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Abstract: The Fractional Boundary Value Problems (BVPs) oftenly comeacross in the modelling of several problems that we are faced
in the branches of engineering sciences. The main aim of thiswork is to compute the solution of the Fractional BVP which isformed by
y′′(x)+ p(x)y′(x)+q(x)y(α)(x)+ r(x)y(x) = f (x),0< α < 1 with the boundary conditionsy(a) = 0, y(b) = 0 approximately by using
the Sinc-Galerkin Method. Conformable sense is consideredfor the fractional derivatives. Intercalarity, some test problems having exact
solutions are approximately solved. Afterwards, the exactsolutions compared with the approximate solutions and numerical results of
that comparison are presented both in table and graphical forms.
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1 Introduction

Taking advantage of the fast and the prepotent processes with polynomials, the methods based on polynomials as

Chebyshev, Legendre, Sinc, etc. would be rathered in a wide of engineering applications.Sinc methods are the methods

as mentioned above with theirs helpful tool property. In fact, Sinc methods distinguish theirself from the other numerical

methods with two main differences: exponential decrease inerror and the reliability of the results come out at the

singular points. The Sinc methods are applied to many engineering problems. For instance, in [1], the approximate

solutions of several ordinary and partial differential equations in the plane are tackled by using Sinc-Galerkin Method. In

[2], Troesch’s problem is solved by using Sinc-Galerkin Method. In [3], a problem seen in the theory of chemical reactor

is investigated approximately. In [4], Solution of the Bratu’s problem appears in combustion theory of fuel ignition is

presented. In [5], Biharmonic problems occur in several areas of mechanics are introduced and then solutions are given

approximately.

We refer the interested reader to [6]-[15] for more information about the Sinc methods. In this work, we consider the

following fractional BVP

y′′(x)+ p(x)y′(x)+q(x)y(α)(x)+ r(x)y(x) = f (x) 0< α < 1 (1)

with the boundary conditions

y(a) = 0, y(b) = 0 (2)

where forα, y(α) is the comformable fractional derivative ofy(x). This paper is considered as follows. In section 2, The

fundamental definitions and theorems are presented and the Sinc-Galerkin Method is identified. In section 3, The Sinc-
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Galerkin method is implemented to the equation (1) for the boundary conditions (2).In section 4, The comparison of the

exact and the approximate solutions for certain test examples are presented both in tables and graphics. In section 5, the

paper is completed with a conclusion.

2 Preliminaries

The basis definitions and theorems about fractional calculus and sinc functions are presented. For more details see [15-17].

Definition 1. Let f : (0,∞)→ R be a n-differentiable function. Then the conformable fractional derivative of orderα for

n< α ≤ n+1 of f at t is defined by

Tα f (t) = lim
ε→0

f (⌈α⌉−1)(t + εt(⌈α⌉−α))− f (⌈α⌉−1)(t)
ε

(3)

where⌈α⌉ is the smallest integer greater than or equal toα.

Remark.Let f be a(n+1)-differentiable function at t andn< α ≤ n+1. As a result of Definition1,

Tα f (t) = t(⌈α⌉−α) f ⌈α⌉ (t) (4)

Theorem 1.Let f ,g beα-differentiable functions at t and n< α ≤ n+1.Then

(1) Tα (a f +bg) = aTα ( f )+bTα (g) , for all a,b∈ R.

(2) Tα (t p) = ptp−α , for all p ∈R

(3) Tα (λ ) = 0, for all constant functions f(t) = λ .
(4) Tα ( f g) = f Tα (g)+gTα ( f ) .

(5) Tα

(

f
g

)

= gTα ( f )+ f Tα (g)
g2 .

Definition 2. The function

sinc(x) =







sin(πx)
πx , x 6= 0

1, x= 0
(5)

is called the Sinc(Sine Cardinal) f unction.

Definition 3. The translated sinc function with space point is defined by

S(k,h)(x) = sinc
(x− kh

h

)

=







sin
(

π x−kh
h

)

π x−kh
h

x 6= kh

1, x= kh
(6)

where h> 0 and k= 0,±1,±2, ....

