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Abstract: In this study, we first show that the system of Frenet-like differential equation [14] characterizing space curves of constant
breadth [10, 11, 13] is equivalent to a third order, linear, differential equation with variable coefficients. Then, by using Taylor matrix
method based on collocations points [7, 8], we obtain the setof solution of the mentioned differential equation under the initial
conditions in terms of Taylor polynomials. Furthermore, wediscuss that the obtained results are useable to determine curves of constant
breadth.
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1 Introduction

Curves of constant breadth firstly were introduced by L. Euler [3], in 1778. F. Reuleaux [12] gave the obtaining method

some curves of constant breadth in 1963 and led to be used in kinematics of machinery. So far, in mathematics, many

geometers have obtained only geometric properties of the plane curves of constant breadth, but have had a few study on

space curves of constant breadth [2, 6, 9]. M. Fujivara had obtained a problem to determine whether there exist “space

curve of constant breadth” or not and he defined “breadth” forspace curves and obtained these curves on a surface of

constant breadth [4]. Having been used the basic concepts [5, 11] concerned with the space curves of constant breadth, a

integral characterization of these curves [14] has been obtained and a criterion for these curves has been determined [13].

Also the curves of constant breadth were extented to the E4- space and some characterizations were obtained [11].İn

addition, Akdoğan and Mağden [1] were extended this kind of curves to En space and some characterizations were

obtained. Studies on these curves are going on nowadays, currently. These curves are used in the kinematics of

machinary, engineering and com design.

In this study, our first aim, by means of (2), to establish differential equations with unknownsλ , µ andδ discribing a

curve of constant breadth. The second is to find the approximate solutions of these differential equations under the initial

conditions in terms of Taylor polynomials.

2 The space curves of constant breadth

The base of our study is based on the following consepts for space curves of constant breadth, which are presented byÖ.

Köse [9, 10] and M. Sezer [13, 14].
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Let (C) be a space curve in the classΓ having parallel tangentstandt∗ in opposite directions at the opposite pointsαand

α∗ of the curve [10]. If the chord joining the opposite points of(C) is a double-normal, then (C) has constant breadth, and

conversely, if (C) is a curve of constant breadth, then everynormal of (C) is a double-normal. A simple closed curve (C)

of constant breadth having parallel tangents in opposite directions at opposite points may be represented by the equation

α∗ (s) = α (s)+λ (s) t+ µ (s)n+ δ (s)b (1)

whereαandα∗ are opposite points, andt, n, b denote the unite tangent, principal normal, binormal at a generic pointα,

respectively. Heresdenotes the arc length of (C) and the curvature of the curve is

lim
∆s→0

∆φ
∆s

=
dφ
ds

= κ(s)

where∆φ is the angle of contengency. Hereφdenotes the angle between tangent of the curve (C) at the point α(s)and a

given fixed direction. Also it is clear that

φ (s) =
∫ s

0
κ(s)ds

In this case a pair of opposite points of the curve is(α∗ (s) ,α (s)) for s. On the other hand, the coefficientsλ , µ andδ
may be obtained by the

λ
′
= µ −g(φ)

µ
′
=−λ +ρτδ (2)

δ
′
=−ρτµ (3)

which is the system describing the curve (1).g(φ) = ρ +ρ∗ and,

ρ =
1
κ

andρ∗ =
1
κ
∗

denote the radii of curvaturesα(s) and α∗(s), respectively. Here (‘) denotes the differentiation with respect toφ .

Furthermore the distance d between the opposite pointsα andα∗ is the breadth of the curve and is constant, that is,

R2 = ‖d‖2 = λ
2
+ µ2+ δ 2 = constant.

Also, the vectord = λ (φ)t+ µ(φ)n+ δ (φ)b is the double normal of the curve (C) of constant breadth.

3 Differential equations for the space curves of constant breadth

In this section, we establish differential equations with unknownsλ , µ andδ characterizing the curves of constant breadth.

