
CMMA 3, No. 2, 1-8 (2018) 1

Communication in Mathematical Modeling and Applications
http://ntmsci.com/cmma

Chebyshev collocation method for the two-dimensional
heat equation

Sevin Gumgum1, Emel Kurul2 and Nurcan Baykus Savasaneril3

1Department of Mathematics, Izmir University of Economics,Izmir, Turkey
2Department of Mathematics, University of Selcuk, Konya, Turkey
3Izmir Vocational School, Dokuz Eylul University, Izmir, Turkey

Received: 23 December 2017, Accepted: 30 January 2018
Published online: 20 March 2018.

Abstract: The purpose of this study is to apply the Chebyshev collocation method to the two- dimensional heat equation. The method
converts the two-dimensional heat equation to a matrix equation, which corresponds to a system of linear algebraic equations. Error
analysis and illustrative example is included to demonstrate the validity and applicability of the technique.
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1 Introduction

Laplace’s equation is one of the most significant equations in physics. It is the solution to problems in a wide variety of

fields including thermodynamics and electrodynamics. Today, the theory of complex variables is used to solve problems

of heat flow, fluid mechanics, aerodynamics, electromagnetic theory and practically every other field of science and

engineering. A broad class of steady-state physical problems can be reduced to finding the harmonic functions that

satisfy certain boundary conditions. The Dirichlet problem for the Laplace equation is one of the above mentioned

problems.

The Dirichlet problem is to find a functionU(z) that is harmonic in a bounded domainD ⊂ R2, is continuous up to the

boundary∂D of D, assumes the specified valuesU0(z) on the boundary∂D , whereU0(z) is a continuous function on

∂D. Let D be a rectangular region and∂D is the boundary ofD and can be formulated as

∇2U = 0, z ∈ D, U |z∈∂D =U0(z). (1)

Here, for a point(x,y) in the planeR2, one takes the complex notationz = x+ yi, U(z) =U(x,y) andU0(z) =U0(x,y) are

real functions and∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 is the Laplace operator. Similarly the Dirichlet problem for the Poisson equation can

be formulated as

∇2U = h(z), z ∈ D, U |z∈∂D =U0(z). (2)

The Green function of the Dirichlet problem for the Laplace differential equation in a triangle region was expressed in

terms of elliptic functions and the solution of problem was based on the Green function, and therefore on elliptic

functions by Kurt and Sezer [1,2]. Solution of the two-dimensional heat equation in a squareregion was given by Kurt
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[3]. Analytic solution of two-dimensional heat equation was given for some regions by Baykuş Savaşaneril et al. [4,5,6,

7]. The Chebyshev tau technique for the solution of Laplace’sequation [8] and Chebyshev tau matrix method for

Poisson-type equations in irregular domain [9] were studied by Ahmadi et al. and Kong et al. Error analysis of the

Chebyshev collocation method for linear second-order partial differential equations was expressed by Yuksel et al. [10,

11]. Gas Dynamics Equation arising in shock fronts [12] and solution of conformable fractional partial differential

equations by reduced differential transform method [13] were studied by Tamsir et al. and O. Acan et al.n-dimensional

differential transformation method for solving PDEs is studied by Kurnaz et al. [14].

In this study, we find an approximate solution of Eq. (2) using a truncated Chebyshev series, such that

U(x,y) =
N

∑
r=0

N

∑
s=0

ar,sTr,s(x,y), (3)

where Tr,s(x,y) = Tr(x)Ts(y) and ar,s’s are unknown constants to be determined. Here,Tr(x) and Ts(y) denote the

Chebyshev polynomials of degreer ands, respectively, defined byTr(x) = cos(rarccos(x)) andTs(y) = cos(sarccos(y)).

We choose the collocation points as the extremes of the Chebyshev polynomialsTr(x) andTs(y) as

xn = cos

(
(N − n)

N

)

π and yl = cos

(
(N − n)

N

)

π ; n, l = 0,1, ...,N (4)

2 Fundamental relations

To find the numerical solution of the two-dimensional heat equation with the Chebyshev collocation method, it is

necessary to evaluate the Chebyshev coefficients of the approximate solution. For convenience, Eq. (3) can be written in

the matrix form [10].

