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Abstract: The problem without initial conditions or, in other words, the Fourier problem for anisotropic elliptic-parabolic equations
with variable exponents of nonlinearity in time unbounded domains is considered in this paper. The existence and uniqueness solutions
of the problem are proved with no conditions on the behavior of solutions and growth of input data at infinity. The estimates of these
solutions are received. In addition, some properties of theweak solutions of the Fourier problem are considered. The conditions for
existence of periodic solutions of the considered equations are set. Also the conditions for existence of Bohr almost periodic solutions
and Stepanov almost periodic solutions of some equations are obtained.
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1 Introduction

The problem without initial conditions or, in other words, the Fourier problem for evolution equations describes

processes that started a long time ago and initial conditions do not affect on them in the actual time moment. Then the

equations are considered for time variable beginning from−∞. The Fourier problem for evolution equations has been

widely used to study the models appearing in many fields of science such as economics, computer science, physics,

ecology, cybernetics, etc. So these problems are examined in many papers; see, e.g., [1] – [11]. A lot of information

about results concerning problems without initial conditions can be found in [10]. Note that the Fourier problem for

linear and a plenty of nonlinear evolution equations are well-posed only if there are some restrictions on behavior of

solutions and growth of input data as the time variable converges to−∞ [1] – [7], [10]. But there are nonlinear parabolic

equations for which the Fourier problem is uniquely solvable with no conditions at infinity [8] – [9], [11], [12].

Here we consider the higher-order anisotropic elliptic-parabolic equations with variable exponents of nonlinearity. These

equations are defined on unbounded cylindrical domains which are the Cartesian products of bounded space domains and

the whole time axis. For these equations we find the weak solutions, which defined for all values of the time axis (global

solutions) and satisfied the boundary conditions. Since exponents of nonlinearity is variable then the weak solution of

considered problems belong to the generalized Lebesgue andSobolev spaces. More information on these spaces and its

applications can be found in [13] – [18]. It is proved existence and uniqueness of weak solutions ofconsidered problems

with no conditions on their behavior and growth of coefficients and right sides of equations at infinity in this paper. Also

the estimates of these solutions are received.

Note that from lack of initial conditions, there is a possibility to consider the conditions for the existence of periodic and

almost periodic solutions. The theory of almost periodic functions was mainly treated and created by Bohr during
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1924-1926. For details about Bohr almost periodic functions, see [19]. Stepanov generalized the class of almost periodic

functions in the sense of Bohr without using the hypothesis of continuity. More information on these functions can be

found in [20] – [22].

In this paper we set the conditions for the existence of periodic solutions, Bohr almost periodic solutions and Stepanov

almost periodic solutions. Similar results are in [12], but for the second order equation.

This paper consists of four parts: the first part is the introduction, in the second we say the formulation of the problem

and main results, the third part encloses the auxiliary statements while the proofs of main results are in the fourth part.

2 Formulation of the problem and main results

Let n be a natural number andRn be the linear space consisting of ordered collections of real numbersx = (x1, . . . ,xn)

with norm|x| := (|x1|
2+ . . .+ xn|

2)1/2. Let M be a subset of the set{0,1, . . . , m} such that{0,m} ⊂ M, wherem is some

natural number. Denote byN the number ofn-dimensional multi-indexesα = (α1, . . . ,αn) (for eachi ∈ {1, ...,n}, αi is a

nonnegative integer), the length|α| = α1 + . . . + αn of which is an element of the setM, and byRN denote the linear

space of ordered collections ofN real numbersξ = (ξ0̂ , . . . ,ξα , . . .) ≡ (ξα : |α| ∈ M), components are numbered

n-dimensional multi-indexes ofα, whose length|α| belongs to the setM, and ordered lexicographically (this mean, that

α = (α1, . . . ,αn) precedes β = (β1, . . . ,βn), when either |α| < |β |, or |α| = |β | and αk < βk, where

k= min
{

j : α j 6= β j
}

). Hereafter̂0 is a multi-index, consisting of zeros. Put|ξ | :=
(

∑
|α |∈M

|ξα |
2
) 1

2 for arbitraryξ ∈ RN.

Let Ω be a bounded domain inRn with piecewise smooth boundaryΓ := ∂Ω . We denote byν = (ν1, ...,νn) the unit

normal vector to pointing outwardΓ . SetQ := Ω ×R, Σ := Γ ×R andQt1,t2 := Ω × (t1, t2) for arbitrary real numberst1
andt2 such thatt1 < t2.

Considerthe problemof finding a functionu : Q→ R satisfying (in some sense) the equation

(b(x)u)t + ∑
|α |∈M

(−1)|α |Dαaα(x, t,δu) = ∑
|α |∈M

(−1)|α |Dα fα(x, t), (x, t) ∈ Q, (1)

and the boundary conditions
∂ ju
∂ν j

∣∣∣
Σ
= 0, j = 0,m−1, (2)

where aα : Q×RN → R, fα : Q → R (|α| ∈ M) are given functions,δu is the ordered collection of derivatives

Dαu≡ ∂ α1+...+αn

∂x
α1
1 ...∂xαn

n
u of the functionu for orders|α| ∈ M.

We should consider a weak solution of the problem (1), (2). For this, first define some functional spaces and classes of

input data of the given problem.

