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Abstract: In this work, taking solutions of homogeneous differergi@liations with constant coefficients in classical anabsis basis,
solutions of homogeneous differential equations with tamsexponentials in multiplicative analysis are obtairiBus, solutions for
these equations, being a class of non-linear differengjahions, and having correspondence in the classical seestated.
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1 Introduction

Beginning from last century non-Newtonian calculus haveetigped and many researchers pay attention to this branch.
In non-Newtonian calculus, differentiation and integratare based on non-Newtonian operations instead of cidssic
operations. Grossman and Katz, introduced the non-Newmonalculus consisting of the branches of geometric,
anageometric and biogeometric calculus, etc. Fundameefiitions and concepts related to Non-Newtonian calculus
are given in [1]. Geometric calculus is named as Multiplieatalculus after Dick Stanley [2]. Multiplicative calad
uses "multiplicative derivative” and "multiplicative iegral”. Thus it is an alternative to the classical calculusl@wton

and Leibniz (also referred as Newtonian calculus), which &a additive derivative and an additive integral. In [3],
Bashirov and friends gave further concepts and applicatiorihe properties of derivative and integral operatorsef t
multiplicative calculus. Some studies in recent yearsl 2the multiplicative analysis, can be used in solving sahe
the problems in science and engineering, and illustratepithblems can be solved in a more practical way with the help
of this analysis. In this study, the solution of multipliv@ homogeneous differential equations with constant
exponentials is researched. For this purpose, first of allfiplicatively linearly independent, multiplicativelynearly
dependent and Wronskian determinant of the functions apeessed. After that, the analysis, which is similar the
solution of classical homogeneous linear differential amuns with constant coefficients, are generalized to the
multiplicative homogeneous differential equations witinstant exponentials. Hence, solutions of a class of neatin
differential equations which is multiplicative homogensedinear differential equations with constant exponésae
obtained.

2 Multiplicative Derivatives

Here, we will give some basic definitions and properties eftultiplicative derivative theory which can be found in
[2-4].
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Definition 1. Let f: R— R" be a positive function. The multiplicative derivative of fanction f is given by:

d* f . _/f(trh)\ "

Assuming that f is a positive function and using propertiethe classical derivative, multiplicative derivative cha
written as

wO=r0= 'hiﬂ‘o< = &h)) %, 2)
To=ro-= Hﬂ%(” = +‘fh()t) : (t>) e " 3)
%(t) _ ) :L@()((H f(t+fhgt)— f (t))(ﬁ)) e %t))’ @
I =t —ett, ©)
S =r@m=drio ©

where(Inof) (t) =In(f (t)).

Definition 2. If multiplicative derivative f as a function has also multiplicative derivative then nplitiative derivative
of f* is called second order multiplicative derivative of f andsitepresented by*f. Similarly we can define'horder
multiplicative derivative of f with the notation*®. With n times repeated multiplicative differentiation cgtéon, a
positive f function has an nth order multiplicative derivatat the pointt and defined as

f*(n) (t) _ e(lnof)(n)(t). (7)

Theorem 1.If a positive function f is differentiable with the multigditive derivative at the pointt, then it is differentiable
in the classical sense and the relation between these tweadimes can be shown as

f'(t) = f(t)Inf*(t). (8)
Theorem 2.Let f and g be differentiable with the multiplicative detiva. If c is an arbitrary constant, thent; f.g,

f +g, f/g, f9 functions are differentiable with the multiplicative deative and their multiplicative derivatives can be
shown as

NCHNOESHOR
@ (9" H=1(1).g

@ (149 (1) = PTG T, ®)
4 (f/9)" =

(5) (19"

Theorem 3.f*(t) = 1 for vt € (a,b) & f (t) = C > Ois a fixed function in the open intervéd, b).

)
0= PO

Theorem 4.Let g be differentiable in meaning of the multiplicative idative and let f be differentiable in the classical
sense. If {t) = (goh)(t), then, it can be written that

() =1[g" ()" V. (10)
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Theorem 5.Let f be a positive function. Then (t) = 1< f'(t) = 0.

3 Multiplicative linear differential equations

Definition 3. Multiplicative linear differential equations can be defihia the form of

(y«(n))a”(t) (yk(nil))an—l(t) N (W*)aZ(t) (yk)al(t)yao(t) = f(t). (11)

Here, f(t) is a positive definite function. If, all of,&t) exponentials are constants, equation (11) is called as
multiplicative linear differential equations with consta exponentials. Otherwise, equation (11) is as called
multiplicative linear differential equations with varibexponentials. In equation (11), if(th = 1, equation (11) is
called multiplicative homogeneous linear differentiabatjons, otherwise it is called multiplicative nonhomogeuns
linear differential equations. Now, let's search how toweolthese multiplicative homogeneous linear differential
equations with constant exponentials. We describe migkifively linear independent and multiplicatively Wroiesk
determinant of positive definite functions.