The Chebyshev approximate solution of Eq. (2)

U(x,y) =
N

∑
r=0

N

∑
s=0

ar,sTr,s(x,y)

can be written in a matrix from as

U(x,y) = T(x)Q(y)A (5)

where

T(x) =
[

T0(x) T1(x) · · · TN(x)
]

1×(N+1)

Q(y) =









T0(y) · · · TN(y) 0 · · · 0 · · · 0 · · · 0

0 · · · 0 T0(y) 0 0 0
...

...
...

0 · · · 0 0 · · · 0 · · · T0(y) · · · TN(y)









(N+1)×(N+1)2

andA is the unknown Chebyshev coefficients matrix

A =
[

a0,0 a0,1 · · · a0,N a1,0 a1,1 · · · a1,N · · · aN,0 aN,1 · · · aN,N

]

(N+1)2×1
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The(i+ j) th-ordered partial derivatives ofU(x,y) in Eq. (5) can be written as [10,11]

U(x,y)(i, j)(x,y) = T(x)(JT )iQ(y)(J) jA (6)

where

J =





















0 0 0 0 0 · · · 0 0

1 0 0 0 0 · · · 0 0

0 2.2 0 0 0 · · · 0 0

3 0 2.3 0 0 · · · 0 0

0 2.4 0 2.4 0 · · · 0 0

5 0 2.5 0 2.5 · · · 0 0
...

...
...

...
...

. . .
...

...

0 2N 0 2N 0 · · · 2N 0

N 0 2N 0 2N · · · 2N 0





















(N+1)×(N+1)

, J =









JT 0 · · · 0

0 JT · · · 0
...

...
.. .

...

0 0 · · · JT









(N+1)2×(N+1)2

The matrix form for the conditions is
1

∑
k=1

1

∑
i=0

1

∑
j=0

ak
i, jU

(i, j)(αk,βk) = λk. (7)

3 Matrix solution of the problem

Each term in Eq. (1) can be given in the matrix equation by Eq. (6) [10,11]

A(x,y)T(x)(JT )2Q(y)A+B(x,y)T(x)JT Q(y)(J)A+C(x,y)T(x)Q(y)(J)2A

+D(x,y)T(x)JT Q(y)A+E(x,y)T(x)Q(y)(J)A+F(x,y)T(x)Q(y)A = G.

(8)

By substituting the collocation points (4) into Eq. (8), we obtain the linear algebraic equation:

A(xn,yl)T(xn)(JT )2Q(yl)A+B(xn,yl)T(xn)JT Q(yl)(J)A

+C(xn,yl)T(xn)Q(yl)(J)2A+D(xn,yl)T(xn)JT Q(yl)A

+E(xn,yl)T(xn)Q(yl)(J)A+F(xn,yl)T(xn)Q(yl)A = G(xn,yl).

(9)

The fundamental matrix equation in Eq. (9) is as follows:

(AT(JT )2QA+BTJT Q(J)A+CTQ(J)2A+DTJT QA+ETQ(J)A+FTQA) = G. (10)

where, Eq. (10) corresponds to a system of(N + 1)2 linear algebraic equations with unknown Chebyshev coefficients

a0,0,a0,1, ...,a0,N ,a1,0,a1,1, ..., a1,N , ...,aN,0,aN,1, ...,aN,N . Also we can write Eq. (10) such that

(AT(JT )2Q+BTJT Q(J)+CTQ(J)2+DTJT Q+ETQ(J)+FTQ)
︸ ︷︷ ︸

W

A = G. (11)

which can be written simply as

WĀ = G. (12)
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Similarly, by substituting the collocation points (4) into Eq. (7) under the complicated conditions, we obtain, respectively,

(
t

∑
k=1

1

∑
i=0

1

∑
j=0

ak
i, jT(ak)(J

T )iQ(βk)(J)
j)A = λk,

or shortly

V Ā = λk. (13)

To obtain the Chebyshev series solution of Eq. (2) under conditions (7), the augmented matrix form of Equations (12) and

(13) is as follows
[
W̃;G̃

]
=

[

V ; λk

W ; G

]

. (14)

Therefore, the unknown Chebyshev coefficients are obtainedas

Ā =
(

˜̃W
)−1 ˜̃G, (15)

where
[

˜̃W; ˜̃G
]

is generated by using the Gauss elimination method and then by removing zero rows of the augmented

matrix
[

˜̃W; ˜̃G
]

. The reason for using the Gauss elimination for this direct solution is because of the non-invertible case of

the matrix ˜̃W. When the conditions are added to the linear algebraic system, some rows can be the same because of the

symmetry of Chebyshev collocation points. These terms can be eliminated by the Gauss elimination method.