Let r ∈ L∞(Ω) such thatr(x)≥ 1 for almost eachx∈ Ω . Suppose that eitherG= Ω or G= Ω ×S, whereS is an interval

in R. Denote byLr(·)(G) the generalized Lebesgue space consisting of the measurable functionsv : G → R such that

ρG,r(v)< ∞, whereρG,r(v) :=
∫
G
|v(x)|r(x) dx for G= Ω , andρG,r(v) :=

∫
G
|v(x, t)|r(x) dxdt for G= Ω ×S. The space is

equipped with the norm‖v‖Lr(·)(G) := inf{λ > 0 | ρG,r(v/λ )≤ 1}; it is a Banach space [11]. If ess inf
x∈Ω

r(x) > 1, then the

dual space[Lr(·)(G)]′ can be identified withLr ′(·)(G), wherer ′ is the function defined by the equality1r(x) +
1

r ′(x) = 1 for

almost eachx∈ Ω .
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Let G= Ω ×S, whereS is an unbounded open interval ofR or S= R. We denote byLr(·),loc(G) the space of measurable

functionsg: G→ R such that the restriction ofg onQt1,t2 belongs toLr(·)(Qt1,t2) for eacht1, t2 ∈ S. It is complete locally

convex linear space with respect to the family of seminorms{
‖ · ‖Lr(·)(Qt1,t2)

∣∣t1, t2 ∈ S
}

. Therefore, a sequence{gm} is convergent strongly (resp., weakly) inLr(·),loc(G) provided the

sequences of restrictions{gm|Qt1,t2
} are convergent strongly (resp., weakly) inLr(·)(Qt1,t2) for all t1, t2 ∈ S. Similarly we

can define the spaceL∞,loc(G).

We denoteWm
q (Ω) := {v∈ Lq(Ω)

∣∣Dαv ∈ Lq(Ω) ∀α, |α| ≤ m}, whereq≥ 1 is any number. It is a Banach space with

the norm ‖v‖Wm
q (Ω) := ∑

|α |≤m
‖Dαv‖Lq(Ω) (see, for example, [23]). For each q ≥ 1 and interval S ⊂ R, let

Wm,0
q (Ω × S) := {h ∈ Lq(Ω × S)

∣∣Dαh ∈ Lq(Ω × S) ∀α, |α| ≤ m}. It is a Banach space with norm

‖h‖
Wm,0

q (Ω×S)
:= ∑

|α |≤m
‖Dαh‖Lq(Ω×S) (see, for example, [23]).

Assume that:

(P) p= (pα : |α| ∈ M) – ordered collection of measurable functions onΩ , which satisfy the following condition

2≤ p−α := essinf
x∈Ω

pα(x)≤ esssup
x∈Ω

pα(x) =: p+α <+∞, if |α| ∈ M, while p−
0̂
> 2.

We also denote byp′ = (pα
′ : |α| ∈ M) an ordered set of functions such that 1/pα(x)+ 1/pα

′(x) = 1 for almost each

x∈ Ω (|α| ∈ M).

Let Wm
p(·)(Ω) := {v ∈ Wm

2 (Ω)
∣∣Dαv ∈ Lpα (·)(Ω) ∀α, |α| ∈ M}. This space is a Banach space with the norm

‖v‖Wm
p(·)(Ω) := ∑

|α |∈M
‖Dαv‖Lpα (·)(Ω). We define by

◦
Wm

p(·)(Ω) closure of C∞
c (Ω) in Wm

p(·)(Ω) (C∞
c (Ω) is the linear space of

infinity differential functions defined onΩ with compact support). To simplify the presentation of the material we denote

Vp :=
◦

Wm
p(·)(Ω).

For arbitraryt1, t2 ∈ R (t1 < t2) we define byWm,0
p(·) (Qt1,t2) the subspace of the spaceWm,0

2 (Qt1,t2), consisting of the

functionsh such thatDαh ∈ Lpα (·)(Qt1,t2), if |α| ∈ M, with the norm‖h‖
Wm,0

p(·)(Qt1,t2)
:= ∑

|α |∈M
‖Dαh‖Lpα (·)(Qt1,t2)

. We

denote by
◦

W
m,0
p(·),(Qt1,t2) the subspace of the spaceWm,0

p(·),(Qt1,t2), consisting of the functionsh such thath(·, t) ∈ Vp for

almost eacht ∈ [t1, t2].

Let G= Ω ×S, whereS is an open unbounded interval ofR. Let us denote by
◦

W
m,0
p(·),loc(G) the linear space of measurable

functions such that their restrictions onQt1,t2 belong to
◦

Wm,0
p(·)(Qt1,t2) for all t1, t2 ∈ S. It is complete locally convex linear

space with respect to the family of seminorms
{
‖h‖

Wm,0
p(·)(Qt1,t2)

:= ∑
|α |∈M

‖Dαh‖Lpα (·)(Qt1,t2)

∣∣ t1, t2 ∈ S
}

. Therefore, a

sequence{hm} is convergent strongly (weakly) in
◦

W
m,0
p(·),loc(G) provided the sequences of restrictions{hm|Qt1,t2

} are

convergent strongly (weakly) in
◦

Wm,0
p(·)(Qt1,t2) for all t1, t2 ∈ S.

The following assumption will be needed throughout the paper:

(B) b : Ω → R is a measurable bounded function, 0< b(x) ≤ 1 for x ∈ Ω0 ⊂ Ω andb(x) = 0 for x ∈ Ω \Ω0, where

Ω0 is open set.