Definition 4. The series which defined by

C( f ,h)(x) =
∞

∑
k=−∞

f (kh)sinc
(x− kh

h

)

(7)

for f (x) and h> 0 is called the Whittaker Cardinal Expansion of f whenever theseries converges. For establishing the

approximation on(a,b), the conformable map is defined as

φ(z) = ln
(z−a

b− z

)
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Here, the basis functions are attained using the composite translated sinc functions given as

Sk(z) = S(k,h)(z)oφ(z) = sinc
(φ(z)− kh

h

)

. (8)

z= φ−1(w) =
a+bew

1+ew (9)

is the inverse map of w= φ(z). The sinc grid points zk ∈ (a,b) in DE are real numbers, so that they can denoted by xk.

For evenly spaced points{kh}∞
k=−∞, the image corresponding to these points is defined by

xk = φ−1(kh) =
a+bekh

1+ekh , k= 0,±1,±2, ... (10)

Theorem 2.Let F∈ B(DE) andΓ be a real number on(0,1). In that case, for small enough h,

∫

Γ
F(z)dz−h

∞

∑
j=−∞

F(zj )

φ ′(zj )
=

i
2

∫

∂D

F(z)k(φ ,h)(z)
sin(πφ(z)/h)

dz≡ IF (11)

where

|k(φ ,h)|z∈∂D =
∣

∣

∣
e
[

iπφ (z)
h sgn(Imφ(z))

]

∣

∣

∣

z∈∂D
= e

−πd
h . (12)

In sinc methods, the infinite quadrature should be cut with a finite sum.

Theorem 3.If there exist positive constantsα,β and C such that

∣

∣

∣

F(x)
φ ′(x)

∣

∣

∣
≤C

{

e−α |φ(x)|, x∈ ψ((−∞,∞))

e−β |φ(x)|, x∈ ψ((0,∞)).
(13)

then the error limit for the quadrature rule (11) is

∣

∣

∣

∫

Γ
F(x)dx−h

N

∑
j=−M

F(x j)

φ ′(x j)

∣

∣

∣
≤C

(e−αMh

α
+

e−β Nh

β

)

+ |IF | (14)

The infinite sum in (11) is cut with the help of (13) to achieve (14). With the help of the choices

h=

√

πd
αM

and N≡
[⌊αM

β
+1
⌋]

(15)

knowing that[⌊.⌋] is the integer part of the expression andM is the integer value that determines the size of the grid,

∫

Γ
F(x)dx= h

N

∑
j=−M

F(x j)

φ ′(x j)
+O

(

e−(παdM)1/2
)

. (16)
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Lemma 1. If φ is the conformal 1-1 mapping which simply connects the domain DE onto DS. Then

δ (0)
jk = [S( j,h)oφ(x)]|x=xk

{

1, j = k

0, j 6= k.

δ (1)
jk = h

d
dφ

[S( j,h)oφ(x)]
∣

∣

∣

x=xk

{

0, j = k
(−1)k− j

k− j , j 6= k.

δ (2)
jk = h2 d2

dφ2 [S( j,h)oφ(x)]
∣

∣

∣

x=xk

{

− π2

3 , j = k
−2(−1)k− j

(k− j)2
, j 6= k.

(17)

3 The sinc-collocation method

Consider the approximate solution of (1) is given by

ym(x) =
N

∑
i=−M

ciSi(x), m= M+N+1 (18)

Here,Si is the composite function ofS(i,h) andφ(x) for some fixed step sizeh. The unknown coefficientsci in (18) are

obtained with the help of orthogonalizing the residual withregard to the basis functions as

〈y′′(x),Si〉+ 〈p(x)y′(x),Si〉+ 〈q(x)y(α)(x),Si〉+ 〈r(x)y(x),Si〉= 〈 f (x),Si〉, i =−M, . . . ,N (19)

The inner product is defined by

〈 f ,g〉 =
∫ b

a
f (x)g(x)w(x)dx (20)

In the inner productw(x) is the weight function and it will be taken as

w(x) =
1

φ ′(x)
(21)

for the second order BVPs.