First, it is clear that

µ = λ
′
+g. (4)

On the other hand, by using the second equation of the system (2) we obtain the following differential equation:

δ =
1

ρτ
µ

′
+

1
ρτ

λ . (5)
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By using the derivative of the equation (3), we obtain the following differential equation:

δ =
1

ρτ
λ ′′+

1
ρτ

λ +
1

ρτ
g′. (6)

Also, it is clear that in the third equation of the system (2)

µ =−
1

ρτ
δ ′
. (7)

Here, by using the equality of the equations (3) and (6) following equation is obtained

λ ′+
1

ρτ
δ ′+g= 0 (8)

Finally, by using derivative of the equation (5), while F as follows

F = (ρτ)g
′′
− (ρτ)

′
g
′
+(ρτ)3g

we obtain the third order, linear, differential equation with variable coefficients as follows

(ρτ)λ
′′′
− (ρτ)

′
λ

′′
+(ρτ)

(

1+(ρτ)2
)

λ
′
− (ρτ)

′
λ = F. (9)

As a result, it is clearly seen that the system (2) characterizing the space curves of constant breadth can be reduced to the

linear differential equation (8). Furthermore, we can write this equation in the general form

m

∑
k=0

Qk (φ)λ (k) (φ) = F(φ) ,m= 2,3, . . .

whereQk(φ) are continuous functions of the expression(ρτ).

4 Taylor matrix method

In this section, to obtain the Taylor polynomial solution ofthe differential equation defined by

3

∑
k=0

Qk (s)λ (k) (s) = F(s) ,0≤ s≤ b (10)

Near the points= 0, under the initial conditions

λ (0) = λ0

λ ′ (0) = λ1 (11)

λ ′′ (0) = λ2

we develop the Taylor matrix method based on collocation points, which is given by Sezer et al. [7, 8, 13, 14 ] Where

λ0,λ1,λ3 andb appropriate constants.

Firstly, let us assume that the desired solutionλ (s) can be expanded to Taylor series about s= 0 in the form, for N≥ 3
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λ (s) = λN (s) =
N

∑
n=0

ansn
,0≤ s≤ b. (12)

Where an (n= 0,1, . . . ,N) are the coefficients to be determined.

Now, we can convert the truncated Taylor series solutionλ (s) defined by (11) and its derivativesλ (k) (s) , k= 0,1,2,3 to

matrix forms, forn= 0,1, . . . ,N,

λ (s) = S(s)A

and

λ (k) (s) = S(k) (s)A, k= 0,1,2,3, . . .

where
S(s) =

[

1 s s2 s3 s4
. . .sN

]

A =
[

a0 a1 a2 a3 a4 . . .aN

]t .

Also, it is clear that the relation between the matrixS(s)and its derivativeS
′
(s) is

S′ (s) = S(s)B.

Where

B=





































0 1 0

0 0 2

0

0
...

0

0

0

0

0

0
...

0

0

0

0

0

0
...

0

0

0

0

0 0 · · ·

0 0 · · ·

3

0
...

0

0

0

0

0

4
...

0

0

0

0

· · ·

· · ·
...

· · ·

· · ·

· · ·

· · ·

0 0 0

0 0 0

0

0
...

n−2

0

0

0

0

0
...

0

n−1

0

0

0

0
...

0

0

n

0





































By repeating this process, we get the matrix relation as follows:

S
′
(s) = S(s)B

S
′′
(s) = S

′
(s)B= S(s)B2

S
′′′
(s) = S

′′
(s)B= S(s)B3

...

S(k) (s) = S(s)Bk
, k= 0,1,2,3, . . . (13)

From the matrix relations (11) and (12), it follows that

λ (k) (s)∼= S(k) (s)A= S(s)BkA, k= 0,1,2,3. (14)
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We now ready to construct the fundamental corresponding to equation (9). For this purpose, by substituting the matrix

relation (13) into equation (9) and by using the collocationpoints defined by

si =
b
N

i, i = 0,1, . . . ,N

we get the system of the matrix equations

{
3

∑
k=0

Pk (si)S(si)Bk}A = f (si) (15)

or briefly the fundamental matrix equation

{
3

∑
k=0

PkSBk}A = F

where

Pk =























Pk (s0) 0 0

0 P(s1) 0

0
...

0

0

0
...

0

0

Pk (s2)
...

0

0

· · · 0 0

· · · 0 0

· · ·
...

· · ·

· · ·

0
...

Pk (sn−1)

0

0
...

0

Pk (sN)























S=













S(s0)

S(s1)
...

S(sN)













=













1 s0 s0
2

1 s1 s1
2

...

1

...

sN

...

sN
2

. . . s0
N

. . . s1
N

. . .

. . .

...

sN
N













F=













f (s0)

f (s1)
...

f (sN)













, A =













a0

a1
...

aN













.