We need 0< b(x) ≤ 1 in the our proof. But if sup
x∈Ω

b(x) > 1 then we can divide equation by sup
x∈Ω

b(x) and use received

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


32 M. Bokalo and I. Skira: Solutions for higher-order elliptic-parabolic equations

results.

Let b̃(x) = b(x), if x∈ Ω0, andb̃(x) = 1, if x ∈ Ω \Ω0. We denote byHb(Ω) the linear space of functions of the form

w= b̃−1/2v, wherev∈ L2(Ω), with the seminorm‖w‖Hb(Ω) =
(∫

Ω b(x)|w(x)|2dx
)1/2

. It is easy to check thatHb(Ω) is

the completion ofVp with respect to the seminorm‖ · ‖Hb(Ω) (see [7]).

Let B be a linear space with a norm or a seminorm‖ · ‖B, S be a real interval. Let us denote byC(S;B) the space of

functionsv: S→ B such that the restriction ofv on any interval[t1, t2] ⊂ Sbelongs toC([t1, t2];B). It is complete locally

convex linear space with respect to the family of seminorms
{
‖v‖C([t1,t2];B) := maxt∈[t1,t2] ‖v(t)‖B

∣∣ t1, t2 ∈ S
}

. A sequence

{gm} is convergent inC(S;B) provided the sequences of restrictions{gm|[t1,t2]} are convergent inC([t1, t2];B) for each

t1, t2 ∈ S.

Set

U
b
p,loc :=

◦
W

m,0
p(·),loc(Q)∩C(R;Hb(Ω)).

The spaceUb
p,loc is a complete local convex linear space with respect to the family of seminorms

{
∑

|α |∈M

‖Dαh‖Lpα (·)(Qt1,t2)
+ ‖h‖C([t1,t2];Hb(Ω))

∣∣ t1, t2 ∈ R

}
.

A sequence{gm} is convergent inUb
p,loc provided this sequence is convergent in

◦
W

m,0
p(·),loc(Q) andC(R;Hb(Ω)).

Now let us denote byAp the set of ordered collections of really valued functions(aα : |α| ∈ M), which are defined on

Q×RN and satisfy the next three conditions:

(A1) for eachα (|α| ∈ M) the functionaα(x, t,ξ ), (x, t,ξ ) ∈ Q×R
N, is a Caratheodory (for almost all(x, t) ∈ Q the

functionaα(x, t, ·) : RN → R is a continuous, and for allξ ∈ RN functionaα(·, · ,ξ ) : Q→ R is Lebesgue measurable),

andaα(x, t,0) = 0 for almost all(x, t) ∈ Q;

(A2) for eachα (|α| ∈ M), for almost all(x, t) ∈ Q and for allξ ∈ RN we have

|aα(x, t,ξ )| ≤ hα(x, t) ∑
|β |∈M

|ξβ |
pβ (x)/p′α (x)+gα(x, t),

wherehα ∈ L∞,loc(Q), gα ∈ Lpα ′( ·)(Q);

(A3) for almost all(x, t) ∈ Q and for arbitraryξ ,η ∈ RN the inequality

∑
|α |∈M

(aα(x, t,ξ )−aα(x, t,η))(ξα −ηα)≥ K1 ∑
|α |∈M

|ξα −ηα |
pα (x)

holds; hereK1 is a positive constant dependent on (aα : |α| ∈ M).

Also consider a subsetA∗
p of setAp, consisting of collections of functions

(
aα(x, t,ξ )≡ âα(x, t)|ξα |

pα (x)−2ξα : |α| ∈ M
)
,
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where, for allα, |α| ∈ M, âα ∈ L∞,loc(Q) and

âα(x, t)≥ K2 > 0 for almost all (x, t) ∈ Q, (3)

whereK2 is a positive constant, which may be dependent on (âα : |α| ∈ M).

The inclusionA∗
p ⊂ Ap can be easily proved using the inequality

(|s1|
q−2s1−|s2|

q−2s2)(s1− s2)≥ 22−q|s1− s2|
q,

whereq≥ 2, s1,s2 ∈ R are arbitrary.

Note that, if(aα : |α| ∈ M) belongsA∗
p, then equation (1) has the form

(b(x)u)t + ∑
|α |∈M

(−1)|α |Dα(âα(x, t)|D
αu|pα (x)−2Dαu) = ∑

|α |∈M

(−1)|α |Dα fα(x, t), (x, t) ∈ Q. (4)

A partial case of the equation (4) (and, hence, the equation (1)) is the equation

(b(x)u)t +(−∆)mu+ |u|p0(x)−2u= f (x, t), (x, t) ∈ Q.

Let Fp′,loc be the set consisting of ordered collections( fα : |α| ∈ M) of real valued functions defined onQ, and for each

α (|α| ∈ M) the functionfα belongs to the spaceLpα ′(·),loc(Q).

Definition 1.Suppose that functions b, p satisfy the conditions(B), (P), respectively, and(aα : |α| ∈ M) ∈ Ap, ( fα :

|α| ∈M) ∈ Fp′,loc. A function u is called a weak solution of(1), (2), provided u∈U
b
p,loc and the following integral identity

holds ∫∫

Q

{
∑

|α |∈M

aα(x, t,δu)Dα vϕ −buvϕ ′
}

dxdt=
∫∫

Q

∑
|α |∈M

fαDαvϕ dxdt (5)

for all v ∈ Vp, ϕ ∈C1
c(R).

