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Abstract: In this paper the notions ofα-migrative triangular norms over a fixed nullnorm and a fixed uninorm are introduced and
studied. All solutions of the migrativity equation for all possible combinations of uninorms and nullnorms are analyzed and
characterized. Similar study is done for triangular conorms.
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1 Introduction

Definition 1. [9] Let α ∈]0,1[ be given. A binary operation T: [0,1]2 → [0,1] is said to beα-migrative if we have

T(αx,y) = T(x,αy) for all x,y∈ [0,1].

Clearly the product t-normTP is α-migrative for anyx ∈]0,1[. Many authors investigatedα-migrative property. The

migrativity property has been studied for t-norm in [13,14,15,23], for t-subnorms in [25], for semicopulas, quasi-copulas

and copulas in [10,11,12,22].

In [21], it was introduced the definition of(α,U0)-migrative uninorm analyzing some properties.(α,U0)-migrative

uninorms were characterized whenU0 lies in one of the following classes of uninorms:Umin or Umax, idempotent

uninorms, representable uninorms. In [26], it was discussed and characterized the migrative property for the nullnorms.

In [20], it was introduced the definition of(α,T)-migrative uninorm for a given t-normT, analysing some of its initial

properties. The authors continue with the characterization of those(α,T)-migrative uninorms, that lay in each one of the

most usual classes of uninorms, i.e., uninorms inUmin and Umax, idempotent uninorms, representable uninorms and

uninorms continuous in the open square]0,1[2. In [24], it was studiedα-migrative uninorms over a fixed uninorm, where

those two uninorms have different neutral elements. All cases when both uninorm lay in any one of the most usual

classes of uninorms are analyzed, characterizing all solutions of the migrativity equation for some possible

combinations. Nullnorms, uninorms and t-norms were also studied by many other authors [1,2,3,4,6,7,8,17,18]. In the

present paper, we introduce the migrativity of triangular norms over nullnorms and over uninorms. The paper is

organized as follows. We shortly recall some basic notions in Section 2. In section 3, we introduce the definition of

(α,F)-migrative triangular norm for a given nullnormF . Also we introduce the definition of(α,U)-migrative triangular

norm for a given nullnormU . Similar study is done for triangular conorms. That is, we introduce the migrativity of

triangular conorms over nullnorms and over uninorms.
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2 Notations, definitions and a review of previous results

Definition 2. [18] A triangular norm (t-norm for short) is a binary operation T on the unit interval[0,1], i.e., a function

T : [0,1]2 → [0,1], such that for all x,y,z∈ [0,1] the following four axioms are satisfied:

(T1) T(x,y) = T(y,x), (commutativity)

(T2) T(x,T(y,z)) = T(T(x,y),z), (associativity)

(T3) T(x,y)≤ T(x,z) whenever y≤ z, (monotonicity)

(T4) T(x,1) = x, (boundary condition.)

Example 1.[18] The following are the four basic t-normsTM, TP, TL andTD on [0,1] given by, respectively,

TM(x,y) = min(x,y),

TP(x,y) = xy,

TL(x,y) = max(x+ y−1,0),

TD(x,y) =







0, if (x,y) ∈ [0,1[2

min(x,y), otherwise.

Definition 3. [18] A triangular conorm (t-conorm for short) is a binary operation S on the unit interval[0,1], i.e., a

function S: [0,1]2 → [0,1] if it is commutative, associative, increasing with respectto the both variables and has a neutral

element0.

Example 2.[18] The following are the four basic t-conormsSM, SP, SL andSD on [0,1] given by, respectively,

SM(x,y) = max(x,y),

SP(x,y) = x+ y− xy,

SL(x,y) = min(x+ y,1),

SD(x,y) =







1, if (x,y) ∈]0,1]2

max(x,y), otherwise.

Definition 4. [16] A binary function U : [0,1]2 → [0,1] is called a uninorm if it is associative, commutative,

non-decreasing in each variable and there is a neutral element e∈ [0,1] such that U(e,x) = x for all x∈ [0,1].