Definition 4. Let y1,Yo, ..., Yn be positive definite functions. Any expression of the form
Y1y Ly (12)
is called a multiplicatively linear combinations of,y», ..., yn where g, cy, ...,y are arbitrary constants[10].

Definition 5. Let w1, Yo, ..., Yn be positive definite functions. Then, they are called miidéfively linear dependent if there
are not all zero constants ccy, . .., Cy With

Y1) *y2(D)?. .. y(t) " =1 (13)
for all t. Otherwise, they are called multiplicatively liaeindependent.

Definition 6. Let y1,¥»,...,yn be at least(n—1) times multiplicative differentiable positive definite ¢ipns. The
determinant

Iny1 Iny, ... Iny,
Iny;* Inys ... Inyy*

Wm(ylayZa"'7yn) = (14)

Iny;™ Y Iny; ™Y nypY
is called multiplicatively Wronskian determinant of thedtions{y; }_;.
Theorem 6. Let vi,y»,...,yn be multiplicative differentiable positive definite furmcts on[a,b]. If multiplicatively
Wronskian W (y1,Y2,-..,¥n) iS nonzero for somegte [a,b], then these functions are multiplicatively linearly

independent ofa, b]. If y1,Y,...,yn are multiplicatively linearly dependent then the muligliively Wronskian is equal
to zero forvt € [a,b).

Proof. Suppose thatys,ys,...,yn are multiplicative differentiable positive definite fuiwts on [a,b]. Let
Win (Y1, Y2, ...,Yn) # O for somety € [a,b], and assume the functions are multiplicatively linear dejemt. Then, there
exist arbitrary constants, cy, ... ,c, not all equal to zero such that

y1y2? .y =1 (15)
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for vt € [a,b]. Taking (n— 1) multiplicative derivatives of this equality gives us thdéldaving system of equalities

y1%y%2 .yt =1,
Yitys 2y =1,

(16)
Y1 Al yz(nil) 2 yii("’l) )
Now, let's take the natural logarithm of both sides of ediesdi So,
ciinys+colnys+ ...+ chlny, =0,
cilny; +c2lny;+...4+cnlny, =0,
17)
cny: ™Y f ey ™Y 4t ennyn ™Y =0,
Since Win (Y1,Y2, - -.,Yn) # 0 for sometp € [a,b). It follows thatc; = ¢, = ... = ¢y = 0. But, this is in contradiction with ,

C1,Co,...,Cn being not all equal to zero. So, functions are multiplioel'g'r\hnearly independent.

Example 1.Considety; = €%, y, = e, y3 = e Multiplicatively Wronskian determinant of these funct®are

Iny: Iny, Inys Inef Ines"  Ine®” d et &
Win (Y1,Y2,¥3) = Iny:* Iny,* Inys* | =|Ine® Ine¢ ' Ine?® | = |& —et 26 | = —66? £ 0.
Iny1™ Iny, Inys™ | |Ine® Ine®' Ine®® | |& et 4e?

Thus, these functions are multiplicatively linear indeghemt.

Example 2. Fort > 0, consider functiony; = t1,y, = t,y3 = t2. Multiplicatively Wronskian determinant of these
functions are

In(tt) Int Int2 —Int Int 2Int
Wn(y1.y2,ys) = |In(€7) In(et') (&) - 1 1 2)—0 (18)
In (el/t ) In (e*l/t ) In (e*z/t ) tiz —tiz 7t%

Thus, these system of functions have multiplicativelydindependent property.

4 Multiplicative homogeneous linear differential equatians with constant exponentials

Now, we analyze solutions of multiplicative homogeneonsidir differential equation with constant exponentials

an an-
(@) ()" )Ry )y =1 (29)
whereay, k= 1,...,n are the arbitrary constants. Class of this equation cooretpto the class of non-linear equations
in the classical sense

d-1 /1d dn—2 d d d 1d
an g1 (y d)t/)-i-anl qin2 (y d)t/)—i- ..+azd (ydi/)—kal(——)/) = —alny. (20)

y dt
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So, solutions of the equation (19) corresponds to solutidriee non-linear equation (20). By the help of following
multiplicative derivative operators

equation (19) can be rewritten as
L*(D)y=1 (21)

Sinceay, ay, .. ., a, exponentials are constants, operator

L* (B) = (B")* (B ). ()™ (5%)® (22)
also has constant coefficients.
Theorem 7.1f equation (19) has multiplicatively linear independeahsgion y; (), y2(t), ..., ya(t), then the general
solution has the form
Y= Yy1y2 2.y (23)
where @, Cp, ..., C, are arbitrary constants.