The main results of our work are the next statements.

Theorem 1.Suppose that b, p satisfy the conditions(B), (P), respectively, and(aα : |α| ∈ M) ∈ Ap, ( fα : |α| ∈ M) ∈

Fp′,loc. Then there exists a unique weak solution of(1), (2), and the estimate

max
t∈[t0−R0,t0]

∫

Ω

b(x)|u(x, t)|2 dx+

t0∫

t0−R0

∫

Ω

(
∑

|α |∈M

|Dαu(x, t)|pα (x)
)

dxdt≤C
(

R−2/(p+0 −2)+

t0∫

t0−R

∫

Ω
∑

|α |∈M

| fα (x, t)|
p′α (x)dxdt

)
(6)

holds for all R,R0, t0 such that R0 > 0, R≥ max{1,2R0}, t0 ∈ R. Here C> 0 is a constant which depends only on K1, p−α
(|α| ∈ M), mesnΩ .

Hereafter mesnΩ is the Lebesgue measure ofΩ .

Corollary 1. Under the assumptions of Theorem 1 , iffα ∈ Lp′α (·)(Q) for eachα, |α| ∈ M, then a weak solution of (1),

(2) satisfies the estimate

sup
t∈R

∫

Ω

b(x)|u(x, t)|2dx+
∫∫

Q

∑
|α |∈M

|Dαu(x, t)|pα (x) dxdt≤C
∫∫

Q

∑
|α |∈M

| fα(x, t)|
p′α (x)dxdt. (7)
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Corollary 2. Under the assumptions of Theorem 1, if

sup
τ∈R

τ∫

τ−1

∫

Ω
∑

|α |∈M

| fα (x, t)|
p′α (x)dxdt≤C1

for some positive constantC1, then a weak solutionu of (1), (2) satisfies the estimates

sup
t∈R

∫

Ω

b(x)|u(x, t)|2dx≤C2, sup
τ∈R

τ∫

τ−1

∫

Ω
∑

|α |∈M

|Dαu(x, t)|pα (x) dxdt≤C2,

whereC2 > 0 is some positive constant being dependent onK1, p−α (|α| ∈ M) andC1.

Corollary 3. Under the assumptions of Theorem 1, if

lim
τ→−∞(+∞)

τ∫

τ−1

∫

Ω
∑

|α |∈M

| fα(x, t)|
p′α (x)dxdt= 0,

then for a weak solutionu of problem (1), (2) the following equalities hold

lim
t→−∞(+∞)

‖u(·, t)‖L2(Ω) = 0, lim
τ→−∞(+∞)

τ∫

τ−1

∫

Ω
∑

|α |∈M

|Dαu(x, t)|pα (x) dxdt= 0.

Theorem 2.Under the assumptions of Theorem 1, if the functions(aα : |α| ∈ M), ( fα : |α| ∈ M) are time periodic with

periodσ > 0, then the weak solution of (1), (2) is alsoσ -periodic in time.

A setX ⊂ R is calledrelatively dense, if there exists a positivel such that for alla∈ R interval[a,a+ l ] contains at least

one element of the setX, i.e.,X∩ [a,a+ l ] 6=∅ ∀a∈ R.

Let B be a linear space with a norm or a seminorm‖ · ‖B. A function v ∈ C(R;B) is Borh almost periodic if for each

ε > 0 the set{σ | sup
t∈R

‖v(·, t +σ)− v(·, t)‖B ≤ ε} is relatively dense.

A function f ∈ Lpα ′(·),loc(Q) is Stepanov almost periodicprovided the set

{σ
∣∣ sup

τ∈R

∫ τ

τ−1

∫

Ω

| fα(x, t +σ)− fα(x, t)|
pα ′(x)dxdt≤ ε}

is relatively dense for each positiveε (|α| ∈ M).

We say thatw is Stepanov almost periodicas element
◦

W
m,0
p(·),loc(Q), if for eachε > 0 the set

{σ | sup
τ∈R

∫ τ

τ−1

∫

Ω

[
∑

|α∈M

|Dαw(x, t +σ)−Dαw(x, t)|pα (x)
]
dxdt≤ ε}

is relatively dense. We refer to [4], [19] – [12] for the detailed information on the theory of almost periodic functions.
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Theorem 3.Under the assumptions of Theorem 1, let(aα : |α| ∈ M) ∈ A∗
p and for eachα (|α| ∈ M) âα ∈C(R;L∞(Ω)) is

Borh almost periodic, fα ∈ L
p
′
α (·),loc

(Q) is Stepanov almost periodic. Moreover, the set

Fδ := {σ | sup
τ∈R

∫ τ

τ−1

∫

Ω
∑

|α∈M

| fα(x, t +σ)− fα(x, t)|
p
′
α (x) dxdt≤ δ , max

|α |∈M
sup
t∈R

‖aα(·, t +σ)−aα(·, t)‖L∞(Ω) ≤ δ}

is relatively dense for eachδ > 0.

Then the (unique) weak solution of (4), (2) is Borh almost periodic as element C(R;Hb(Ω)) and Stepanov almost

periodic as element
◦

W
m,0
p(·),loc(Q).

3 Auxiliary statements

The following statement is similarly to Lemma 1 in [24], and can be proved so as this lemma.

