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Abstract: The problem without initial conditions or, in other wordletFourier problem for anisotropic elliptic-parabolic atjans

with variable exponents of nonlinearity in time unboundedndins is considered in this paper. The existence and umiggesolutions
of the problem are proved with no conditions on the behaviaotutions and growth of input data at infinity. The estinsaté these
solutions are received. In addition, some properties ofatbak solutions of the Fourier problem are considered. Timelidons for

existence of periodic solutions of the considered equatére set. Also the conditions for existence of Bohr almosbgi solutions

and Stepanov almost periodic solutions of some equati@nstagined.
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1 Introduction

The problem without initial conditions or, in other word$iet Fourier problem for evolution equations describes
processes that started a long time ago and initial conditttmnot affect on them in the actual time moment. Then the
equations are considered for time variable beginning fresn The Fourier problem for evolution equations has been
widely used to study the models appearing in many fields @ea such as economics, computer science, physics,
ecology, cybernetics, etc. So these problems are exammethny papers; see, e.gl] F [11]. A lot of information
about results concerning problems without initial cormfis can be found in1{0]. Note that the Fourier problem for
linear and a plenty of nonlinear evolution equations ard-pesed only if there are some restrictions on behavior of
solutions and growth of input data as the time variable cayagto—oo [1] — [7], [10]. But there are nonlinear parabolic
equations for which the Fourier problem is uniquely soleabith no conditions at infinityd] — [9], [11], [12].

Here we consider the higher-order anisotropic ellipticapalic equations with variable exponents of nonlineailityese
equations are defined on unbounded cylindrical domainstwdre the Cartesian products of bounded space domains and
the whole time axis. For these equations we find the weakisokjtwhich defined for all values of the time axis (global
solutions) and satisfied the boundary conditions. Sincemeapts of nonlinearity is variable then the weak solution of
considered problems belong to the generalized Lebesgu8aimalev spaces. More information on these spaces and its
applications can be found in§] —[18]. It is proved existence and uniqueness of weak solutiom®ns$idered problems
with no conditions on their behavior and growth of coeffit¢geand right sides of equations at infinity in this paper. Also
the estimates of these solutions are received.

Note that from lack of initial conditions, there is a posbipito consider the conditions for the existence of perioaind
almost periodic solutions. The theory of almost periodindiions was mainly treated and created by Bohr during
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1924-1926. For details about Bohr almost periodic funcjaee 19]. Stepanov generalized the class of almost periodic
functions in the sense of Bohr without using the hypothebizoatinuity. More information on these functions can be
found in [20] — [22].

In this paper we set the conditions for the existence of piigisolutions, Bohr almost periodic solutions and Stepanov
almost periodic solutions. Similar results are 1r2]} but for the second order equation.

This paper consists of four parts: the first part is the intatidn, in the second we say the formulation of the problem
and main results, the third part encloses the auxiliargstants while the proofs of main results are in the fourth. part

2 Formulation of the problem and main results

Let n be a natural number ari®" be the linear space consisting of ordered collections dfmembersx = (x1,...,X)
with norm x| := (|x1|2+ ... +xq|2) 2. Let M be a subset of the s€0,1,..., m} such thaf0,m} c M, wheremis some
natural number. Denote by the number oh-dimensional multi-indexes = (a1,...,an) (for eachi € {1,...,n}, aj is a
nonnegative integer), the lengfi| = a; + ... + a, of which is an element of the s&ét, and byRN denote the linear
space of ordered collections &f real numberst = (&5,...,¢q,...) = (§a : |a| € M), components are numbered
n-dimensional multi-indexes af, whose lengtha| belongs to the seil, and ordered lexicographically (this mean, that
a = (01,...,0n) precedesf = (Bi,...,Bn), when either |a] < |B|, or |a| = |B] and ax < Pk, where
k=min{j: aj #Bj}). Hereafte is a multi-index, consisting of zeros. R§{ := (‘ ‘Z |Ea|2)% for arbitraryé € RN,
aleM
Let Q be a bounded domain iR" with piecewise smooth boundafy:= dQ. We denote bw = (v,...,v,) the unit
normal vector to pointing outward. SetQ:= Q xR, X :=T xR andQy, 1, := Q X (t1,t2) for arbitrary real numberg
andt, such that; < t,.