Hence equation (14) can be written in the form

WA= For[W;F ],W = [wpq], p,q= 0,1, ...,N (16)

where

W =
[

wpq
]

=
3

∑
k=0

PkSBk
,

B0 =













1 0 · · ·

0 1 · · ·
...

0

...

0

...

· · ·

0

0
...

1













.
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On the other hand, we can obtain the following matrix forms for the initial conditions (10), by means of the relation (13);

λ (0) = λ 0 ⇒ S(0)B0A= λ 0

λ
′
(0) = λ 1 ⇒ S(0)BA= λ 1

λ
′′
(0) = λ 2 ⇒ S(0)B2A= λ 2

or briefly

UiA= [λ i ]⇒ [Ui ;λ i ] , i = 0,1,2 (17)

where

Ui =
[

ui0 ui1 · · ·uiN

]

= S(0)Bi
, i = 0,1,2.

Finally, to obtain the solution of equation (9) with the conditions (10) by replacing the 3 row matrics (16) by the last 3

rows (or appropriate 3 rows) of the augmented matrix (15) we have the requred augmented matrix

[

W̃ ; F̃
]

(18)

or clearly


























w00 w01 . . .

w10 w11 . . .

...

wN−3,0

u00

u10

u20

...

wN−3,1

u01

u11

u21

...

· · ·

. . .

. . .

. . .

w0N ; f (s0)

w1N ; f (s1)
...

wN−3,N

u0N

u1N

u2N

...

;

;

;

;

...

f (sN−3)

λ0

λ1

λ2



























If rank W̃= rank
[

W̃ ; F̃
]

= N + 1 then we can writeA = (W̃)
−1F̃. Thus the matrix A (thereby the coefficients

a0,a1, . . . ,aN) is uniquely determined. Also equation (9) with the initialconditions (10) has a unique solution. This

solution is given by the trancated Taylor series (11). Thus we get the Taylor polynomial solution

YN (x) =
N

∑
n=0

ansn
.

5 The solution of differential equations characterizing space curves of constant breadth

We can arrange equation (8) characterizing space curves of constant breadth as follows;

(ρτ) = t

Q0 (φ) =−t′ (φ) ,Q1 (φ) = t(φ)+ t3(φ) ,Q2 (φ) =−t′ (φ) ,Q3 (φ) = t(φ)
3

∑
k=0

Qk (φ)λ (k) (φ) = F(φ) . (19)

Suppose that an approximate solution of this equation (18) for 0≤ φ ,c≤ 2π under the conditions given. This solution has

the form of truncated Taylor series.

λ (φ) =
N

∑
n=0

anφn
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Here we will takeN = 4 for simplicity. We show the expression (19) in the matrix form as follows;

λ (φ) = S(φ)A

whereS(φ)and A matrices are defined as S(φ) =
[

1 φ φ2 φ3 φ4
]

and A=
[

a0 a1 a2 a3 a4

]t
. On the other hand B,B2

andB3 matrices are defined as follows;

B=















0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0















, B2 =















0 0 2 0 0

0 0 0 6 0

0 0 0 0 12

0 0 0 0 0

0 0 0 0 0















, B3 =















0 0 0 6 0

0 0 0 0 24

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















for the derivativesλ
′
(φ) = S(φ)BA, λ

′′
(φ) = S(φ)B2A andλ

′′′
(φ) = S(φ)B3A. If we put all these expressions in the

equation (18), we get following equation

{

Q3 (φ)S(φ)B3+Q2(φ)S(φ)B2+Q1(φ)S(φ)B+Q0(φ)S(φ)
}

A= F (φ) . (20)

Now, we use collocation pointsφ = φ i , (i = 0,1, · · · ,4) of the specified separation in this equation in the form of matrix

φ 0 = 0, φ1 =
π
2
, φ 2 = π , φ 3 =

3π
2
, φ 4 = 2π

Q0 (φ) =















Q0 (0)

0

0

0

0

0

Q0
(π

2

)

0

0

0

0

0

Q0 (π)
0

0

0

0

0

Q0
(

3π
2

)

0

0

0

0

0

Q0 (2π)















Q1 (φ) =















Q1 (0)

0

0

0

0

0

Q1
(π

2

)

0

0

0

0

0

Q1 (π)
0

0

0

0

0

Q1
(3π

2

)

0

0

0

0

0

Q1 (2π)















Q2 (φ) =















Q2 (0)

0

0

0

0

0

Q2
(π

2

)

0

0

0

0

0

Q2 (π)
0

0

0

0

0

Q2
(

3π
2

)

