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Abstract: Our work in this paper deals with some fixed point results falass of nonexpansive single-valued and multi-valued
mappings using Picard sequences in a complete metric sPareresults constitute generalizations of the correspandesults
obtained by Demma et al6], Khojasteh et al.11] and Vetro [L5].
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1 Introduction and preliminaries

Let (X,d) be a metric space arfd: X — X be a single-valued mapping & A pointx € X is a fixed point off if fx=x.
LetF(f) = {xe X: fx=x} denote the set of all fixed points 6éfon X. The mappind is said to be

(i) contractionif there existk € [0,1) such thatd(fx, fy) < kd(x,y) for all x,y € X;
(i) nonexpansivé d(fx, fy) <d(x,y) forall x,y € X;
(iii) k-Lipschitzf there exists a constakt> 0 such thatl(fx, fy) < kd(x,y) for all x,y € X.

Banach’s contraction principld] is a fundamental result in the fixed point theory, which hasrbused and extended in
many different directions. These generalizations are nadtther by using contractive conditions or by imposing some
additional conditions on the ambient spaces. The notiorookrpansive mapping has an important role in fixed point
theory. In fact, many researchers investigated the thefamgimexpansive mappings for establishing the existencexed fi
points [7,8,10,14,15].

The aim of this paper is to give some results for the existasfcéixed points for single-valued and multi-valued
nonexpansive mappings in complete metric space endowédatitnary relation. We prove some theorems on distance
between fixed points of single-valued mappings by using rBicequence of any initial pointy, say {x,} with

xn = "% = fxn_1 for all n € N. Also, we give results for fixed point of multi-valued nonerpve mappings.

Now, we recall some notions for multi-valued mappings.

Let (X,d) be a metric space and I8B(X) be the collection of all nonempty bounded and closed suln§étsLetH be
a Hausdorff metric induced by the metdof X, that is

H(AB) = max{supd(a, B),supd(b,A)} ,

acA beB
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for everyA, B € CB(X) with
d(a,B) =inf{d(a,x) : x € B}.

We recall the following definitions.

Definition 1. A multivalued mapping TX — CB(X) is said to be a contraction if there exists a constart [0,1) such
that for any xy € X,
H(Tx Ty) < kd(x,y)

and T is said to be nonexpansive if
H(Tx Ty) <d(xy)

for all X,y € X. A point xe X is called a fixed point of T if & TX.

Definition 2. Let M be a subset of X X and let f: X — X be a mapping. Then, M is Banach f-invariantfi, f°x) € M
whenever(x, fx) € M. Also, a subset Y of X is well ordered with respect to M if fibxay € Y we havgx,y) € M or
(¥;x) € M.

The study of fixed points for multi-valued contractions ar@hexpansive mappings using the Hausdorff metric was
initiated by Markin [L2] (see also 13]). The following result due Nadlerlp] is a generalization of Banach contraction
principle, to the case of a multi-valued mapping.

Theorem 1.Let (X,d) be a complete metric space and X — CB(X) be a multi-valued contraction mapping. Then T
has a fixed point.

Lemma 1.If {x,} is a nonincreasing sequence of nonnegative real numbes,ftr r < m, the sequence

Xn+ 2Xni1+ 1
Xn+ 2Xp 1+ M
iS nonincreasing too.

Proof. We note that
Xn+ 2Xnp1+r > Xnt1+ X2+

Xn+ D1+ M~ Xop1+ Xng2+M

if and only if
(Xn+ 2011+ 1) (Xnr1+ 2Xnp2+M) > (Xnp1+ a2 +1) (Xn+ 2Xnp1+m)

Since{xn} is a nonincreasing sequence, this inequality holds.

Corollary 1. Let(X,d) be a metric space, fX — X be a nonexpansive mapping arndxX. If {x,} is a Picard sequence,
then the sequence

{ d(Xn—1,%n) + 2d (Xn, Xn 1) + T }
d(Xn—1,%n) + 2d(Xn, Xn1) + M

is nonincreasing for K m.