Considetthe problenof finding a functioru: Q — R satisfying (in some sense) the equation

(b(x)u); + ; (—1)“ID%aq (x.t, 8u) = ; (-1)Dfa(xt), (xt)€Q, (1)
laleM laleM
and the boundary conditions _
dlu .
auils =0 J=0m-1 @

whereaz : QxRN = R, fq : Q — R (Ja] € M) are given functionspu is the ordered collection of derivatives
DYy = 2y of the functionu for orders|a| € M.

0% *...0%
We should consider a weak solution of the probldm (2). For this, first define some functional spaces and classes of

input data of the given problem.

Letr € Lo(Q) such that(x) > 1 for almost eaclk € Q. Suppose that eithé = Q or G = Q x S, whereSis an interval
in R. Denote byL,,(G) the generalized Lebesgue space consisting of the measutadationsv: G — R such that
por (V) < 0, wherepg (V) := [ |[V(x)|"®dx for G=Q, andpg (V) := [|v(xt)|"® dxdt for G= Q x S The space is
G G
equipped with the norrﬁvHLm(G) =1inf{A > 0] pg,(v/A) < 1}; it is a Banach spacell]. If ess(i)nfr (x) > 1, then the
Xe

dual spacéL;(,(G)]' can be identified with.((G), wherer’ is the function defined by the equalift; + w5 = 1 for
almost eaclkx € Q.
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LetG = Q x S whereSis an unbounded open interval Bfor S= R. We denote by, |0C(_) G) the space of measurable
functionsg: G — R such that the restriction @fon Q, 1, belongs td.;(.(Q, t,) for eachtl,tz € S Itis complete locally
convex linear space with respect to the family of seminorms

{I- HLr( (Quty) |t1,t2 € S}. Therefore, a sequendgm} is convergent strongly (resp., weakly)lify. joc(G G) provided the
sequences of restrictioqgm|q, ,, } are convergent strongly (resp., weakly)lin,(Qy 1,) for all ty,t; € S Similarly we
can define the spade, joc(G).

We denoteNj'(Q) := {v € L4(Q) |DY € Lg(Q) Va, |a] < m}, whereq > 1 is any number. It is a Banach space with
the norm |\v||W$(Q) = Y [IDU|,q) (see, for example, 2)). For eachq > 1 and intervalS C R, let
laj<m

qu’O(Q x S) == {h € Ly(Q x §|Dh € Lg(Q x S Va,|a] < m}. It is a Banach space with norm

IDh[| L, xs) (see, for example2)).

h .0 =
I ”wg‘ (QxS) lafzm

Assume that:

(£) p=(pa:|al € M) —ordered collection of measurable functions@nwhich satisfy the following condition

2 < pg = essinfpg (X) < esssupq (X) =: pg < +oo, if |a] € M, while p5 > 2.
xXeQ xeQ 0

We also denote by = (ps’ : |a] € M) an ordered set of functions such thatpk (x) + 1/pa’(x) = 1 for almost each
xe Q (|a] e M).

m
Let Wp(_)

IV @)= 5 1DVl (2)- We definebwt/'&)(ﬂ)cIosureofC§°( ) inWM (Q) (C2(Q) is the linear space of

lajleM
infinity differential functions defined of2 with compact support). To simplify the presentation of thet@nial we denote

Vo =W (Q).

(Q) := {ve W"(Q)|D% € Ly,1(Q) Va, |a] € M}. This space is a Banach space with the norm

For arbitraryty,t; € R (1 < tp) we define by\Nm’())(Qtl t,) the subspace of the spa\t@m’O(Qtl 1,), consisting of the

functionsh such thatDh € L, (Qy ), if [a] € M, with the normHhHWmo Qi) = |\D"’h||L ) Q) We

\a\
denote bM/;"(’gy(Qtl,tz) the subspace of the spawgzi% Qi 1,), consisting of the functionk such thath(-,t) € V, for
almost each € [ty,t;].