Theorem 4.The following relations are provided:

〈y′′(x),Si〉 ≈ h
N

∑
j=−M

2

∑
k=0

y(x j)

φ ′(x j)hk δ (k)
i j g2,k(x j) (22)

〈p(x)y′(x),Si〉 ≈ −h
N

∑
j=−M

1

∑
k=0

y(x j)

φ ′(x j)hk δ (k)
i j g1,k(x j) (23)

If we take as G(x) = r(x)y(x) and G(x) = f (x), the inner product of G(x) and Si will be

〈G,Si〉 ≈ h
G(xi)w(xi)

φ ′(xi)
(24)

The proof is presented in [14].

Theorem 5.For 0< α < 1, the following relation holds:

〈q(x)y(α)(x),Si〉 ≈ −h
N

∑
j=−M

1

∑
k=0

y(x j)

φ ′(x j)hk δ (k)
i j r1,k(x j) (25)
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In the sum,

r1,1(x) = (q(x)x1−αw(x))φ ′(x)

r1,0(x) = (q(x)x1−αw(x))′

Proof.The inner product ofq(x)y(α)(x) andSi is

〈q(x)y(α)(x),Si〉=
∫ 1

0
q(x)y(α)(x)Si(x)w(x)dx

=

∫ 1

0
q(x)x1−αy′(x)Si(x)w(x)dx

= q(x)x1−αSi(x)w(x)y(x)|10−
∫ 1

0
y(x)(q(x)x1−αSi(x)w(x))

′dx (26)

With the use of the boundary conditionsy(0) = y(1) = 0, we write (26) as

〈q(x)y(α)(x),Si〉=−
∫ 1

0
y(x)(q(x)x1−αSi(x)w(x))

′dx (27)

So, we determine that

〈q(x)y(α)(x),Si〉=−
∫ 1

0
y(x)[Si(x)r1,0(x)+S(1)i (x)r1,1(x)]dx

where

r1,1(x) = (q(x)x1−αw(x))φ ′(x)

r1,0(x) = (q(x)x1−αw(x))′

Using (16) and lemma1 , it is shown that

〈q(x)y(α)(x),Si〉 ≈ −h
N

∑
j=−M

y(x j)

φ ′(x j)

[1
h

δ (1)
i j r1,1(x j)+ δ (0)

i j r1,0(x j)
]

=−h
N

∑
j=−M

1

∑
k=0

y(x j)

φ ′(x j)hk δ (k)
i j r1,k(x j)

Replacing each term of (19) with the approach defined in (22)-(25),y(x j) with c j , and dividing byh, we state the following

theorem.

Theorem 6. Let us consider the boundary value problem (1)-(2).Then then the discrete Sing-Galerkin system for the

approximate solution If the assumed approximate solution of the boundary-value problem (1) is (2), then the discrete Sinc-

Galerkin system for obtain the unknown coefficients{c j}N
j=−M for the approximate solution is given, for i=−M, . . . ,N,

N

∑
j=−M

{

2

∑
k=0

1
hk

δ (k)
i j

g2,k(x j)

φ ′(x j)
c j −

1

∑
k=0

1
hk

δ (k)
i j

g1,k(x j)

φ ′(x j)
c j −

1

∑
k=0

1
hk

δ (k)
i j

r1,k(x j)

φ ′(x j)
c j +

r(xi)w(xi)

φ ′(xi)
ci

}

=
f (xi)w(xi)

φ ′(xi)
(28)

Some notations are defined to represent the system (28) in the matrix-vector form. LetD(y) be a diagonal matrix whose

diagonal elements arey(x−M),y(x−M+1), ...,y(xN) and non-diagonal elements are zero. In addition, letI (k) denotes the
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matrices for 0≤ k≤ 2 by

I (k) = [δ (k)
ji ], j, i =−M, . . . ,N. (29)

whereD, I (0), I (1) andI (2) are square matrices of ordern× n. By using the above notations in the system (28), we can

rewrite this system as

Ac = B (30)

where

A =
2

∑
j=0

1
h j I

(2)D

(

g2, j

φ ′

)

−
1

∑
j=0

1
h j I

(1)D

(

g1, j

φ ′

)

−
1

∑
j=0

1
h j I

(1)D

(

r1, j

φ ′

)

+ I (0)D

(

g0,0

φ ′

)

(31)

B = D

(

w f
φ ′

)

1 (32)

c=
(

c−M,c−M+1, . . . ,cN−1,cN

)T
(33)

Finally, we can reach the approximate solution of (28) after finding the unknown coefficientsci in the system.