Proof. Lety; (t), y2(t),...,¥n (t) be solutions of the equatiofl9). For arbitrary constants,, k= 1,...,n, introduce

notation
Cn

y=(y1)*(y2)%... (¥n)

Sinceys (t), y2(t), ..., yn(t) are multiplicatively linear independent solutions of etipa (19), these functions are
n-times multiplicative differentiable. Hence, we can write

Y = (1) (y2) %, ()™ (24)

v = <y1*<n>)cl <y2;<n>)°27 L (yn*m))"”
Substitutingy,y*, ..., y*(" in equation (19), we get the next equality
L* (D) y = K)ﬁ*(n))q . (Ynfl*(n))(:ml (yn*‘”))cn} " [(yl*(“*”)cl . (ynfl*(”*”)cnfl (yn*(”*l))cn} o

oy (yn*)CH(Yn*)C”C]al[(h)Cl - (Yn—l)c”’l(yn)c"]ai
= [(yl*(m)a"...(yl*)al(yl)a"} l[(yz*m))a"...(yz*)'a‘l(yz)a“’] : [(Yn*(n))an...(yn*)al()/n)ao}
1

Cn

Theorem 8.Let L* (15) be an operator with constant coefficients given by (23) afrgl £ z{‘zoa;ri. Then,

C(6)(¢) = ()" @

where r is real or complex constant.
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Proof. Fory = e We get

b,
Yy = D2:y= g€ 25
Y = By — "¢
Substitutingy = e and its multiplicative derivative in equation (22), then
C(6)(¢) = ()" @

is obtained. Hence, the proof is completed.

We seek the solution of (19) in the forym= ¥, wherer is a real or complex constant. From equation (19) and Theorem
8, It follows that

. /= t 1\ L(r) t
L (6) (&) = (&) =@ =1=¢" (28)
For allr, we havedt # 0. Hence,
L(r)=anM+a, 1r"1+...+air+ay=0 (29)
is obtained. The equation (30) is called as characterigtiaton of equation (19).

Theorem 9.If equation (30) have n distinct rootg,Iro, . . . Iy, then the following functions

yi(t) =€,y (t) = €2

() =" (30)
are multiplicatively linear independent solutions of tlgguation (19). Since functions in (30) are multiplicativéhear

independent solutions, the function
y= (eerlt) “ (eer2t ) 2. (eemt) N (31)

or
y = g€t g  gene™
Here, 61 =Cy, €2 =Cy, ..., € =Cyand
y=C)* ()" .. )" (32)
is the general solution of equation (19).
Proof. As equatiorL (r) = 0 hasn distinct real roots;, i = 1,2,...,n, this equation can be written as

L(ry=an(r—ry)(r—rz)...(r—ry) =0.

Hence equation (19) has n distinct solutions in the farm €' such asy; = ¥, y, = €2 ,..., y, = ™. The
multiplicatively Wronskian determinant of these solusas

Iny, Iny, ... Iny, gt gt .. gt
Iny,* Inys ... Inyn* ret rod2t et
Wm(ylayZa---vyn): . : . : = . : .. : 7£O
Iny; ™ Iny; ™ nyptY ry(-Det p,(-Dgat rn(”*.l)ernt
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Soy = ee”t, i =1,2,...,nare multiplicatively linear independent solutions. Thiusidamental set of solutions is
T= {eerlt,eerzt, ... ,eer"t} (33)

and the general solution is in the fog= f1€1' +C282 +...+cne™

Example 3.Consider the equation

Y)Y =1 (34)
This equation corresponds to the equation
d /1dy ldy\
at (ydt) +3<ydt) = -2Iny (35)
or )
y'y=(y) +3y = -2y (36)

The characteristic equation of the given equation is
r2+3r4+2=0.