Let G = Q x S whereSis an open unbounded interval Bf Let us denote by\/m Ioc G) the linear space of measurable
functions such that their restrictions @k, , belong to\/\/m (Qt1 tz) for all t3,t; € S. It is complete locally convex linear
space with respect to the family of semmorrﬁ&hHWmo Q) = o ||D0’h||Lpa( (Qty) ) | t1.t2 € S}. Therefore, a
sequence{hn} is convergent strongly (weakly) TW |OC( ) provided the sequences of restrictioft|q, ., } are

convergent strongly (weakly) Mfgz_)(Qtl,tz) forallty,to € S
The following assumption will be needed throughout the pape

(#) b:Q — Ris ameasurable bounded function<®(x) < 1 forx € Qp C Q andb(x) =0 forx € Q \ Qp, where
Qg is open set.

We need 0< b(x) < 1 in the our proof. But if sup(x) > 1 then we can divide equation by sofx) and use received
xeQ xeQ
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results.

Let b(x) = b(x), if x € Qo, andb(x) = 1, if x € Q\ Q. We denote byH,(Q) the linear space of functions of the form
w = b~Y/2y, wherev € L,(Q), with the seminorm|wl|y, o) = ([ b(x) [w(x)|dx) V2 itis easy to check that,(Q) is
the completion o, with respect to the seminorfit ||y, o) (see [7]).

Let B be a linear space with a norm or a semindfri|g, S be a real interval. Let us denote 6yS;B) the space of
functionsv: S— B such that the restriction afon any intervalty,tz] C Sbelongs taC([t1,t2]; B). It is complete locally
convex linear space with respect to the family of sem|no{|th$|c (tota]B) = Mty 1) V(L ||B]t1,tz € S}. Asequence
{gm} is convergent irC(S;B) provided the sequences of restrictioft|, 1, } are convergent ilC([ty,t2]; B) for each
t1,tb €S

Set
5 1o =W 10 (Q) NC(R; Hp(Q)).

The spacé&®  _is a complete local convex linear space with respect to timélfaof seminorms

p,loc

{ > 1D, @) + Ml b0 ))\tl,tzeR}-

lajeM

A sequencégm} is convergent irU® . provided this sequence is convergerwﬁ' Q) andC(RR; Hp(Q)).

p,lo Ioc

Now let us denote by, the set of ordered collections of really valued functidag : |a| € M), which are defined on
Q x RN and satisfy the next three conditions:

(1) for eacha (Ja| € M) the functionag(x,t,&), (x,t,€) € Qx RN, is a Caratheodory (for almost gk,t) € Q the
functionay (x,t, -) : RN — R is a continuous, and for afl € RN functionag(-,-,&) : Q — R is Lebesgue measurable),
andag (x,t,0) = 0 for almost all(x,t) € Q;

>) Toreacha (|a| € , for almost all(x,t) € anaritora S we nave
(o) T ha (|a| € M), for al li(x,t) € Q and for all§ € RN we h

laa (6 6,)[ <ha(xt) 5 |&IP0/P™ 4 ga(x1),
IBleM

wherehy € Lejoc(Q), 9 € Lpy/()(Q);
(3) for almost all(x,t) € Q and for arbitraryé ,n € RN the inequality

; (a(Xt,&) —aa(Xt,n))(éa — Na) > Ky |&q — Na|Pa™
lo

lajeM

holds; hereK; is a positive constant dependent ag € || € M).