4 Accuracy of the solution and error analysis

We can easily check the accuracy of the method. Since the truncated Chebyshev series given in Eq. (3) is an approximate

solution of Eq. (2), when the functionU(x,y) and its derivatives are substituted in Eq.(2),the resulting equation must be

satisfied approximately; that is, for(x,y) = (xq,yq) ∈
{
−a ≤ xq ≤ a, −b ≤ yq ≤ b

}
q = 0,1,2, ...

E(xq,yq) =
∣
∣D(xq,yq)−λ I(xq,yq)

∣
∣ ∼= 0 andE(xq,yq) ≤ 10−kq (kq positive integer) If max 10−kq = 10−k (k positive

integer) is prescribed, then the truncation limitN is increased until the differenceE(xq,yq) at each of the points becomes

smaller than the prescribed 10−k. On the other hand,the error can be estimated by the function

EN =
N

∑
r=0

N

∑
s=0

ar,sTr,s(x,y),−g(x,y)− I(x,y). (16)

If EN(x,y)→ 0 whenN is sufficiently large enough, then the error decreases.

5 Numerical example

In this section, the efficiency of the method is demonstratedwith the numerical result of example [7] and it has been

solved by a computer code written in Maple.

The boundary of a rectangular sheet of metal is kept at constant temperature 500C on the upper edge, 200C on the bottom

edge, and 00C on the other two edges. After a sufficient period of time, thetemperature inside the plate reaches an

equilibrium distribution. This steady-state temperaturedistributionU(x,y) is determined in this application. Since no

c© 2018 BISKA Bilisim Technology
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heat sources are present in the plate, the steady-state temperatureU must satisfy

Uxx(x,y)+Uyy(x,y) = 0;

(

−
K
2λ

≤ x ≤
K
2λ

, −
K′

2λ
≤ y ≤

K′

2λ

)

(17)

The boundary conditions are

U
(

x,− K′

2λ

)

= 200C, U
(

x, K′

2λ

)

= 500C; − K
2λ ≤ x ≤ K

2λ

U
(
− K

2λ ,y
)
=U

(
K
2λ ,y

)
= 00C; − K′

2λ ≤ y ≤ K′

2λ

(18)

We obtain the approximate solutions forN = 5,7,9 which are based on the truncated double Chebyshev seriesU(x,y) =

∑N
r=0 ∑N

s=0 ar,sTr,s(x,y) on rectangular domain− K
2λ ≤ x ≤ K

2λ , − K′

2λ ≤ y ≤ K′

2λ .

(T(xi)(JT )2Q(yl)+T(xi)Q(yl)(J)
2)A = 0, i, l = 0, ...,N.

where

T(JT )2Q+TQ(J)2 = W,WA = 0

Matrix forms of the conditions can be written as

U
(

xi,−
K′

2λ

)

= T(xi)Q
(

− K′

2λ

)

A = 20

U
(

xi,
K′

2λ

)

= T(xi)Q
(

K′

2λ

)

A = 50

and

U

(

±
K
2λ

,yl

)

= T(±
K
2λ

) Q(yl)A = 0

and fundamental matrix equations of the conditions can be written as

T Q
(

− K′

2λ

)

A = 20;K1A = 20

T Q
(

K′

2λ

)

A = 50;K2A = 50

T
(
− K

2λ
)

QA = 0;K3A = 0

T
(

K
2λ
)

QA = 0;K4A = 0

To obtain the solution of Eq. (17) under conditions (18), the augmented matrix is formed as follows

[
W̃;G̃

]
=











K1 ; 20

K2 ; 50

K3 ; 0

K4 ; 0

W ; 0










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Therefore, the unknown Chebyshev coefficients are obtainedas

Ā =
(

˜̃W
)−1 ˜̃G.

for N = 5;

T =
[

1 x 2x2−1 4x3−3x 8x4−8x2+1 16x5−20x3+5x
]

1×6

Q =













T 0 0 0 0 0

0 T 0 0 0 0

0 0 T 0 0 0

0 0 0 T 0 0

0 0 0 0 T 0

0 0 0 0 0T













6×36

, J =













0 0 0 0 0 0

1 0 0 0 0 0

0 4 0 0 0 0

3 0 6 0 0 0

0 8 0 8 0 0

5 0 10 0 10 0













6×6

, J =













JT 0 0 0 0 0

0 JT 0 0 0 0

0 0 JT 0 0 0

0 0 0 JT 0 0

0 0 0 0 JT 0

0 0 0 0 0 JT













36×36

Error analysis for the equation in (17) can be seen in Fig. 1.