Lemma 1.Suppose that b, p satisfy the conditions(B), (P), respectively. Given t1, t2 ∈R such that t2− t1 ≥ 1, we assume

that a function w∈
◦

W
m,0
p(·)(Qt1,t2) satisfies the identity

t2∫

t1

∫

Ω

{(
∑

|α |∈M

gαDαv
)
ϕ −bwvϕ ′

}
dxdt= 0, v∈ Vp, ϕ ∈C1

c(t1, t2), (8)

for some functions gα ∈ Lp′α (·)(Qt1,t2) (|α| ∈ M). Then w∈C
(
[t1, t2];Hb(Ω)

)
and the following equality

θ (τ2)

∫

Ω

b(x)w(x,τ2)v(x) dx−θ (τ1)

∫

Ω

b(x)w(x,τ1)v(x) dx +

τ2∫

τ1

∫

Ω

{(
∑

|α |∈M

gαDαv
)
θ −bwvθ ′

}
dxdt= 0, (9)

1
2

θ (τ2)‖w(·,τ2)‖
2
Hb(Ω)−

1
2

θ (τ1)‖w(·,τ1)‖
2
Hb(Ω)−

1
2

τ2∫

τ1

‖w(·, t)‖2
Hb(Ω)θ

′(t)dt+

τ2∫

τ1

∫

Ω

(
∑

|α |∈M

gαDαw
)
θ dxdt= 0 (10)

holds for allθ ∈C1([t1, t2]), v∈ Vp andτ1,τ2 ∈ [t1, t2] (τ1 < τ2).

Lemma 2.Suppose that b, p satisfy the conditions(B), (P), respectively,(aα : |α| ∈ M) ∈ Ap. Given t1, t2 ∈ R such

that t2− t1 ≥ 1, and for all l∈ {1,2}, we suppose that functions ul ∈
◦

Wm,0
p(·)(Qt1,t2)∩C([t1, t2];Hb(Ω)), fα ,l ∈ Lpα ′(·)(Qt1,t2)

(|α| ∈ M) satisfy the following identities

t2∫

t1

∫

Ω

{
∑

|α |∈M

aα(x, t,δul )D
α vϕ − bul vϕ ′

}
dxdt=

t2∫

t1

∫

Ω
∑

|α |∈M

fα ,l D
αvϕ dxdt (11)

for all v ∈ Vp andϕ ∈C1
c(t1, t2).

Then for each R, R0, t0 such, that R0 > 0, R≥ max{1,2R0}, t1 ≤ t0−R< t0 ≤ t2, the inequality

max
t∈[t0−R0,t0]

∫

Ω

b(x)|u1(x, t)−u2(x, t)|
2dx+

t0∫

t0−R0

∫

Ω

(
∑

|α |∈M

|Dαu1−Dαu2|
pα (x)

)
dxdt
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≤C
{

R−2/(p+0 −2)+

t0∫

t0−R

∫

Ω
∑

|α |∈M

| fα ,1− fα ,2|
pα ′(x) dxdt

}
(12)

holds (the constant C in this lemma is the same as in Theorem 1).

Proof.Let R, R0, t0 be such as in the formulation of the lemma, andη(t) := t − t0+R, t ∈R (see also [26]). Givenv∈Vp

andϕ ∈C1
c(t1, t2) we subtract the equality (11) whenl = 1 and the same equality whenl = 2. Then, for(x, t) ∈ Ω ×(t1, t2)

putting

u12(x, t) := u1(x, t)−u2(x, t),

fα ,12(x, t) := fα ,1(x, t)− fα ,2(x, t), |α| ∈ M,

aα ,12(x, t) := aα(x, t,δu1(x, t))−aα(x, t,δu2(x, t)), |α| ∈ M,

we obtain an equality

t2∫

t1

∫

Ω

{(
∑

|α |∈M

aα ,12D
αv

)
ϕ − bu12vϕ ′

}
dxdt=

t2∫

t1

∫

Ω
∑

|α |∈M

fα ,12D
αvϕ dxdt. (13)

From this equality using Lemma 1 withτ1 = t0−R, τ2 = τ ∈ (t0−R, t0], w= u12, gα = aα ,12− fα ,12 (|α| ∈ M), θ = ηs,

s := 2p−0 /(p
−
0 −2), we get the equality

ηs(τ)
∫

Ω

b(x)|u12(x,τ)|2dx+2

τ∫

t0−R

∫

Ω
∑

|α |∈M

aα ,12Dαu12ηsdxdt

= s

τ∫

t0−R

∫

Ω

b|u12|
2ηs−1dxdt+2

τ∫

t0−R

∫

Ω
∑

|α |∈M

fα ,12Dαu12ηsdxdt. (14)

We make the corresponding estimates of the integrals of equality (14). From condition(A3) we get

τ∫

t0−R

∫

Ω
∑

|α |∈M

aα ,12D
αu12ηsdxdt≥ K1

τ∫

t0−R

∫

Ω
∑

|α |∈M

|Dαu12|
pα (x)ηsdxdt. (15)

Further we need the following inequality:

ac≤ ε|a|q+ ε−1/(q−1) |c|q
′
, a,c∈ R, q> 1, 1/q+1/q′ = 1, ε > 0, (16)

which is a corollary of the standard Young’s inequality:ac≤ |a|q/q+ |c|q
′
/q′.