Also consider a subséty, of setAp, consisting of collections of functions

(aa(x,t,&) = 8a(x,1)[Ea[Pe 28, < |a] € M),
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where, for alla, |a| € M, @y € Lo joc(Q) and
ax(x,t) > Ky >0 foralmostall (xt) €Q, (3)
whereK; is a positive constant, which may be dependent@&n (a| € M).
The inclusionA}, C A can be easily proved using the inequality
(Isl% %81 — 2|9 %) (51— 52) = 2 s — 52",
whereq > 2, 51,5 € R are arbitrary.
Note that, if(aq : |a| € M) belongsAj, then equationl) has the form

(b(X)u) + ; (—1)191D% (8, (x,t)|DYu[PeX=2DY) = ; (-DI9Df4(x,1), (x,t) € Q. (4)
la lale

A partial case of the equatiod)((and, hence, the equatiob)] is the equation
(bOYU) + (—2)Mu+ [ulPN2u=f(xt), (xt)€Q.

LetFy joc b€ the set consisting of ordered collectidig : |a| € M) of real valued functions defined @ and for each
a (la| € M) the functionf, belongs to the spads,, () oc(Q)-

Definition 1.Suppose that functions b, p satisfy the conditio@y, (), respectively, anda, : [a] € M) € Ap, (fq :
lal € M) € Fy joc. A function u is called a weak solution (), (2), provided uc UP, and the following integral identity

holds //{

forallve V,, ¢ € CLR).

p,loc

aq (x,t, 3U)DVe — buwp' } dxdt = / / f4Dveh dxdlt 5)

\a\eM \a\eM

The main results of our work are the next statements.

Theorem 1Suppose that b, p satisfy the conditiqs), (), respectively, andag : |a| € M) € Ay, (fq @ |a] eM)
Fy 10c- Then there exists a unique weak solutior{Bf (2), and the estimate

to
max /b X)|u(x,t)[2dx+ // \D" (x1)[P<9) dxdt < C(R 2/(Fi -2 1 // |fa(xt)\p'a Jdxdt)  (6)
€[to—Ro,to] J o) afe
th—Ro Q to—RQ

holds for all R Ry, tp such that B > 0, R> max{1,2Ry}, to € R. Here C> 0 is a constant which depends only og 9,
(la| € M), mesQ.

Hereafter meg?2 is the Lebesgue measure@f

Corollary 1. Under the assumptions of Theorem 1 fife Ly (1(Q) for eacha, |a| € M, then a weak solution ofl},
(2) satisfies the estimate

sup [ b()|u(x,t) |2dx+// |D" x,t)[Pa(X dxdt<C// falx )P dxlt 7)

tGR
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Corollary 2. Under the assumptions of Theorem 1, if

sup// |fa Xt |pa ) dxdt< C;

TE]R 716 lale

for some positive constafly, then a weak solution of (1), (2) satisfies the estimates
sup [ b(x)|u(x,t)[>dx < Cy, sup// |D" x,t)|Pa™ dxdt < Cy,
teR 2 TeR

whereC, > 0 is some positive constant being dependergrp, (|a| € M) andC;.

Corollary 3. Under the assumptions of Theorem 1, if

I|m // |fo, (x,t)|P«® dxdt=0
T——00(+00)

then for a weak solution of problem (), (2) the following equalities hold

lim  [u(-ll,@ =0,  lim // |D"’ (x,1)[Pa® dxdt=0

t——oo(+0) T——00(+00)

Theorem 2Under the assumptions of Theorem 1, if the functi@as: |a| € M), (fy : |a| € M) are time periodic with
periodo > 0, then the weak solution of), (2) is alsog-periodic in time.

A setX C R is calledrelatively densgif there exists a positivesuch that for ala € R interval[a,a+ |] contains at least
one element of the s&¢, i.e.,XN[a,a+1] # @ VacR.

Let B be a linear space with a norm or a semindfmi|g. A functionv € C(R;B) is Borh almost periodicif for each
€ > 0the set{og|sup||v(-,t+ og) —Vv(-,t)||g < €} is relatively dense.
teR

Afunctionf e Ly /(. |oc(6) is Stepanov almost periodfrovided the set

AT n f
{o] sup/ /|fa(x,t+0) — fa(xt)|P Wdxdt < £}
Q

teRJ/1-1
is relatively dense for each positige|a| € M).