The setA(e) is defined as follows:

A(e) =]0,e]× [e,1[∪[e,1[×]0,e].

We denote byU(e) the set of all uninorms on[0,1] with the neutral elemente∈ [0,1].

Theorem 1.[16] Let U : [0,1]2 → [0,1] be a uninorm with neutral element e∈]0,1[. Then the sections x7→U(x,1) and

x 7→U(x,0) are continuous in each point except perhaps for e if and only if U is given by one of the following formulas.

(a) If U (0,1) = 0, then

U(x,y) =















eT( x
e,

y
e), (x,y) ∈ [0,e]2

e+(1−e)S( x−e
1−e,

y−e
1−e), (x,y) ∈ [e,1]2

min(x,y), (x,y) ∈ A(e).

(1)

where T is a t-norm and S is a t-conorm.

(b) If U (0,1) = 1, then the same structure holds, changing minimum by maximumin A(e).

The set of uninorms as in case (a) will be denoted byUmin and the set of uninorms as in case (b) byUmax. We will denote

a uninormU in Umin with underlying t-normT, underlying t-conormSand neutral elemente by U ≡ 〈T,e,S〉min and in a

similar way, a uninorm inUmax by U ≡ 〈T,e,S〉max.
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Definition 5. [5] A function F : [0,1]2 → [0,1] is called nullnorm if it is commutative, associative, non-decreasing in

each variable and there exists k∈ [0,1] called absorbing element that verifies F(k,x) = k for all x∈ [0,1] and

F(0,x) = x for all x≤ k and F(1,x) = x for all x≥ k.

In that case, whenk = 0 we obtain a t-norm and whenk = 1 we obtain a t-conorm. In general, the absorbing element is

always given byk= F(1,0). The structure of nullnorms is given as follows.

Theorem 2.[19] Let F : [0,1]2 → [0,1] be a nullnorm with absorbing element F(1,0) = k /∈ {0,1}. Then

F(x,y) =















kS( x
k,

y
k), (x,y) ∈ [0,k]2

k+(1− k)T( x−k
1−k ,

y−k
1−k), (x,y) ∈ [k,1]2

k, otherwise.

where S is a t-conorm and T is a t-norm.

A nullnormF with absorbing elementk, underlying t-normT will be denoted byF ≡ 〈S,k,T〉.

3 Migrativity of t-norms over nullnorms and uninorms

Now, we will introduce the definition of migrativity of a t-norm T over a nullnormF .

Definition 6. Given a nullnorm F andα ∈]0,1[, a t-norm T is calledα-migrative over F or(α,F)-migrative if

T(F(α,x),y) = T(x,F(α,y)) f or all x,y∈ [0,1]. (2)

Since the extreme values ofa correspond to the well known cases of t-norms and t-conorms,we will only deal with

nullnorms with absorbing elementa∈]0,1[.

Lemma 1.Considerα ∈]0,1[. Let T be a t-norm, F be a nullnorm with absorbing element a. Then T is notα-migrative

over F.

Proof. (i) Let α = a. If T is α-migrative overF , then

T(F(α,1),0) = T(α,0) = 0< α = T(1,α) = T(1,F(α,0)).

It leads a contradiction thatT is notα-migrative overF for α = a.

(ii) Let α ∈]0,a[. If T is α-migrative overF , then

T(0,F(α,1)) = 0< α = T(α,1) = T(F(α,0),1).

It leads a contradiction thatT is notα-migrative overF for α ∈]0,a[.

(iii) Let α ∈]a,1[. If T is α-migrative overF , then

T(F(α,1),0) = 0< a< F(α,0) = T(1,F(α,0)).

It leads a contradiction thatT is notα-migrative overF for α ∈]a,1[.
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Now, we will introduce the definition of migrativity of a t-conormSover a nullnormF .

Definition 7. Given a nullnorm F andα ∈]0,1[, a t-conorm S is calledα-migrative over F or(α,F)-migrative if

S(F(α,x),y) = S(x,F(α,y)) f or all x,y∈ [0,1]. (3)

Since the extreme values ofa correspond to the well known cases of t-norms and t-conorms,we will only deal with

nullnorms with absorbing elementa∈]0,1[.

