)}$ is a closed subspace of $Ces_M^{(2)}$. Let take $\{x_s\}\subset A_M^{(2)}$ such that $x_s\to x,\ x\in Ces_M^{(2)}$. We must show that $x\in A_M^{(2)}$. Take any k>0. Since $\rho_M^{(2)}(k(x-x_s))\to 0$ for all k>0, there exists $s\in \mathbb{N}$ such that $\rho_M^{(2)}(2k(x-x_s))<1$. Since $x_s\in A_M^{(2)}$ for all $s\in \mathbb{N}$, there exist $n_s,m_s\in \mathbb{N}$ such that

$$\sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{2k}{n.m} \sum_{i,j=1}^{n,m} |x_s(i,j)|\right) < \infty.$$

We can take $n_k := n_s$, $m_k := m_s$. Since Orlicz function M is convex, we have

$$\begin{split} \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) &= \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} \left| \frac{2\left(x(i,j) - x_s(i,j)\right)}{2} + \frac{2x_s(i,j)}{2} \right| \right) \\ &= \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} \left| \frac{2\left(x(i,j) - x_s(i,j)\right)}{2} + \frac{2x_s(i,j)}{2} \right| \right) \\ &\leq \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} \left(\left| \frac{2\left(x(i,j) - x_s(i,j)\right)}{2} \right| + \left| \frac{2x_s(i,j)}{2} \right| \right) \right) \\ &\leq \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} \left\{ \frac{1}{2} M\left(\frac{2k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j) - x_s(i,j)| \right) + \frac{1}{2} M\left(\frac{2k}{n.m} \sum_{i,j=1}^{n,m} |x_s(i,j)| \right) \right\} \\ &\leq \frac{1}{2} \rho_M^{(2)} (2k(x-x_s)) + \frac{1}{2} \sum_{n=n_s}^{\infty} \sum_{m=m_s}^{\infty} M\left(\frac{2k}{n.m} \sum_{i,j=1}^{n,m} |x_s(i,j)| \right) \end{split}$$

Since k > 0 is arbitrary, we get $x \in A_M^{(2)}$. This shows that $A_M^{(2)}$ is a closed subspace of $Ces_M^{(2)}$.

 $(2) \text{ Let us define } B_M^{(2)} = \left\{x \in \operatorname{Ces}_M^{(2)} : x(i,j) = 0 \text{ for a.e. } i,j \in \mathbb{N} \right\}. \text{ We will prove that } A_M^{(2)} \text{ is equal to } \operatorname{cl} B_M^{(2)}. \text{ If } B_M^{(2)} = \varnothing,$ then $clB_M^{(2)} \subset A_M^{(2)}$. Let $B_M^{(2)} \neq \emptyset$. Then there exists $x = (x(i,j)) \in B_M^{(2)}$ such that

$$x(i,j) = \begin{cases} 1, & \text{if } (i,j) = (l_1, l_2) \\ 0, & \text{others} \end{cases}.$$

Take k > 0. By the Theorem 1, there exist $\exists n_k, m_k \in \mathbb{N}$ such that

$$\sum_{n=n_k}^{\infty} \sum_{m=m_k}^{\infty} M\left(\frac{k}{n.m}\right) < \infty.$$

We assume that $n_k \ge l_1$ and $m_k \ge l_2$. By the fact that $A_M^{(2)}$ is a linear subspace of $Ces_M^{(2)}$, we get $x \in A_M^{(2)}$ and so $clB_M^{(2)} \subset A_M^{(2)}$.