Fig. 1: Error analysis forN = 9.

From Table 1, it is obvious that the results get better asN increase.
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Table 1: Comparison of the error analysis on∂D that is the boundary ofD for N=5,7,9.

x y N=5 N=7 N=9
0 -1 −3.6060×10−5 −8.3312×10−7 2.6254×10−6

0 -0.8 −1.2322×10−4 −2.6451×10−7 9.4651×10−7

0 -0.6 −6.1317×10−5 −2.4327×10−7 2.6016×10−7

0 -0.4 −2.2821×10−4 8.7531×10−7 3.7960×10−8

0 -0.2 1.0496×10−4 2.6179×10−7 1.3644×10−11

0 0 8.6320×10−5 −6.9187×10−7 1.5891×10−9

0 0.2 −2.3897×10−5 −8.7441×10−7 −6.1521×10−10

0 0.4 −1.9570×10−4 −4.1512×10−7 1.0216×10−8

0 0.6 −3.5767×10−4 −4.0661×10−7 3.6733×10−8

0 0.8 8.6320×10−5 −1.3148×10−6 −1.1373×10−8

0 1 −1.4303×10−4 −4.67×10−10 −3.2615×10−7

The some calculating values of the error functions give in Table 2 that is clearly shown whenN values increase, error

function values rapidly decrease forN = 5,7 and 9.

Table 2: Comparison of the error and the solution for of N=5,7,9.

N=5 N=7 N=9
x y E(xq,yq) U(x,y) E(xq,yq) U(x,y) E(xq,yq) U(x,y)
1 1 3.11 ×

10−10
1.0361581 −4.09×

10−6
0.6914707 2.35 ×

10−5
0.6897134

0.8 0.9 1.42 ×
10−4

1.0721373 −3.73×
10−6

0.7140524 −8.48×
10−6

0.6950974

0.6 0.7 4.69 ×
10−5

1.0418738 −1.22×
10−6

0.6865901 1.67 ×
10−6

0.6413776

0.5 0.5 4.37 ×
10−5

0.9844465 1.99 ×
10−6

0.6394523 −3.88×
10−7

0.5732205

0.4 0.3 6.78 ×
10−5

0.9363271 1.80 ×
10−6

0.5979623 −5.37×
10−8

0.5113068

0 0 8.6320×
10−5

0.8939214 −6.91×
10−7

0.5540799 1.58 ×
10−9

0.4361256

-
0.1

-
0.2

1.54 ×
10−4

0.8611805 7.20 ×
10−7

0.5217932 5.93 ×
10−10

0.3868576

-
0.5

-
0.3

3.79 ×
10−4

0.8089201 1.54 ×
10−6

0.4833937 1.78 ×
10−7

0.3521935

-
0.8

-
0.5

1.99 ×
10−4

0.7337253 −1.20×
10−6

0.4264064 7.51 ×
10−7

0.2979922

-1 -1 7.37 ×
10−10

0.7066744 −4.88×
10−10

0.3834902 5.71 ×
10−6

0.2412991

6 Conclusion

In this study, a technique has been developed for solving Laplace’s equation with Dirichlet boundary condition. The

method is based upon Chebyshev collocation method. The Chebyshev polynomials are utilized to solve the problem

effectively. The method leads to solving a system of linear algebraic equations. The numerical result show that the accuracy

improves with increasing the N. Tables and figure indicate that as N increases the errors decrease more rapidly; hence for

better results, using large numberN is recommended.
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[6] Z. Hacıoglu, N. Baykuş Savaşaneril, H. Köse, Solution of Dirichlet problem for a square region in terms of elliptic functions,

NTMSCI, 3(4), (2015), 98-103.
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