Putting (for almost eachx∈ Ω ) q= p0(x)/2, q′ = p0(x)/(p0(x)−2), a= b|u12|
2ηs/q, c= ηs/q′−1, ε = ε1 ∈ (0,1), under

(16) we obtain

τ∫

t0−R

∫

Ω

b|u12|
2ηs−1dxdt≤ ε1

τ∫

t0−R

∫

Ω

bp0(x)/2|u12|
p0(x)ηsdxdt+ ε−2/(p−0 −2)

1

τ∫

t0−R

∫

Ω

ηs−p0(x)/(p0(x)−2)dxdt, (17)

whereε1 ∈ (0,1) is an arbitrary number.
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Again using inequality (16), we obtain

τ∫

t0−R

∫

Ω
∑

|α |∈M

fα ,12Dαu12ηsdxdt≤ ε2

τ∫

t0−R

∫

Ω
∑

|α |∈M

|Dαu12|
pα (x)ηsdxdt+

τ∫

t0−R

∫

Ω
∑

|α |∈M

ε−1/(p−α−1)
2 | fα ,12|

p′α (x)ηsdxdt, (18)

whereε2 ∈ (0,1) is an arbitrary number.

From (14) using (15), (17), (18), if ε1 andε2 are sufficiently small, we obtain the following

ηs(τ)
∫

ΩR

b(x)|u12(x,τ)|2 dx+

τ∫

t0−R

∫

Ω
∑

|α |∈M

|Dαu12|
pα (x)ηsdxdt

≤C3

[ τ∫

t0−R

∫

Ω

ηs−p0(x)/(p0(x)−2)dxdt+

τ∫

t0−R

∫

Ω
∑

|α |∈M

| f12|
p′α (x)ηsdxdt

]
, (19)

whereC3 is a positive constant depending only onK1 andp−α (|α| ∈ M).

Since 0≤ η(t)≤ R , whent ∈ [t0−R, t0], andη(t)≥ R−R0, whent ∈ [t0−R0, t0], from (19) we obtain the inequality

(R−R0)
s
∫

Ω

b(x)|u12(x,τ)|2 dx+(R−R0)
s

τ∫

t0−R0

∫

Ω
∑

|α |∈M

|Dαu12|
pα (x)dxdt

≤C3
[ τ∫

t0−R

∫

Ω

Rs−p0(x)/(p0(x)−2)dxdt+Rs

τ∫

t0−R

∫

Ω
∑

|α |∈M

| fα ,12|
p′α (x) dxdt

]
. (20)

We divide by(R−R0)
s the obtained inequality. Note thatR≥ max{1;2R0} (then, in particular, we haveR/(R−R0) =

1+R0/(R−R0)≤ 2). Using this inequality andR−p0(x)/(p0(x)−2) ≤ R−p+0 /(p
+
0 −2), for everyτ ∈ [t0−R0, t0] we obtain

∫

ΩR

b(x)|u12(x,τ)|2 dx+

τ∫

t0−R0

∫

Ω
∑

|α |∈M

|Dαu12|
pα (x)dxdt

≤C4
[
R−p+0 /(p

+
0 −2)

τ∫

t0−R

∫

Ω

dxdt+

τ∫

t0−R

∫

Ω
∑

|α |∈M

| f12|
p′α (x) dxdt

]
, (21)

whereC4 is a positive constant depending only onK1 and p−α (|α| ∈ M). Using (21) and the equality
t0∫

t0−R

∫

Ω
dxdt=

R·mesnΩ , we obtain (12).

4 Proof of the main results

4.1 Proof of Theorem 1

First we prove that there exists at most one weak solution of problem (1), (2). Assume the contrary. Letu1, u2 be (distinct)

weak solutions of this problem. Using Lemma 2, for arbitrarynumbersR, R0, t0 with R0 > 0, R≥ max{1,2R0}, t0 ∈R we
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get
t0∫

t0−R0

∫

Ω
∑

|α |∈M

|Dα(u1−u2)|
pα (x)dxdt≤CR−2/(p+0 −2). (22)

We fix arbitrary numbersR0 > 0 andt0 ∈ R and take the limit asR→ +∞ in (22). We receive thatu1 = u2 almost

everywhere onQt0−R0,t0. SinceR0, t0 are arbitrary numbers, we obtainu1 = u2 almost everywhere onQ. The obtained

contradiction proves our statement.

Now we are turning to the proof of the existence of a weak solution of problem (1), (2). For eachm∈ N we consider an

initial-boundary value problem for equation (1) in the domainQm := Ω × (−m,+∞) with a homogeneous initial

condition and boundary conditions (2), namely: we are finding a functionum ∈
◦

Wm,0
p(·),loc(Qm)∩C([−m,+∞);Hb(Ω)),

which satisfies the initial condition

||um(·,−m)||Hb(Ω) = 0

and the integral equality

∫∫

Qm

{
∑

|α |∈M

aα(x, t,δum)D
αvϕ −bumvϕ ′

}
dxdt=

∫∫

Qm

∑
|α |∈M

fα ,mDαvϕ dxdt v∈ Vp, ϕ ∈C1
c(−m,+∞), (23)

where fα ,m(x, t) := fα (x, t), if (x, t) ∈ Qm, and fα ,m(x, t) := 0, if (x, t) ∈ Q\Qm. The existence and uniqueness of the

functionum is proved in [27] (see also [7] and [24]). We extendum on Q by zero and this extension is denoted byum

again. Further we prove that the sequence{um} converges inUb
p,loc to a weak solution of problem (1), (2). Indeed, note

that for eachm∈N the functionum is a weak solution of the problem which differs from problem (1), (2) by fα ,m instead

of fα for all α, |α| ∈ M. Using Lemma 2 for each natural numbersmandk we have

max
t∈[t0,t0−R0]

