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1 Introduction

A rack [3] is a set with a non-associative binary operation satigfytwo rack conditions. The theory of racks is
connected to the group theory. This relation leads to thetnConj: Grp — Rack between the categories of racks and
of groups which admits a left adjoint functds: Rack — Grp; see #], [7] for more details.

The earliest work on racks is due to Conway and Wraglwjhich is inspired by the conjugacy operation in a group and
focuses in the special case of racks, called quandles; bytalso were aware of the generalization. In the literature,
racks are also called “automorphic setg]; ['crystals” [8] and “(left) distributive quasigroups’].

In this study, we firstly recall the definitions and some exe®for racks. Most of them appear if] [ Afterwards, we
give some categorical properties of racks which are thetoact®ons of product, pullback and equalizer objects. Ehes
categorical objects are defined by the universal propedgrdims in 1], [9] and examined for more specific categories
such as category of crossed modules of racks and (modifieeages of interest ing], [6].

2 Racks

We recall some notions fron7] which will be used in sequel.
Definition 1. A rack R is a set with a binary operation satisfying:
(R1) For all a,b € R, there exists a unique€R such that:

c<ga=h,

(R2) For all a,b,c € R, we have:
(a<b)<c=(a<c)<(b<c).

A rack which aditionally satisfies the idempotency condiitio
rar=r

is called a “quandle” (for alt € R).
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Definition 2. A “pointed” rack R is a rack equipped with a fixed elemérg R such that (for all re R):
l<r=1 and r<l=r.

RemarkWe only work with the pointed racks in the rest.

Definition 3. Let R and S be two (pointed) racks. A rack morphism is a map:
f:R—S

such that:
frar)y="f()<f(r) (and f(1) =1)

forallr,r’ € R.

Thus we get the category of (pointed) racks denoteRagk.

Some examples of racks are:
(1) The trivial rackT, of ordernis the set{0,1,2,...,n— 1} with the rack operation (for ak,y € Ty):

X<y =X

The infinitive trivial rackT. is the seZ equipped with the same operation.
(2) The dihedral racby is the set{0,1,2,...,n— 1} with the rack operation:

X<1y=2y—x modn
for all x,y € Dy and the infinitive dihedral racR., is the se? equipped with:
X<y=2y—X

forallx,y € Z.
(3) The cyclic raclC, of ordernis the set{0,1,2,...,n— 1} with the rack operation:

X<y=Xx+1 modn
for all x,y € Cy, while the infinitive cyclic rack is the sé&t equipped with:
X<1y=x+1

forallx,y € Z.
(4) Given a groufs, we may define a rack structure @by setting (for allg,h € G):

g<h=h"1gh
This rack is called the “conjugation” rack & and denoted bZonjG. This construction provides a functor:
Conj : Grp — Rack.
(5) We may define a different rack structure®my setting (for allg,h € G):

g<h=hgth.
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that is called “core” rack. However this construction is fustctorial.
(6) LetP andRbe two racks, then the cartesian product:

PxR={(pr)|pcPreR}

has a rack structure with:
(pr) < (p.r)=(p<p,rar)
forall (p,r),(p/.,r') e PxR.

Definition 4. Let R be a rack and X be a set. We say that X is an R-set when tiedvgextions(-r): X — X forallr € R
such that:

(x-r)-r'=(x-r') - (r<r’),
forallxe X andtr’ e R.

Definition 5. Let R S be two racks. We say that S acts on R by automorphisms wheristlagright) rack action of S on
R and:

(rar’).s=(r-s)<(r'-s)
forallse Sand rr' eR.
The following notion is likely to be semi-direct product afogips:

Definition 6. If there exists a (right) rack action of R on S, the “hemi-selinéct product” Sx R C Sx R is the rack
defined by the rack operation:
(sr)<(s,r')=(sr';rar’)

forall (s;r),(s,r') e SxR.

Definition 7. For a given rack R, a non empty subsef R is called a subrack if 1§ € Sforallss € S.