0

0

0

0

0

Q2 (2π)















Q3 (φ) =















Q3 (0)

0

0

0

0

0

Q3
(π

2

)

0

0

0

0

0

Q3 (π)
0

0

0

0

0

Q3
(

3π
2

)

0

0

0

0

0

Q3 (2π)
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This matrices can be written briefly as follows;

Qk (φ) =















Qk (0)

0

0

0

0

0

Qk
(π

2

)

0

0

0

0

0

Qk (π)
0

0

0

0

0

Qk
(

3π
2

)

0

0

0

0

0

Qk (2π)















,

S(φ) =

















1

1

1

1

1

0
(π

2

)

(π)
(

3π
2

)

(2π)

0
(π

2

)2

(π)2

(

3π
2

)2

(2π)2

0
(π

2

)3

(π)3
(

3π
2

)3

(2π)3

0
(π

2

)4

(π)4

(

3π
2

)4

(2π)4

















,

F (φ) =















f (0)

f (π
2 )

f (π)
f (π

2 )

f (2π)















.

If we get as
{

Q3 (φ)S(φ)B3+Q2(φ)S(φ)B2+Q1(φ)S(φ)B+Q0(φ)S(φ)
}

=W

equation (8) is turned to

WA= F → [W ; F ] . (21)

We calculate the W matrix. Then, the equation (17) is writtenin the form of increased matrix. Furthermore,

λ (0) = λ0

λ ′ (0) = λ1 (22)

λ ′′ (0) = λ2.

We firstly obtain matrix equation of conditions under the initial conditions given (22) above to achieve an approximate

solution of the equation (8).

λ (0) = S(0)A= λ 0

λ
′
(0) = S(0)BA= λ 1

λ
′′
(0) = S(0)B2A= λ 2.

So, the expression in the form of increased matrix of matrix equation of conditions is follows as;

U0 =
[

1 0 0 0 0 ;λ0

]

U1 =
[

0 1 0 0 0 ;λ1

]

U2 =
[

0 0 2 0 0 ;λ2

]

(23)
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impending,

U =







U0

U1

U2






=







1 0 0 0 0 ; λ0

0 1 0 0 0 ;λ1

0 0 2 0 0 ;λ2






(24)

Here following equality is obviously.

UA = λ → [U;λ ] (25)

We getW∗A= F∗ from (21) and (23) equalities.

[W∗;F∗] =















w00 w01 w02 w03 w04 ; f (0)

w10 w11 w12 w13 w14 ; f
(π

2

)

1 0 0 0 0 ; λ0

0 1 0 0 0 ; λ1

0 0 2 0 0 ; λ2















where, wij (i = 0,1, j = 0,1, . . . ,4) obtained as follows;

w00 =−t
′
(0) , w01 = t (0)+ t3(0) , w02 =−2t

′
(0) , w03 = 6t (0) , w04 = 0,

w10 =−t
′
(π

2

)

, w11 =−
π
2

t
′
(π

2

)

+ t
(π

2

)

+ t3
(π

2

)

,

w12 =−
π
4

t
′
(π

2

)

+π
[

t
(π

2

)

+ t3
(π

2

)]

−2t
′
(π

2

)

w13 =−
π
8

t
′
(π

2

)

+
3π2

4

[

t
(π

2

)

+ t3
(π

2

)]

−3πt
′
(π

2

)

+6t
(π

2

)

w14 =−
π4

16
t
′
(π

2

)

+
π3

2

[

t
(π

2

)

+ t3
(π

2

)]

−3π2t
′
(π

2

)

+12πt
(π

2

)

Thus the matrix of unknowns is obtained.A=W∗−1
F∗

A=















λ 0

λ 1
1
2λ 2

K

M















.

If we put thisan unknowns in equation (19), we get following equation

λ (φ) = λ 0 +λ1φ + λ2 φ2+Kφ3+Mφ4
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where K and M are 4. and 5. line of matrix A and they are calculated as follows;

K =
w14

w14w03−w13w04
f (0)−

w04

w14w03−w13w04
f
(π

2

)

+[−
w00

w03
+

w00w13+w10w03

w14w03−w13w04

w04

w03
] λ 0

− [
w01

w03
+

w01w13+w11w03

w14w03−w13w04

w04

w03
] λ 1−

1
2
[
w02

w03
+

w02w13+w12w03

w14w03−w13w04

w04

w03
] λ 2

M =−
w13

w14w03−w13w04
f (0)+

w03

w14w03−w13w04
f
(π

2

)

+[−
w00w13+w10w03

w14w03−w13w04
] λ 0+[

w01w13+w11w03

w14w03−w13w04
]λ1

+
1
2
[
w02w13+w12w03

w14w03−w13w04
]λ 2.