For the inclusion $A_M^{(2)} \subset clB_M^{(2)}$, let us take $x = (x(i,j)) \in A_M^{(2)}$ and define $x^{k,l} = (x^{k,l}(i,j))$ such that

$$x^{k,l}(i,j) = \begin{cases} x(i,j), & \text{if } i \leq k \text{ and } j \leq l \\ 0, & \text{others} \end{cases}$$
.

for any $k, l \in \mathbb{N}$. It is obvious that $x^{k,l} \in B_M^{(2)}$. Take any $\lambda > 0$ and $\varepsilon > 0$. Since $x = (x(i,j)) \in A_M^{(2)}$, there exist $k_0, l_0 \in \mathbb{N}$ such that

$$R_{k_0,l_0}(x) = \sum_{n=1}^{k_0} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n.m} |x(i,j)|\right) + \sum_{n=k_0+1}^{\infty} \sum_{m=1}^{l_0} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n.m} |x(i,j)|\right) + \sum_{n=k_0+1}^{\infty} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{m=l_0+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{m=l_0+1}^{\infty} M\left(\frac$$

Then for any $k \ge k_0, l \ge l_0$, we get

$$\begin{split} \rho_{M}^{(2)}(\lambda(x-x^{k,l})) &\leq \rho_{M}^{(2)}(\lambda(x-x^{k_{0},l_{0}})) \\ &\leq \sum_{n=1}^{k_{0}} \sum_{m=l_{0}+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i=1}^{n} \sum_{j=l_{0}+1}^{m} |x(i,j)|\right) + \sum_{n=k_{0}+1}^{\infty} \sum_{m=1}^{l_{0}} M\left(\frac{\lambda}{n.m} \sum_{i=k_{0}+1}^{n} \sum_{j=1}^{m} |x(i,j)|\right) \\ &+ \sum_{n=k_{0}+1}^{\infty} \sum_{m=l_{0}+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i=k_{0}+1}^{n} \sum_{j=l_{0}+1}^{m} |x(i,j)|\right) \\ &\leq \sum_{n=1}^{k_{0}} \sum_{m=l_{0}+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i=1}^{n} \sum_{j=1}^{m} |x(i,j)|\right) + \sum_{n=k_{0}+1}^{\infty} \sum_{m=1}^{l_{0}} M\left(\frac{\lambda}{n.m} \sum_{i=1}^{n} \sum_{j=1}^{m} |x(i,j)|\right) \\ &+ \sum_{n=k_{0}+1}^{\infty} \sum_{m=l_{0}+1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i=1}^{n} \sum_{j=1}^{m} |x(i,j)|\right) = R_{k_{0},l_{0}}(x) < \varepsilon. \end{split}$$

This implies $x^{k,l} \to x$. Then $x \in clB_M^{(2)}$ and so $A_M^{(2)} \subset clB_M^{(2)}$.

(3) Let $x \in A_M^{(2)}$. We will show that x is order continuous. Take any k > 0 and s > 0. Then there exist $n_k, m_k \in \mathbb{N}$ such that

$$R_{n_k,m_k}(x) = \sum_{n=1}^{n_k} \sum_{m=m_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=1}^{m_k} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=m_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=m_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{\infty} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{\infty} |x(i,j)|\right) + \sum_{n=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{m=n_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{\infty} |x(i,j)|\right) + \sum_{m=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{\infty} M\left(\frac{k}{n.m} \sum_{m=n_k+1}^$$

Assume that $x_s \downarrow 0$ coordinatewise and $x_s \leq |x|$ for all $s \in \mathbb{N}$. Let us denote

$$\eta(n,m) = M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right)$$

and

$$\eta_s(n,m) = M\left(\frac{k}{n.m}\sum_{i,j=1}^{n,m}|x_s(i,j)|\right).$$

Since $x_s \downarrow 0$ coordinatewise, we have $\eta_s(n,m) \to 0$ as $s \to \infty$ for all $n,m \in \mathbb{N}$. Thus, there exists $s_\varepsilon \in \mathbb{N}$ such that $\sum_{n=1}^{n_k-1} \sum_{m=1}^{m_k-1} \eta_s(n,m) < \frac{\varepsilon}{2}$ for all $s \ge s_\varepsilon$. Moreover,