Proof. From the nonexpansivenessfodnd Lemmadl, the result holds.

2 Main results

Firstly, we prove some results for nonexpansive mappindiaetk on a metric space endowed with an arbitrary binary
relation.
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Theorem 2. Let(X,d) be a complete metric spacedX x X and f: X — X be a nonexpansive mapping such that

d(x, fy) +d(y, fx) +d(y, f2x) 4 r
d(fx.fy) < (d(x, )+ d(x, F2x) +d(y, fy) + m+k) d(xy) 1)

for all (x,y) € M, where ke [0,1), mr € R such that r< m. Also assume that

(a) M is Banach f -invariant;

(b) if {xn} is a sequence in X such th@,_1,Xn) € M foralln € Nand x — z€ X as n— o, then(x,-1,2) € M for all
neN;

(c) F(f) is well ordered with respect to M.
If there exists € X such thaixo, fXp) € M and

d(xo, fXo) + 2d(fxo, F2X0) +r
k<1 2
d(X07fXO)+2d(fX07f2XO)+m+ @)

then
(i) f has afixed point X;
(ii) foranyx € X, the Picard sequence converges to a fixed point of f ;
sy . . . m(1-k)—r
(iii) if z,w e X are two different fixed points of f, thefiziw) > max{f,o}.

Proof. Let xg € X be such thatfxg, fXg) € M and {x,} be a Picard sequence of initial poixg € X. Suppose that2)
holds. Taking«, = X1 for somen € N, x,_; is a fixed point off. That is, the existence of a fixed point is obvious. Now
we suppose that, # x,—1 for all n € N. SinceM is Banachf-invariant, we obtain thafx;,xy) = (fxo, fzxo) € M for

(X0,X1) = (X0, fX0) € M. From () with x = X,_1 andy = X,, we obtain

d(Xn—1,Xn+1) + d(Xn, Xn+1) + 1 }
d(Xn, X =d(fxn_1, fXn) < + k| d(Xn—-1,%
O Y1) = A(PXn-1, ) {d(xn17Xn)+d(Xn;Xn+l)+d(Xn;Xn+l)+m Co-1, %)

INRRANS RN
+ k| d(Xn_1,X 3
|:d(Xn17Xn)+2d(Xn,Xn+l)+m ( n—1 n) ( )

for all n € N. From the inequality) and Corollaryl, we get

d(Xn—1,%n) + 2d(Xn,Xn11) + T }
+ k| d(Xn—1,X% 4
d(anl7Xn)+2d(Xn,Xn+l)+m ( n—1 n) ( )
[ d(Xo,X1) 4 2d (¥, %2) + T ]

k| d(Xn—1,%
| d(x0,%0) + 2d(x,x2) 1 m | (Xn-1,Xn)
[ d(xo, TX0) + 2d( Fxo, F2%0) +T
_d(Xo,fxO)+2d(fxo,fzxo)+m+k d(%n-1,%n)

d(Xn, Xnt1) <

<

where q o
~d(x0,X1) + (X1,X2)+r+k<1'

~ d(x0,X1) +2d(xg,X2) +m

From @), {x»} is a Cauchy sequence. Sin¢as a complete metric space, the sequefgé converges ta € X. Now, we
will show thatzis a fixed point off. Using hypothesis (b), we get thad,(z) € M. Therefore, from the conditiori) with
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X = X andy = z, we obtain

d(Xn, f2) +d(z, xn)
+d(z £2xq) +r
d(Xn, FXn) 4 d(Xn, F2%n)
+d(z fz)+m
[ d(xn, T2) +d(Z2,Xn41) +d(Z Xn42) +T1

= k| d(xn,2).
_d(xn,an)+d(xn,xn+2)+d(z,fz)+mjL (n,2)

d(Xnt1, f2) = d(fxn, f2) < +k| d(xn,2) (5)

If we take limit asn — 4o on both sides off), we getd(z, fz) < 0. This implies thatl(z fz) = 0, that is,z= fzand
hencezis a fixed point off. Thus (i) and (ii) hold.