6 The probed of differential equations characterizing space curves of constant breadth

We found that the expression isλcoefficient which is determined the space curve of constant breadth.µ(φ)coefficient is

finded with method similar under the same initial conditions. First, it is clear that in the second equation of the system (2)

λ =−µ
′
+ρτδ . (26)

We used where the first equation of the system (2), the derivative of the equation (24)

−µ
′′
+(ρτ)

′
δ +(ρτ)δ

′
= µ −g. (27)

Also, it is clear that in the second equation of the system (2)

δ =
µ ′

+λ
ρτ.

(28)

By using the third equation of the system (2) and the equation(24) in the equation (25), we obtain the following differential

equation:
1

ρτ
µ

′′
+(

1
ρτ

)

′

µ
′
+(

1
ρτ

)

′

λ +
(ρτ)

′

ρτ
µ +

1
ρτ

µ −
1

ρτ
g= 0.

Here, λ is conjugated and then by using derivative of the expressionobtained, we obtain the following differential

equation;

λ ′ =
ρτ

(ρτ)
′ µ ′′′+





(

ρτ
(ρτ)

′

)′

−1



µ ′′+

[

ρτ +
ρτ

(ρτ)
′

]

µ ′+



(ρτ)
′
+

(

ρτ
(ρτ)

′

)′

µ +

(

ρτ
(ρτ)

′

)′

g+
ρτ

(ρτ)
′ g

′
. (29)

By using the equality of the equation (27) and the first equation of the system (2) following equation is obtained

ρτ
(ρτ)

′ µ ′′′+





(

ρτ
(ρτ)

′

)′

−1



µ ′′+

[

ρτ +
ρτ

(ρτ)
′

]

µ ′+



(ρτ)
′
+

(

ρτ
(ρτ)

′

)′

−1



µ +
ρτ

(ρτ)
′ g

′+





(

ρτ
(ρτ)

′

)′

+1



g= 0.

(30)

Finally, while(ρτ) = t and F as follows:

F =
ρτ

(ρτ)
′ g

′
+





(

ρτ
(ρτ)

′

)′

+1



g
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we obtain the third order, linear, differential equation with variable coefficients as follows

t
t′

µ ′′′+

[

(

t
t′

)′

−1

]

µ ′′+

[

t+
t
t′

]

µ ′+

[

t′+

(

t
t′

)′

−1

]

µ = F. (31)

This equation is differential equation with unknownµ characterizing the space curves of constant breadth. Also,

δ (φ)coefficient is finded with method similar under the same initial conditions. First, it is clear that in the third equation

of the system (2)

µ =−
1

ρτ
δ

′
. (32)

We used where the second equation of the system (2), the derivative of the equation (30)

λ =
1

ρτ
δ

′′
+(

1
ρτ

)

′

δ
′
+(ρτ)δ . (33)

By using the equation (31) in the first equation of the system (2), we obtain the following differential equation:

1
ρτ

δ
′′′
+2(

1
ρτ

)

′

δ
′′
+





(

(ρτ)
′

(ρτ)2

)′

+
1

ρτ
+ρτ



δ
′
+(ρτ)

′
δ = g. (34)

Finally, while(ρτ) = twe obtain the third order, linear, differential equation with variable coefficients as follows:

1
t

δ
′′′
+2(

1
t
)

′

δ
′′
+





(

t
′

t2

)′

+
1
t
+ t



δ
′
+ t

′
δ = g. (35)

This equation is differential equation with unknownδcharacterizing the space curves of constant breadth.

7 Corollary

By using the Taylor matrix method, solution of this equationis approximately obtained as follows:

µ = λ 0 +λ1s+ λ 2 s2+Ps3+Ns4
.

We found that the expression isµ coefficient which is determined the space curve of constant breadth. If these coefficients

are written in equationλ 2+ µ2+ δ 2 = R2, δ (or µ) will be obtained as

(λ 0+λ1s+ λ 2s2+Ks3+Ms4)2+(λ0+λ1s+ λ 2s2+Ps3+Ns4)2+ δ 2 = R2
.

Thus, we obtain general expression connected with torsion and curvature of a space curve of constant breadth.
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