$$\sum_{n=1}^{n_k} \sum_{m=m_k+1}^{\infty} \eta_s(n,m) + \sum_{n=n_k+1}^{\infty} \sum_{m=1}^{m_k} \eta_s(n,m) + \sum_{n=n_k+1}^{\infty} \sum_{m=m_k+1}^{\infty} \eta_s(n,m) < \sum_{n=1}^{n_k} \sum_{m=m_k+1}^{\infty} \eta(n,m) + \sum_{n=n_k+1}^{\infty} \sum_{m=1}^{\infty} \eta(n,m) + \sum_{n=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} \eta(n,m) + \sum_{m=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} \prod_{m=n_k+1}^{\infty} \eta(n,m) + \sum_{m=n_k+1}^{\infty} \sum_{m=n_k+1}^{\infty} \prod_{m=n_k+1}^{\infty} \prod_{m=n_k+1}^{\infty} \prod_{m=n_k+1}^{\infty} \prod_{m=n_k+1}^{\infty} \prod_{m=n_k+$$

for all $n \ge n_k, m \ge m_k$ and $s \in \mathbb{N}$. Consequently, we have

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{k}{n.m} \sum_{i,j=1}^{n,m} |x_s(i,j)|\right) < \varepsilon$$

for all $s \ge s_{\varepsilon}$, which implies $\rho_M^{(2)}(kx_s) \to 0$ as $s \to \infty$. Since k is arbitrary, we get $||x_s|| \to 0$.

Let $x \in Ces_M^{(2)}$ be an order continuous element. Since $||x^*|| \to 0$, where

$$x^*(i,j) = \begin{cases} x(i,j), & \text{if } i \ge n+1 \text{ and } j \ge m+1\\ 0, & \text{others} \end{cases}$$

 $\text{as } n,m\to\infty\text{, so it is easy to see that }x\in cl\left\{x\in \operatorname{Ces}_{M}^{(2)}:x(i,j)=0\text{ for a.e. }i,j\in\mathbb{N}\right\}.$

Finally, we show that $A_M^{(2)}$ is separable. Define the set

$$C_M^{(2)} = \left\{ x \in \operatorname{Ces}_M^{(2)} : x(i,j) = 0 \text{ for a.e. } i,j \in \mathbb{N} \text{ and } x(i,j) \in \mathbb{Q} \right\}.$$

Then, the set $C_M^{(2)}$ is countable and it is obvious that $clC_M^{(2)} \subset clB_M^{(2)}$. For the converse inclusion, take $x = (x(i,j)) \in clB_M^{(2)}$, where

$$x(i,j) = \begin{cases} x(i,j), & \text{if } i \le k \text{ and } j \le l \\ 0, & \text{others} \end{cases}$$

and $x_s = (x_s(i, j)) \in C_M^{(2)}$, where

$$x_s(i,j) = \begin{cases} x_s(i,j), & \text{if } i \leq k \text{ and } j \leq l \\ 0, & \text{others} \end{cases}$$

such that $x_s(i,j) \to x(i,j)$ as $s \to \infty$. We will show that $||x_s - x|| \to 0$. Take any $\lambda > 0$. We have

$$\lambda \sum_{i,j=1}^{k,l} |x_s(i,j) - x(i,j)| \le 1$$

for s large enough. Thus, by convexity of M,

$$\rho_{M}^{(2)}(\lambda(x_{s}-x)) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n,m} |x_{s}(i,j) - x(i,j)|\right) \\
\leq \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{k,l} |x_{s}(i,j) - x(i,j)|\right) \\
\leq \lambda \cdot \sum_{i,j=1}^{k,l} |x_{s}(i,j) - x(i,j)| \cdot \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{1}{n.m}\right).$$

Since $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} M\left(\frac{1}{n.m}\right) < \infty$, we get $\rho_M^{(2)}(\lambda(x_s-x)) \to 0$ as $s \to \infty$. By the arbitrariness of λ , we have $||x_s-x|| \to 0$ as $s \to \infty$. This implies that $x \in clC_M^{(2)}$. Consequently, $clC_M^{(2)} = clB_M^{(2)}$. Since $A_M^{(2)} = clB_M^{(2)} = clC_M^{(2)}$ and the space $C_M^{(2)}$ is countable, we get $A_M^{(2)}$ is separable space