If we X, with z#£ w, is another fixed point of, then using {) with x=zandy = w, we get

d(z fw) +d(w, fz) +d(w, f?2) 4-r
d(z fz) +d(z f22) + d(w, fw) + m

3d(zw) +r

d(zw) =d(fz fw) <] m

+Kld(z,w) = [ +k} d(z,w)

and hencel(zw) > MK thatis, (iii) holds.

We consider a weak contractive condition to prove the falh@itheorem.

Theorem 3.Let (X, d) be a complete metric space, &1X x X and f: X — X be a nonexpansive mapping such that

d(x, fy) +d(y, x) +d(y, %) +r
<
d(fx, fy) < (d(X, x) 4+ d(x, f2x) +d(y, fy) + m

+ k) d(x,y) + Ld(y, fx) (6)

for all (x,y) € M, where ke [0,1), mr,L € R such that r< m. Also assume that

(a) M is Banach f -invariant;
(b) if {xn} is a sequence in X such thgé,_1,%,) € M for alln € N and % — z€ X as n— o, then(x,_1,2) € M for all
neN,
(c) F(f) is well ordered with respect to M. If there existsxX such thafxp, fxg) € M and @) holds then
(i) f has afixed point z X;
(ii) foranyx € X, the Picard sequence converges to a fixed point of f ;
(iii) if z,w € X are two different fixed points of f , theriziw) > max{w,o}.

Proof. Let Xy € X be an arbitrary point and Idi,} be a Picard sequence of initial poiat If X, = x,_1 for somen € N,
thenx, is a fixed point off. If x, # X,_1 for all n € N, using the contractive conditio®)with X = x,_1 andy = x,, we

get

d(Xn—1,Xn+1) + d(Xn, Xn1) + 1
d(Xn, X <
(n Xn41) < [d(xn1,xn>+d(xn,xn+1>+d(xn,xn+1>+m

d(anl7Xn)+2d(Xn,Xn+l)+r }
= + k| d(Xn_1,X
= [d(anaXn)+2d(Xn7Xn+1)+m ( n—1 n)

+ k] d(Xn—1,Xn) + LA (Xn, Xn),
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for all n € N. Then, by Corollaryl, {x,} is a Cauchy sequence. Singds a complete metric space, the sequeficg
converges to somee X. Now, we prove that is a fixed point forf. Using 6) with x = x, andy = z, we obtain

d(Xn, f2) +d(z fxn) +d(z F2%0) +r1
d(Xn, fXn) +d(Xn, F2%0) +d(z f2) + m
[ d(xn, f2) +d(Z Xn 1) +d(Z Xny2) + 1
N {d(xn,x,wl) +d(Xn, Xnt2) +d(z, f2) + m

d(Xnt1, f2) =d(fxn, f2) < { +k} d(Xn,2) + Ld(z fxq) @)

+ k] +Ld(z, Xn+1)

On taking limit asn — +o on both sides of{), we getd(z, fz) < 0. This implies thatl(z, fz) =0, that is,z= fz Hence
zis a fixed point off. Thus (i) and (ii) hold.

If we X, with z£ w, is another fixed point of, then using §) with x = zandy = w, we get

d(zw) =d(fz fw) <|

2
d(z,fw)+d(vv,fz)jr-;i(w,f 2)+r - Kd(zw) + Ld(w, {2

d(z fz) +d(z f22) + d(w, fw) + m
3d(zw) +r
e

+ k} d(z,w) +Ld(z,w)

and hencel(zw) > max{w,o}, that is, (iii) holds.

Remarklf in two above theorems lat= 0,m= 1, we have the following results, which generalize Theor8risand 3.2
in [15], respectively.