We say thatv is Stepanov almost periodas eIemenWm IOC( ), if for eache > 0 the set

{a|sup// IDYW(x,t + ) — D W(x,t)[Pe™] dxdt < &}
-1

TeR \aeM

is relatively dense. We refer td]} [19] — [12] for the detailed information on the theory of almost peredfdinctions.
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Theorem 3Under the assumptions of Theorem 1,(&t : |a| € M) € Ay and for eacho (|af € M) @g € C(R; L« (Q)) is
Borh almost periodic, f € Lp&(-) IOC(6) is Stepanov almost periodic. Moreover, the set

Fs:={0]|su / / [fa(X,t+0) — fa(X,1) |pa dxdt< 9, maxsup||aa( t+0) —ag(- 1)L, 0) <0}
TeR: \aeM lojeM ter

is relatively dense for each > 0.

Then the (unique) weak solution of)( (2) is Borh almost periodic as element{®, H,(Q)) and Stepanov almost

periodic as elemer\if&’,(;'oc@)-

3 Auxiliary statements
The following statement is similarly to Lemma 1 i24], and can be proved so as this lemma.

Lemma 1.Suppose that b, p satisfy the conditi¢g®), (?), respectively. Givenit, € R such that —t; > 1, we assume
that a function V\E\K,;TE,F;(QMZ) satisfies the identity

[J{(S D)6 —bwna’} dxt=0, ve vy, ¢ eClitsto) (8)
i1 0 laleM

for some functionsg@e Ly, ((Qt,) (la] € M). Then we C([t2,t2]; Hp(Q2)) and the following equality

0( /b W(x, T2)V(X) dx— 6(11) /b xrl)v(x)dx+//{( Y 9aD%v)0 b’} dxdt=0,  (9)

T2

1 1 1

501 IWC. 1) [y ) — 50T IWC. Iy 0) — 5 / (-, 1)][7 ) 6 () dt + / / (Y 9aDW)6dxdt=0  (10)
n

holds for all € CY([t1,tz]), vE Vp andty, T2 € [t1,to] (11 < T2).

Lemma 2.Suppose that b, p satisfy the conditideg), (&), respectively(aq : |a| € M) € Ap. Given §,t; € R such
thatt, —t; > 1, and for all | € {1,2}, we suppose that functions@ﬁ/&’g(Ql,Q) NC([t1, t2];Hp(2)), fat € Lpgr()(Qtyty)
(la| € M) satisfy the following identities

//{ t,8U)DVg — by’ }dxdtf// o DOV dxdlt (11)
1 Q ‘G‘GM t1 Q ‘CI‘GM
forallve Vyand¢ € Cl(ty,tp).

Then for each RRy, tg such, that B> 0, R> max{1,2Ry}, t1 < to— R< tp < tp, the inequality

fo

max /b )uz(x,t) — ua(x,t) |2 dx+ / /( IDYuy — D%up|P= ) dxdt
€[to—Ro.to] to—Ry O lajem
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<C{R2P-2 ¢ // |falff0,2|p“ ) dxdt} (12)
to—RQ lale

holds (the constant C in this lemma is the same as in Theorem 1)
Proof.Let R, Ry, to be such as in the formulation of the lemma, ag{t]) :=t —tp+ R, t € R (see alsoZ6]). Givenve V,

and¢ < CL(t1,to) we subtract the equalityl () whenl = 1 and the same equality whes- 2. Then, for(x,t) € Q x (t1,t,)
putting

ug2(X,t) := ug(X,t) — up(x,t),
fa,lz(X,t) fa. 1(X t) fa ( ) |a| eM,
aa,12(xvt) = aC!( 5 ,6U1(X,t)) aa( 5 ,5U2(X,t)), |a| € Ma

we obtain an equality

to t2

/ / {('Y 812D7V)¢ — bunv'} dxdt= / / S 12DV dxdlt (13)
o laleM i o lalem
From this equality using Lemma 1 with =to— R, T =T € (to — R to], W= U12, §a = 8g,12— fa.12 (|a] €M), 8 =15,
s:=2p, /(Py —2), we get the equality