∫

Ω

b(x)|um(x, t)−uk(x, t)|
2dx+

t0∫

t0−R0

∫

Ω

(
∑

|α |∈M

|Dαum−Dαuk|
pα (x)

)
dxdt

≤C
{

R−2/(p+0 −2)+

t0∫

t0−R

∫

Ω
∑

|α |∈M

| fα ,m(x, t)− fα ,k(x, t)|
pα ′(x) dxdt

}
, (24)

wheret0,R0,R are arbitrary numbers such thatt0 ∈ R, R0 ≥ 0, R≥ max{1,2R0}.

We show that for fixedt0 andR0 the left side of inequality (24) converges to zero whenm,k → +∞. Let ε > 0 be an

arbitrary small number. ChooseRso big that

CR−2/(p+0 −2) < ε. (25)

This is possible asp+0 −2 > 0. By (25) for arbitrarym,k ∈ N such that max{−m,−k} ≤ t0 −R, we havefα ,m = fα ,k

(|α| ∈ M) almost everywhere onΩ × (t0−R, t0) and the right side of inequality (24) is less thanε. This implies that the

restriction of the terms of the sequence{um} onQt0−R0,t0 is a Cauchy sequence in
◦

Wm,0
p(·)(Qt0−R0,t0)∩C([t0−R0, t0];Hb(Ω)).

Therefore, sincet0 andR0 are arbitrary, there exists a functionu∈ Ub
p,loc such thatum → u in Ub

p,loc. Note that in (23) the

integration onQm can be replaced by integration onQ and take the limit of this equality form→ ∞. So we get

∫∫

Q

{
∑

|α |∈M

aα(x, t,δum)D
αvϕdxdt→

∫∫

Q

{
∑

|α |∈M

aα(x, t,δu)Dα vϕdxdt
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(this fact implies from lemma 2.2 in [25]) and as a result we obtain (5) for all v ∈ Vp andϕ ∈ C1
c(R). It means that

the functionu is a weak solution of problem (1),(2). Estimate (6) directly follows from Lemma 2 puttingu1 = u, u2 =

0, fα ,1 = fα , fα ,2 = 0 (|α| ∈ M).

4.2 Proof of Corollaries 1–3

These statements follow from estimate (6).

4.3 Proof of Theorem 2

Let u is a weak solution of problem (1), (2). Putu(µ)(x, t) := u(x, t+µ), f (µ)α (x, t) := fα(x, t+µ), a(µ)α (x, t,ξ ) := aα(x, t+

µ ,ξ ), (x, t) ∈ Q, ξ ∈ RN, whereµ ∈ R. Replace variablet by t + µ (µ ∈ R is arbitrary) in (5). As a result, we obtain an

identity

∫∫

Q

{
∑

|α |∈M

a(µ)α (x, t,δu(µ))Dαvϕ −bu(µ)vϕ ′
}

dxdt=
∫∫

Q

∑
|α |∈M

f (µ)α Dαvϕ dxdt, v∈ Vp, ϕ ∈C1
c(R).

Rewrite this equality in the form

∫∫

Q

{
∑

|α |∈M

a(0)α (x, t,δu(µ))Dαvϕ −bu(µ)vϕ ′
}

dxdt=
∫∫

Q

∑
|α |∈M

{
a(0)α (x, t,δu(µ))−a(µ)α (x, t,δu(µ))

}
Dαvϕ dxdt

+

∫∫

Q

∑
|α |∈M

f (µ)α Dαvϕ dxdt, v∈Vp,ϕ ∈C1
c(R). (26)

From (26), puttingµ = σ and using periodicity of the functionsaα and fα (|α| ∈ M), we obtain that the functionu(σ) is

a weak solution of problem (1), (2). Taking this into consideration and the fact of uniquenessof a weak solution of the

problem (1), (2), we getu(0) = u(σ) almost everywhere onQ. Therefore the statement of Theorem 2 is correct.

4.4 Proof of Theorem 3

For everyµ ∈ R we put

a(µ)α [w](x, t) := âα(x, t + µ)|Dαw(x, t)|pα (x)−2Dαw(x, t), (x, t) ∈ Q (|α| ∈ M).

Similarly as in the proof of Theorem 2 (see (26)), we get the identity
∫∫

Q

{
∑

|α |∈M

a(0)α [u(µ)]Dαvϕ −bu(µ)vϕ ′
}

dxdt=
∫∫

Q

∑
|α |∈M

{
a(0)α [u(µ)]−a(µ)α [u(µ)]+ f (µ)α

}
Dα vϕ dxdt,v∈ Vp,ϕ ∈C1

c(R). (27)

Let δ∗ := min{1;K1/2}> 0 andσ ∈ Fδ∗ , whereFδ is defined over theorem. Consider the identity (27) first for µ = 0, and

then forµ = σ 6= 0. Then, using Lemma 2 withu1 = u(0), u2 = u(σ), aα(x, t,ξ ) = âα(x, t)|ξα |
pα (x)−2ξα (|α| ∈M), fα ,1 =

f (0)α , fα ,2 = a(0)α [u(σ)]−a(σ)
α [u(σ)]+ f (σ)