3 Categorical properties of racks
In this section we give the constructions of product, pudkband equalizer objects for the category of racks.
Theorem 1.The category of racks has products.
Proof. Let P andR be two racks. Define:
PxR={(p,r) | pePreR}.

We already know thaP x R is a rack. Also it is easy to verify that the projection maps: P x R — P and
p2 : P x R— Rare rack morphisms.

Now we will check the universal property. L&tbe any rack and : T — P, 8 : T — R be two rack morphisms. Then we
need to prove that there exists a unique rack morphism:

¢:T—PxR
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such that makes following diagram commutes:

T (1)
a 3|¢ B
P o PxR 5 R
Define:
¢$: T —->PxR
t=¢t)=(a(t),B()

¢ is a rack morphism since:

pt<t) = (at<t),Bt<at))
=(a(t)<a(t),Bt)<B(t))
= (a(),Bt) < (a(t),B(t))
=o(t)<¢(t)

for allt,t’ € T. Furthermore we get:

and

P26 (t) = p2(a (t),B (1))
=B

forallt € T that proves the commutativity of).
Considerp’ with the same property as, i.e. the following conditions hold:

p1d’ =a
P20’ = B.

Define(p,r) e Px Rby ¢’ (t) = (p,r). We get:

p1g’(t) = a(t) = pr(p,r) = a(t)
=p=alt)

and

p2¢’ (t) =B (t) = p2(p,r) =B (1)
=r=p3()
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forallt € T which yields:

and proves thap is unique.
Theorem 2.The category of racks has pullbacks.

Proof.Let f : P— T andg: R— T be two rack morphisms. Define:

PxtR={(p.,r) | f(p)=9(")}
which is a subrack oP x R; see p]. Then we get the following commutative diagram:

PxtR—P2 . R

p1 lg
T

P—"F—

Let Q be any rack with two rack morphisnas: Q — P andf: Q — Rwhere the following diagram commutes:

Then there must be a unique rack morphism:
$:Q—PxTR
that makes the following diagram commutative:

()

Py

R —
«
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namely
P =a
P29 = B.
For this aim, define:
$:Q—PxTR

Theng is a rack morphism since:

for all g,q € Q. Furthermore we get:

P26 (a) = p2(a(q),B(q))
=B(q)

for all g € Q that proves the commutativity oP).
Considerp’ with the same property a, i.e. the following conditions hold:

P’ =a
P20’ = B.

Define(p,r) € PxtRby ¢'(q) = (p,r). We get:
pr¢’ (a) = a(a) = pa(p.r) = a(q)

p2¢’ () = B (a) = p2(p,r)

for all g € Q which yields:

and proves thap is unique.
Theorem 3.The category of racks has equalizers.

Proof.Let f,g: P — Rbe two rack morphisms. Define the set:

Q={peP[f(p)=9(p)}.
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Qs a subrack oP since:

f(p) < f(p)
9(p) <g9(p)
9(p<p)

f(p<p)

forall p,p’ € P.
Also the inclusion morphism: Q — P is a rack morphism since:

u(pap)=p<p
=u(p) <u(p)

for all p, p’ € Q. Furthermore for alp € Q, we have:

=9(p)
=(9u)(p)
and get:
fu=gu.
LetT be any rack with a rack morphism T — P where:
fv=gv
Then there must be a unique rack morphism:
0. T—=>Q

such that the following diagram commutes:

f
QC—U>P$R
A

3!<p§ §
We can say that(t) € Q since:

forallt € T. Defineg by @(t) =v(t) forallt € T. Then we get:

v(t)

up(t)=u
=v(t)

forallt € T that satisfiesip = v and proves the commutativity oB).

(3)
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Considerg’ with the same property ag, i.e.u¢’ = v. Defineq € Q by ¢’ (t) = g. We get:

ug' (t) =v(t) = u(q) =v(t)
=q=V(t)

forallt € T which yields:

and proves tha is unique.
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