/b )u12(x, T)|2dx+ 2 / / aa,lzD“ulznsdxdt
t—RQ lale

—s / /b|u12|2r)5 Laxdt+ 2 / / f4.12D%UonSdxdt (14)
RO \a\eM

We make the corresponding estimates of the integrals ofliag(&4). From condition(.e73) we get

// aalzD"ulzr;dedt> Ky // |D"u12|p“<x)nsdxdt (15)
tt-RQ 19l€ to-RO l9IE

Further we need the following inequality:
ac<elaf4 e Y@V aceR, q>11/q+1/q=1,€>0, (16)
which is a corollary of the standard Young's inequaliy: < |a|9/q+ |c|% /d/.

Putting (for almost eacke Q) q= po(X)/2,d = po(X)/(Po(X) — 2), a= b|ui22n¥9, c = n¥9-1 ¢ = g € (0,1), under
(16) we obtain

T

T T
/ / blu2|2n® tdxdt< & / / bP0/2|y, P00 S dxclt s g, % P02 / / nsPo/(P-D gydt  (17)
0 RO

whereg; € (0,1) is an arbitrary number.
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Again using inequality16), we obtain

T

/ / faylzD"ulznsdxdtgez / / ; ID% Uz P S dxdt+ / / Z g, Y/ P, 1,|Pe®nsdxdt, (18)
ale aleM

t,—RQ l9l€ to-RQ | tt-RQ |

whereg; € (0,1) is an arbitrary number.

From (14) using (L5), (17), (18), if &1 ande&; are sufficiently small, we obtain the following

/b ) ur2(x, T)[2dx+ // |D"u12|p“ nSdxdt

to-RQ lal€

<G //ns Po(x)/ (Polx dxdt+// |1/Pa ) n3dxd] (19)

tt-RQ l9l€

whereC; is a positive constant depending onlylénandp; (ja| € M).

Since 0< n(t) <R, whent € [to — R tg], andn (t) > R— Ry, whent € [to — Ry, to], from (19) we obtain the inequality

(R— ROS/b (X)[uz2(x, T)[2dx+ (R— Ro)® // |D°’u12|p“ dxdt

Q to—Ro 191€
<Gy / / RSP0/ (PX)-2) gt 4 RS / / |fa,12|p’a<X>dxdt]. (20)
to—RQ lale

We divide by(R— Ry)® the obtained inequality. Note thRt> max{1; 2Ry} (then, in particular, we have/(R— Ry) =
1+ Ro/(R—Ry) < 2). Using this inequality an& P/ (Pe¥-2 < R-Po/(Ps =2 for everyr € [to— Ro, o] we obtain

/b (X)|uz2(x, T)[2dx+ // |D"u12|p“<x)dxdt

to—RoQ lale

< C4[RP3/ (P52 / /dxdt+ / [ Il axat] (21)

RO \a\eM

fo
whereCy is a positive constant depending only Ba and p, (Ja| € M). Using 1) and the equality [ [ dxdt=
to—RQ
R-megQ, we obtain 12).

4 Proof of the main results

4.1 Proof of Theorem 1

First we prove that there exists at most one weak solutiomaiflpm (1), (2). Assume the contrary. Let, up be (distinct)
weak solutions of this problem. Using Lemma 2, for arbitramynbersR, Ry, to with Ry > 0, R> max{1,2Ry}, tp € R we
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get

fo
/ / DY (uy — Up)|Pa ¥ dxdt < CR2/(P5—2), 22)
to—Rg Q ‘G eM
We fix arbitrary numberf; > 0 andty € R and take the limit aRk — +o in (22). We receive thati; = u, almost

everywhere orQy,_r,t,. SinceRy,tg are arbitrary numbers, we obtain = u, almost everywhere oQ. The obtained
contradiction proves our statement.