α (|α| ∈ M), t0 = τ ∈R is arbitrary,R0 = 1, R= l ∈N andl ≥ 2, we get

max
t∈[τ−1,τ]

∫

Ω

b(x)|u(σ)(x, t)−u(0)(x, t)|2dx+

τ∫

τ−1

∫

Ω

(
∑

|α |∈M

|Dαu(σ)−Dαu(0)|pα (x)
)

dxdt
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≤C
{

l−2/(p+0 −2)+

τ∫

τ−l

∫

Ω
∑

|α |∈M

∣∣|a(0)α [uσ ]−a(σ)
α [uσ ]|+ | f (σ)

α − f (0)α |
∣∣pα ′(x)

dxdt
}
. (28)

By the inequality:(a+ c)ν ≤ 2ν−1(aν + cν), a≥ 0, c≥ 0, ν ≥ 1, we have

τ∫

τ−l

∫

Ω
∑

|α |∈M

∣∣|a(0)α [u(σ)]−a(σ)
α [u(σ)]|+ | f (σ)

α − f (0)α |
∣∣pα ′(x)

dxdt

≤ ∑
|α |∈M

21/(p−α−1)

τ∫

τ−l

∫

Ω

(
|a(σ)

α [uσ ]−a(0)α [uσ ]|p
′
α (x)+ | f (σ)

α − f (0)α |p
′
α (x)

)
dxdt. (29)

For α, |α| ∈ M, we have

τ∫

τ−l

∫

Ω

|a(σ)
α [uσ ]−a(0)α [uσ ]|p

′
α (x)dxdt=

τ∫

τ−l

∫

Ω

|âα(x, t +σ)− âα(x, t)|
p′α (x)|Dαu(σ)|pα (x)dxdt

≤
(

sup
t∈R

||âα(·, t +σ)− âα(·, t)||L∞(Ω)

)(p+α )′
τ∫

τ−l

∫

Ω

|Dαu(σ)|pα (x)dxdt. (30)

Sinceu(σ) is a weak solution of problem, which differs from (1), (2) only in that we haveaα(x, t+σ ,ξ ) insteadaα(x, t,ξ )
(|α| ∈ M) and f (σ)

α insteadfα , thanu(σ) satisfies estimate (6) with replaceu onu(σ) and fα on f (σ)
α (|α| ∈ M). From this

estimate, puttingt0 = τ, R0 = l , R= 2l we receive

∑
|α |∈M

τ∫

τ−l

∫

Ω

|Dαu(σ)|pα (x)dxdt≤C4
{
(2l)−2/(p+0 −2)+

τ∫

τ−2l

∫

Ω
∑

|α |∈M

| f (σ)
α |pα ′(x)dxdt

}
. (31)

Then from (28), using (29) – (31), we receive

∫

Ω

b(x)|u(σ)(x,τ)−u(0)(x,τ)|2 dx+

τ∫

τ−1

∫

Ω

(
∑

|α |∈M

|Dαu(σ)−Dαu(0)|pα (x)
)

dxdt

≤C5
{

l−2/(p+0 −2)+
l

∑
k=1

τ−k+1∫

τ−k

∫

Ω
∑

|α |∈M

(
| f (σ)

α − f (0)α |p
′
α (x)dxdt (32)

+ max
|α |∈M

(
sup
t∈R

||a(σ)
α (·, t)−aα(·, t)||L∞(Ω)

)(p+α )′[
l−2/(p+0 −2)+

2l

∑
k=1

τ−k+1∫

τ−k

∫

Ω
∑

|α |∈M

| f (σ)
α |pα ′(x) dxdt

]}
,

whereC5 > 0 is some positive constant independent ofτ,σ andl .

Since for eachα, such that|α| ∈ M, fα are Stepanov almost periodic as an elementL
p
′
α (·),loc(Q), the estimate

sup
τ∈R

τ−1∫

τ

∫

Ω
∑

|α |∈M

| f (σ)
α |pα ′(x)dxdt≤C6 (33)

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 2, 29-42 (2018) /www.ntmsci.com 41

holds; hereC6 > 0 is some constant independent ofτ,σ andl .

Let ε > 0 be an arbitrary small fixed number. We claim that the set

Uε :=
{

σ ∈R
∣∣sup

t∈R

∫

Ω

b(x)|u(x, t +σ)−u(x, t)|2dx≤ ε,

sup
t∈R

τ∫

τ−1

∫

Ω

[
∑

|α |∈M

|Dαu(x, t +σ)−Dαu(x, t)|pα (x)
]
dxdt≤ ε

}

contains a setFδ for someδ ∈ (0,δ∗]. Indeed, choose and fix big enoughl ∈ N(l ≥ 2) satisfying the following inequality

C5l−2/(p+0 −2) ≤ ε/2. (34)

Then takeδ ∈ (0,δ∗] such that the following inequality remains true

C5
(
lδ + max

|α |∈M
δ (p+α )′

(
l−2/(p+0 −2)+2lC6

))
≤ ε/2. (35)

Therefore, ifσ ∈ Fδ , then the right side of the inequality (32) is less than or equal toε. From this, we have thatFδ ⊂Uε

and the setUε is relative density. The fact we had to prove.
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