Corollary 2. Let(X,d) be a complete metric space, X x X and f: X — X be a nonexpansive mapping such that

d(x, fy) +d(y, fx) +d(y, £2x)

<
d(fx, fy) < d(x, )+ d(x, 12x) + d(y, fy) + 1

+k|d(xy)

for all (x,y) € M, where ke [0,1), r € R* such thatr< 1. Then

(&) M is Banach f -invariant;

(b) if{xn} is a sequence in X such thgd,_1,X,) € M foralln € N and % — z€ X as n— o, then(x,_1,2) € M for all
neN;

(c) F(f) is well ordered with respect to M. If there existsexX such thaiXg, fXp) € M and

d(xo, FX0) + 2d(fxo, F2x0)
d(xo, fX0) +2d(fxo, f2x0) + 1

+k<1 8)

then
(i) f has afixed pointz X;
(iiy for anyx € X, the Picard sequence converges to a fixed point of f ;
(iii) if z,w € X are two different fixed points of f , theiiziv) > max{ 15X, 0}.

Corollary 3. Let(X,d) be a complete metric space, X x X and f: X — X be a nonexpansive mapping such that

d(x, fy) +d(y, fx) +d(y, f2x)
(x, 1) + d(x, 2) +d(y. fy) + 1

d(fx, fy) < (d +k) d(x,y) + Ld(y, fx)

for all (x,y) € M, where ke [0,1), r € R such that r< 1. Also assume that

(a) M is Banach f -invariant;
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(b) if {xn} is a sequence in X such thgg,_1,%,) € M for alln € N and % — z€ X as n— o, then(x,_1,2) € M for all
neN;
(c) F(f) is well ordered with respect to M. If there existsxX such thafxp, fxo) € M and @) holds then
(i) f has afixed point z X;
(ii) foranyx € X, the Picard sequence converges to a fixed point of f ;
(i) if z,w € X are two different fixed points of f , theriziw) > max{ :=t=¥, 0} .

RemarkThe above the corollaries generalize the Theorems 3.1 @maf 815].
TakingM = X x X in Theoremg and3, we have the following results.

Theorem 4.Let (X,d) be a complete metric space and X — X be a nonexpansive mapping such that

d(x, fy) +d(y, fx) +d(y, f2x) +r +k> d(x,y) ©

d(fx fy) < <d(x, B) +d(x 2%) +d(y, fy) +m

for all x,y € X, where ke [0,1), mr € R such that r< m. If there existsxe X such that

d(Xo, fXo) + 2d(fxo, 2X0) +r
k<1 10
0'(Xo,f><o)+2d(f><o,f2><o)+m+ (10)
then

(i) f hasafixed point X;
(ii) foranyx € X, the Picard sequence converges to a fixed point of f ;
R . . . m(1-k)—r
(iii) if z,w e X are two different fixed points of f, thefiziw) > max{f,o}.

Theorem 5.Let (X,d) be a complete metric space and X — X be a nonexpansive mapping such that

2
d(x, fy) +d(y, x) +d(y, £2x) + +k) d(x,y) +Ld(y, )

d(fx, fy) < (d(x, fx) +d(x, F2x) +d(y, fy) +m

for all x,y € X, where ke [0,1), mr,L € R such that r< m. If there existsxe X and (L0) holds then

(i) f has afixed point X;
(i) foranyx € X, the Picard sequence converges to a fixed point of f ;

(iii) if z,w € X are two different fixed points of f , thefiziw) > max{w,o}.

Remark. (i) If choosingr =k =0andm= 1 in Theoremd, our result generalize Theorem 1 it].
(i) If choosingr = 0 andm= 1 in Theoremg!l and>5, our results generalize Theorems 4.1 and 4.25).

In this part of the paper, we give some theorems for nonexpanailti-valued mappings which can be proved in a similar
way as above theorems. From now on KgK) be the collection of all nonempty compact subsetX of

Theorem 6.Let (X,d) be a complete metric space and X — K(X) be a nonexpansive multi-valued mapping such that

d(x,Ty)+d(y, TX) +d(y, T%) +r
d(x, TX) +d(x, T2x) +d(y, Ty) + m

H(TxTy) < ( T k) d(x.y) (11)

for all x,y € X, where ke [0,1), mr € R such that r< m. If there existsxe X such that

d(xo, TX0) +2d(Tx0, T?X) +
k<1 12
d(XO,T)Q))+2d(T)(()7T2XO)+m+ (12)

holds, where xe& T is such that dxo,x1) = d (X0, TX0), then T has a fixed point.
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Proof. Let bexp € X an arbitrary point. Sinc& xp is compact there existg € Txy such thatd (Xp,x1) = d (o, TX0).