Now we are turning to the proof of the existence of a weak smiudf problem (), (2). For eachm € N we consider an
initial-boundary value problem for equatiod)(in the domainQm := Q x (— m +oo) with a homogeneous initial
condition and boundary conditions2)( namely: we are finding a functionmi eW IOC(Qm) NC([—m,+);Hp(Q)),
which satisfies the initial condition

[Um(, =) ||Hy(0) =0

and the integral equality

//{ ao, (X,t, 8Um)Dve — bumve’ } dxdt= // famDYvp dxdt veV,, ¢ e CH(—m, +o), (23)
eM

where fg m(x,t) 1= foa(Xt), if (X,t) € Qm, and fg m(x,t) := 0, if (x,t) € Q\ Qm. The existence and uniqueness of the
function up, is proved in R7] (see also 7] and [24]). We extenduy, on Q by zero and this extension is denoted lpy
again. Further we prove that the sequefieg} converges |r1Up loc 10 @ weak solution of problend}, (2). Indeed, note
that for eachm € N the functionun, is a weak solution of the problem which differs from problety (2) by fo m instead

of fy forall a,|a| € M. Using Lemma 2 for each natural numberandk we have

to

max /b ) um(X,t) — ui(x, t)[2dx+ / /( |D"um—D"uk|pﬂ<X)) dxdt
€lto.to—Ro] t-Ro @ |a[EM

<C{R %! Po—2) 4 // |famxt fo k(X t)|Pa’X ) dxdt}, (24)
to—RQ lale

wheretg, Ry, R are arbitrary numbers such thge R, Ry > 0, R> max{1,2Rp}.

We show that for fixedp and Ry the left side of inequalityd4) converges to zero whem, k — +o. Let € > 0 be an
arbitrary small number. Choo$eso big that
CR /(-2 ¢, (25)

This is possible apg —2 > 0. By (25) for arbitrarym,k € N such that mag—m, —k} <to — R, we havefq m = fqk
(la| € M) almost everywhere of2 x (to — R tp) and the right side of inequality24) is less thare. This implies that the
restriction of the terms of the sequer{eg,} onQ,—r, t, is @ Cauchy sequence\}%g"’o (Qto—Roto) NC([to — Ro, to]; Hh(Q)).
Therefore, sincé andRy are arbitrary, there exists a functiare Up loc Such thatim — uin Up loc- Note that in 23) the
integration orQ, can be replaced by integration @rand take the limit of this equality fon — . So we get

(2

t, 8Um) D v dxdt — / / {'S aalxt 30D vpdxdt

\OI\GM \a\eM
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(this fact implies from lemma 2.2 ir2p]) and as a result we obtais) for all ve V, and ¢ € CL(R). It means that
the functionu is a weak solution of problemi),(2). Estimate ) directly follows from Lemma 2 putting; = u, up =
0, fa1="fa, fa2=0(lal e M).

4.2 Proof of Corollaries 1-3

These statements follow from estima.

4.3 Proof of Theorem 2

Letuis a weak solution of problem (1), (2). Pult) (x,t) := u(x,t 4 ), fé (xt) = fa(xt+ ), ay (x,t,E) ag(X,t+
u, &), (x,t) € Q, & ¢ RN, whereu € R. Replace variablebyt 4 u (u € R is arbitrary) in §). As a result, we obtain an

identity
(2

Rewrite this equality in the form

)(x.t, 5u)DYve — buf¥ v¢}dxdt—// Wpavgdxdt veVp, ¢ € CHR).

\OI\GM \a\eM

//{ aa (x,t,6u))D%¢ — buHvg’} dxdt= // Z {aa (x,t,8u)) —al (xt, suk) )} DYv¢ dxdt

+// Wpivpdxdt veVp ¢ eCLR). (26)

From (26), puttingu = o and using periodicity of the functiorsg, andf, (|a| € M), we obtain that the function(©) is
a weak solution of problenil], (2). Taking this into consideration and the fact of uniqueradss weak solution of the
problem (), (2), we getu® = u(9) almost everywhere o@. Therefore the statement of Theorem 2 is correct.