Lemma 2.Considerα ∈]0,1[. Let S be a t-conorm, F be a nullnorm with absorbing element a.Then S is notα-migrative

over F.

Proof. (i) Let α ∈ [a,1[. If S is α-migrative overF , then

S(F(α,1),0) = S(α,0) = α < 1= S(1,F(α,0)).

It leads a contradiction thatS is notα-migrative overF .

(ii) Let α ∈]0,a[. If S is α-migrative overF , then

S(0,F(α,1)) = F(α,1)< a< 1= S(F(α,0),1).

It leads a contradiction thatS is notα-migrative overF .

Similarly to the case of nullnorms we want to study the migrativity of t-norms over uninorms.

Definition 8. Given a uninorm U andα ∈]0,1[, a t-norm T is calledα-migrative over U or(α,U)-migrative if

T(U(α,x),y) = T(x,U(α,y)) f or all x,y∈ [0,1]. (4)

Since the extreme values ofe correspond to the well known cases of t-norms and t-conorms,we will only deal with

uninorms with neutral elemente∈]0,1[.

Lemma 3.Consider T be a t-norm and U be a uninorm with neutral element e. Then, T is e-migrative over U.

Proof. T(U(e,x),y) = T(x,y) = T(x,U(e,y)) for all x,y∈ [0,1].

Lemma 4.Considerα ∈]0,e[. Let T be a t-norm, U be a uninorm with neutral element e. Then Tis notα-migrative over

U.

Proof.Since 0< α, we have thatU(0,0) = 0<U(α,0). If T is α-migrative overU , then we have

T(0,U(α,1)) = 0<U(α,0) = T(U(α,0),1)

contradiction. So,T is notα-migrative overU .

Lemma 5.Considerα ∈]e,1[. Let T be a t-norm, U be a uninorm with neutral element e. Then Tis notα-migrative over

U.

Proof.Sincee< α, we have

1=U(e,1)<U(α,1)
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by the monotonicity ofU . So, it is obtained thatU(α,1) = 1. If T is α-migrative overU , then we have

T(e,U(α,1)) = T(e,1) = e< α = T(α,1) = T(U(α,e),1)

contradiction. So,T is notα-migrative overU .

Definition 9. Given a uninorm U andα ∈]0,1[, a t-conorm S is calledα-migrative over U or(α,U)-migrative if

S(U(α,x),y) = S(x,U(α,y)) f or all x,y∈ [0,1]. (5)

Since the extreme values ofe correspond to the well known cases of t-norms and t-conorms,we will only deal with

uninorms with neutral elemente∈]0,1[.

Lemma 6.Consider S be a t-conorm and U be a uninorm with neutral element e. Then, S is e-migrative over U.

Proof. S(U(e,x),y) = S(x,y) = S(x,U(e,y)) for all x,y∈ [0,1].

Lemma 7. Considerα ∈]0,e[. Let S be a t-conorm, U be a uninorm with neutral element e. Then S is notα-migrative

over U.

Proof.Sinceα < e, we have that

U(α,0)<U(e,0) = 0

by the monotonicity ofU . So, it is obtained thatU(α,0) = 0. If S is α-migrative overU , then we have

S(U(α,e),0) =U(α,e) = α < e= S(e,0) = S(e,U(α,0))

contradiction. So,S is notα-migrative overU .

Lemma 8. Considerα ∈]e,1[. Let S be a t-conorm, U be a uninorm with neutral element e. Then S is notα-migrative

over U.

Proof.Sincee< α, it is obtained that 1=U(e,1)<U(α,1). If S is α-migrative overU , then we have a

S(U(α,1),0) =U(α,1) = 1= S(1,U(α,0))

contradiction. So,S is notα-migrative overU .

4 Conclusions

We have introduced and studied the migrativity of t-norms over nullnorms and the migrativity of t-norms over uninorms.

Similar definition is done for t-conorms.
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