The roots are; = —2 andr, = —1. Hence, the general solution of equation (35), so equatidi3

e 2

Yh=(C1)® " ()% . (37)

WhereC,; = €°1 ve C, = €2. Now, we consider characteristic equation (30) whose rax@sot all distinct.

k

Theorem 10.If m is a real root that appears k times, that isirll = (r —m)"p(r), where gm) = 0, then for root-m,

yhl _ e(Cl+C2t+03t2+...+thk71)emt (38)

is a solution of (19). For the remaining-nk distinct roots,

_ Ok € o €M 2t cpe™t (39)

Yh2

is a solution of (19). Hence, the general solution of the ¢igug19) is

c1+czt+C3t2+...Jrcktk*)mteckHem«H‘Jrck+2e’7‘r<+2‘Jr...+cnem”t (40)

Yh = YhiYho = el
Proof. Suppose characteristic equation kasénes repeated real roots and has also distinct real rddten we can write

L* () y = e-)iny) — elan(D—a) (D=ric;1)...(D-rn)](Iny) _ [F(D)(D—a) ](Iny) _ ¢ (41)
where
F(D)=(D—rk1)...(D—rn)

The solutiony; =e®" =e® , i=12,... kwith respect tk-times repeated roots= a are not multiplicatively linear
independent. But for=1,2,... .k yi = et "¢ functions satisfy equatiog-®("Y) = 1, in other words

it eat

g(D)(t1e™) _ F(D)(D—a)t~te™ _ F(D)e™ DMt _ 1 (42)
Moreover, as multiplicatively Wronskian determinant oésle functions is not equal to zero, they are multiplicagivel

linear independent. The first part of the proof is complefed the second part the independence of solutions with céspe
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to remaining distinct and re&h — k) roots is given in the previous theorem. Finally,

et et th-1eat frat gt
yi=e®  y,=2e'"" ... ywy=e Vi1 =€ ... yn=¢ (43)

The solutions with respect ti-times repeated roots are afd—Kk) real distinct roots are multiplicatively linear

independent. The general solution is multiplicativelyelin combination of these solutions with arbitrary constant

Example 4.Consider the equation
Y)Y =1

The characteristic equation of the above equation is
r—10r+25=0
The roots areé; =rp, = 5. Hence, the general solution is
Vi = glerteat)e®

Theorem 11.Ifry =a +if3, r, =T7 = o — i are conjugate complex roots of equation (19), which are edchultiplicity
k, thatis

L(r) = (r=r0)“(r—11)*p(r) (44)
where pr1) #0, p(f1) #0. y1 = " and VB = % are multiplicatively linear independent solutions. Hengeneral

solution is

Vi = glC cosBt-+Cp sinBt]et+ ...+ [Coy_1 COSBt+Cyy sinBtjt Vet 4 Cyp, 1€Mk+1t 4 4 CreMt

Proof. By Theorem 10, the solution is
y1 = elcrteatt.rotkD)elatipr (45)

for k-times repeated roof = o + i and the solution is

k-1 -
Yo = e(ck+1+ck+2t+---+02kt< >)e<" ip)t (46)
1 = a —if. For the remaining — k distinct roots we have solution
y3 = e 2k 1672k 1 g o€ 2 - ope™! (47)

Each ofyy,y», y3 solutions are multiplicatively linear independent. Theelar combination of these solutions is the general
solution of the equation (19) which can be stated as

Yh = Y1Y2Y3

_ a(cr+ott . Aotk D)ea Bt (o1 +oc ot +out D )el@IB oy Mokt Loy peMkr2ly | ope™t
Yh=¢€ e €
If we use following Euler equations,
&Pt — cospBt + isinpt (48)
e Pt = cosBt —isinPt
then the general solution of the equation (19) can be wréten

Vi = gler cosBt-+cp sinBt]et+...+[co_1 cosBt+CycsinB]th—Ledt 4oy, @M1t 4 4 cpemt
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which is multiplicatively linear independent. Here, if weeunotations
C1+Ckr1=Cp, i(C1—Cky1) =Co; .., G+ Cok = Cok—1, 1(Ck — Cx) = Ck,
then the general solution of the equation (19) can be remris

Vi = e[Clcoth+C2sinBt]e"‘+...+[C‘Qk,lcosﬁt+(‘4ksinBt]t<k*1)e‘“+C‘4k+1em?k+1t+...+cnem”‘-

Example 5.Consider the equation

yy'y=1
The characteristic equation of the above equation is
rP4+r4+1=0
The roots are
ra= -1 +i@
1 2 2
-1 V3
frp=— —i—
2 2

Hence, the general solution is
e%t [cl cos(@’t) +c25in<§t)]

5 Conclusion

In this study, the relation between multiplicatively Wr&ran determinant and multiplicatively linear independermgiven

for positive definite functions after defining the multi@iezely linear independent, multiplicatively linear depent
and multiplicatively Wronskian determinant. On the othanti, multiplicative homogeneous differential equatiorithw
constant exponentials are defined and the solutions argetts&olutions for these equations that have correspaaeden
with a class of non-linear differential equations in thesslaal sense are stated.
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