4.4 Proof of Theorem 3
For everyu € R we put

af! [Wj(x,t) := &g (x,t+ 1) DUW(x,1)[P¥ 2D W(x.t), (xt) € Q(|a € M).
Similarly as in the proof of Theorem 2 (se&), we get the identity

//{ WD — buHvg’ }dxdtf// A% M) — P W) + ) 1DV dxdtv e Vp. ¢ eCLR).  (27)

|a|eM

Letd, :=min{1;K;/2} > 0 ando € F5 , whereF; is defined over theorem. Consider the identﬁ?)(first foru =0, and
then fory = o # 0. Then, using Lemma2wiuhnfu U=l ag(x,t,&) =8 (x,1)|Ea [P 2&, (la| €M), fq1=
£9 g0 =aQu@] - a?u@) + £ (jal e M), to =T € Ris arbltrary,Ro 1, R=1cNandl > 2, we get

max /b U@ (x,t) —u@(x,t) |2dx+// |D"u(0)fD“u(°)|p"(X))dxdt
te[t—1,1] Jid a
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T
sc{rz/(pc?%// ; BT W)+ 1) — £89)|P"™ dxdt). (28)
1q lale

T—

By the inequalitya+c)” <2""'(a’ +c¢Y), a>0,c>0,v>1 wehave

// 129 U@ — al@ @) + £ — 12)P'™ dxdt
-1 0 \a\eM
T
<z [ [ (8E1u) = a2 [P+ 147 — 1% P) it (29)
-1 Q
Fora, |a| € M, we have
T
| ] e dxdt*// (Xt 4 0) —8a(x,t)[* | Du(*) Pedxdt
-1 Q -1 Q
T
< (‘supllaa (-t + 0) ~ 8- VL. (o //|D"u(°)|p“<x)dxdt (30)
teR

Sinceu(9) is a weak solution of problem, which differs from)( (2) only in that we havey (x,t + g, &) insteadag (x, t, &)
(la] € M) and £\ insteadfy, thanu(®) satisfies estimates) with replaceu onu(® andfy on £\ (Ja| € M). From this
estimate, puttingg = 7, Ry =1, R= 2| we receive

T

T
; //|Dau(0)|pﬂ<x)dxdt§C4{(2I)*2/<p3’2)+// 157 P ™) dxit}. (31)
laleMZ) o 122 o laleM

Then from @8), using 9) — (31), we receive

/b ()@ (x, 1) —u@(x, T |2dx+// |D"’u(°')—D"u<°)|p"<"))dxdt
-1Q
T—k+1

|
<G{I 24y //;(m‘;” 2P dxt (32)
k=1 .7y o laleM
| T—k+1

gy
+ max (supl|ag” (-t )*aa('vt)HLm(Q))(pa) 172/ =2) ¢ > / / |£57)Pa"™) dxdlf] },
loa|EM “ter &Y L dfem

whereCs > 0 is some positive constant independent af andl.

Since for eactw, such thata| € M, fy are Stepanov almost periodic as an elenh%nE (Q), the estimate

sup// |p“ ) dxdt < Cg (33)

TeR \a\eM
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holds; hereCs > 0 is some constant independentro& andl.
Let e > 0 be an arbitrary small fixed number. We claim that the set

Ue := {0 € R|sup [ b(x)[u(x,t + o) —u(x,t)[?dx < €,
teR

SUp./ /[ z |Dau(x,t+0)_DGU(X,IHDU(X)} dthgg}

contains a sefs for somed € (0, d.]. Indeed, choose and fix big enoulgh N (I > 2) satisfying the following inequality
Csl 22 < ¢g/2. (34)
Then taked € (0, d.] such that the following inequality remains true

Cs(15+ maxawa*)’(rz/“% “2 1 2Cg)) < g/2. (35)
aleM
Therefore, ifo € Fs, then the right side of the inequalit@?) is less than or equal t&. From this, we have thdy C U,
and the selt); is relative density. The fact we had to prove.
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