If we suppose thatg = x; or x; € Tx, thenx; is a fixed point ofT. So, the proof is complete. Now, we assume that
Xo # X1,X1 ¢ Txg and (L2) holds. Fromd (x3, Tx1) > 0, we haveH (T Xy, Tx1) > 0. Again by the compactness ofq we
obtainx, € Tx; such that (x3,X2) =d (x1, Tx). Using (L2), we have

d(Xg, %) =d(x1,Tx) <H(Tx,Tx)

d (X0, Tx1) +d(X1,TXo)+d(X1,T2X0)
d (X0, Txo) +d (X0, T?%0) +d (X1, Tx1) +
d (X0, X2) +d (X1,X2) + )
+k ) d(Xp,X
(d (X0,X1) +d (X1,X2) + d (X1,X2) + M (%0,x)
< (d(xo,xl)+2d(x1,x2 +r
d (X0, %1) +2d (x1,%2) +m

IN

p k) d (X0, %1)

N

+k) d (x0.%0)

Now, we assume that, Xy, ...,Xn € X such thai,1 € Tx, X ¢ Tx and

d(Xi—1,X%) 4+ 2d (X, Xi+1) + T
d(Xi—1,%) +2d (X, Xi1) +m

d(Xi7Xi+1)d(Xi7T)Q)§< +k>d(xi1,>q)

forall1=1,2,...,n— 1. Repeating the same procedure as above, W& gt compact. That is, there existg. 1 € T Xy
such thad (Xn, Xn+1) = d (X0, T X1). Then

d (Xn—1,%n) 4+ 2d (Xn, Xn1) + T
d (Xn—1,%n) +2d (X0, Xn4+1) + M

d (Xn,Xn+1) = d (%0, TX) <H(Tx-1,T%) < ( + k) d (Xa—1,%n) - (13)
Let bex, = xn+1 for all n € N. Thenx, is a fixed point ofT and the proof is complete. Now, we assume that T X,, SO
we obtain a sequende,} C X such thak,1 € Tx, and (L3) holds for alln € N. By using similar way as in the proof of
Theorem2, we get that{xn} is a Cauchy sequence. Therefore since is complete thengRistsz € X such that, — z
asn — oo. Finally, we will show thatzis a fixed point ofT. From (L1) with x = x, andy = z, we have

d(zT2 <d(zXn1) +d (X1, T2 <d(ZXpp1) +H (Tx, T2)
d(X%, T +d(zTx)+d (2 T%) +r

d (Xn,TXn) +d (Xn,TZXn) +d (Z,TZ) +m
d (Za TZ) +d (Za Xn+l) +d (Za Xn+2) +r

d (Xp,Xnr1) +d (Xn, Xn12) +d (2 T2 +m

<d(zXqy1) + < + k) d (Xn,2) (14)

<d(z,Xn41) + ( +k) d(xn,2).

On taking limit asn — +o0 on both sides of{4), we getd(z, T2) < 0. This implies thatl(z T2) = 0. AsTzis closed, we
getthatz e Tz thatis,zis a fixed point ofT .
Using the similar method as in the proof of Theor&mve have the following theorem.

Theorem 7.Let (X,d) be a complete metric space and X — K(X) be a nonexpansive multi-valued mapping such that

d(x,Ty) +d(y, TX) +d(y, T%) +r
d(x, TX) +d(x,T2x) +d(y, Ty) +m+k d(xy)+Ld (y,Tx)

H(TxTy)g(

for all x,y € X, where ke [0,1), mr,L € R* such that r< m. If there existsxe X and (L2) holds, then T has a fixed
point.

Remarklf in Theorems and7 we take the parameter= 0 andm = 1 then we get that the generalizations of Theorems
5.1and 5.2 in15].
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