Theorem 6. *If* $M \in \triangle_2(0)$, then $A_M^{(2)} = Ces_M^{(2)}$

Proof. Let $x \in Ces_M^{(2)}$. Thus, there exists $\alpha > 0$ such that $\rho_M^{(2)}(\alpha x) < \infty$. We will show that for any $\lambda > 0$ there exist $n_{\lambda}, m_{\lambda} \in \mathbb{N}$ such that $\sum_{n=n_{\lambda}}^{\infty} \sum_{m=m_{\lambda}}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) < \infty.$

If $\lambda < \alpha$, by the monotonicity of M

$$\sum_{n=n_1}^{\infty} \sum_{m=m_1}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) < \sum_{n=n_1}^{\infty} \sum_{m=m_1}^{\infty} M\left(\frac{\alpha}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) < \infty.$$

Let $\lambda > \alpha$. Since $M \in \triangle_2(0)$, we have $M \in \triangle_l(0)$ for any l > 1, whence for $l := \frac{\lambda}{\alpha}$ there exist $k > 0, u_0 > 0$ such that $M(l.u) \le k.M(u)$ for all $u \le u_0$. By $\rho_M^{(2)}(\alpha x) < \infty$, there exists s_λ such that $\frac{\alpha}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)| \le u_0$ for all $n,m \ge s_\lambda$. Then, we get

$$\begin{split} \sum_{n=s_{\lambda}}^{\infty} \sum_{m=s_{\lambda}}^{\infty} M\left(\frac{\lambda}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) &= \sum_{n=s_{\lambda}}^{\infty} \sum_{m=s_{\lambda}}^{\infty} M\left(\frac{\alpha.\lambda}{\alpha.n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) \\ &= \sum_{n=s_{\lambda}}^{\infty} \sum_{m=s_{\lambda}}^{\infty} M\left(l.\frac{\alpha}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) \\ &\leq k. \sum_{n=s_{\lambda}}^{\infty} \sum_{m=s_{\lambda}}^{\infty} M\left(\frac{\alpha}{n.m} \sum_{i,j=1}^{n,m} |x(i,j)|\right) \\ &< \infty. \end{split}$$

This implies that $x \in A_M^{(2)}$. Hence we get $A_M^{(2)} = Ces_M^{(2)}$.

Corollary 1.*If* $M \in \triangle_2(0)$, then

- (i) the double Cesàro-Orlicz sequence space Ces_M⁽²⁾ is separable,
 (ii) the double Cesàro-Orlicz sequence space Ces_M⁽²⁾ is order continuous.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

- [1] Başar F., Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, 2012.
- [2] Cui Y., Hudzik H., Petrot N., Suantai S., Szkymaszkiewicz A., Basic Topological and Geometric Properties of Cesàro-Orlicz Spaces, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, 2005.
- [3] Kubiak D., A Note on Cesàro-Orlicz Sequence Spaces, J. Math. Anal. Appl. 349 (2009) 291-296.
- [4] Krasnoselskii M. A., Rutickii Ya. B., Convex Functions and Orlicz Spaces, (Gooningen: P. Nordhoff Ltd.), 1961.
- [5] Lee P. Y., Cesàro Sequence Spaces, Math. Chronicle, New Zeland 13 (1984) 29-45.
- [6] Limaye B. V., Zelstser M., On the Pringsheim convergence of double series, Proc. Eston. Aca. Sci. 58,2 (2009), 108-121.
- [7] Lim S. K., Lee P. Y., An Orlicz extension of Cesàro Sequence Spaces, Comment. Math. Prace Mat. 28 (1988) 117-128.
- [8] Lindenstrauss I. J., Tzafiri L., Classical Banach Spaces I, Lecture Notes in Math.(New York, Tokyo: Springer-Verlag, Berlin, Heidelberg), 1983.
- [9] Lindenstrauss I. J., L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [10] Luxemburg W. A., Banach Function Spaces, Thesis (Delft) 1955.
- [11] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (Springer-Verlag) (1983).
- [12] Pringsheim A., Zur Theorie de Zweifach Unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321.
- [13] Saejung S., Another Look at Cesàro Sequence Spaces, J. Math. Anal. Appl. 366 (2010) 530-537.
- [14] Shue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math. 1 (1970), 143-150.