4 Numerical examples

In this section, HWM is applied to some test examples usingMATHEMATICA 10. For the all examples, we consider

h= π/
√

N andN = M = L.

Example 1.Let us take the linear fractional BVP

y′′(x)+ y(0.3)(x)+ y(x) = x2(x3+5x2.7− x2−4x1.7+20x−12) (34)

with the boundary conditions

y(0) = 0,y(1) = 0 (35)

This BVP has an exact solution in the form ofy(x) = x4(x−1). The approximate solution obtained with the aid of HWM of

this problem is shown in table 1. In addition, the exact and the approximate solutions of the problem are shown graphically

for different n values in figure 1.

Example 2.Let us assume the following fractional BVP

y′′(x)+ cos(x)y′(x)− xy(0.7)(x) =−cos2(x)(x−1)+ sin(x)(x1.3+ x−1)− cos(x)(sin(x)− x2.3+ x1.3+2) (36)

adhere to the boundary conditions

y(0) = 0,y(1) = 0 (37)

The exact solution of the problem isy(x) = sin(x)(1− x). The numerical solutions determined by HWM of the problem

are presented in Table 2. Furthermore, the comparisons of the exact and the approximate solutions for different values of

N are shown in Figure 2.
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Table 1: Absolute errors forExample 1for different values ofN.

x N= 4 N = 8 N = 16 N = 32 N = 64

0.1 3.642×10−3 8.128×10−4 4.833×10−5 7.310×10−7 1.566×10−9

0.2 4.766×10−3 3.613×10−4 7.901×10−5 9.341×10−7 1.896×10−9

0.3 7.281×10−3 9.350×10−4 1.808×10−5 1.207×10−6 7.897×10−10

0.4 6.540×10−3 7.322×10−4 6.473×10−5 1.359×10−6 1.880×10−9

0.5 5.856×10−3 2.405×10−5 3.038×10−5 8.176×10−7 2.318×10−9

0.6 6.228×10−3 1.694×10−4 4.361×10−5 2.879×10−7 2.366×10−9

0.7 5.953×10−3 1.543×10−5 2.370×10−5 7.500×10−7 2.965×10−9

0.8 1.917×10−3 2.463×10−4 3.685×10−6 5.934×10−7 1.516×10−9

0.9 3.166×10−3 3.296×10−4 1.574×10−5 3.348×10−7 7.106×10−10

(a) N = 4 (b) N = 16

(c) N = 64

Fig. 1: Graphs of exact and approximate solutions for Example 1.
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Table 2: Absolute errors forExample 2for different values ofN.

x N= 4 N = 8 N = 16 N = 32 N = 64

0.1 4.292×10−3 6.072×10−4 1.513×10−5 1.321×10−7 8.661×10−10

0.2 3.582×10−3 3.610×10−4 2.868×10−5 3.814×10−7 8.919×10−10

0.3 4.518×10−3 3.692×10−4 1.479×10−5 4.035×10−7 8.881×10−10

0.4 2.644×10−3 3.849×10−4 1.962×10−5 3.031×10−8 8.497×10−10

0.5 1.367×10−3 1.823×10−4 1.690×10−5 3.697×10−7 9.330×10−10

0.6 1.701×10−3 1.032×10−4 3.800×10−6 3.052×10−7 9.113×10−10

0.7 2.620×10−3 1.803×10−6 1.908×10−5 2.509×10−8 9.424×10−10

0.8 1.632×10−3 2.900×10−4 6.602×10−6 2.087×10−7 6.082×10−11

0.9 2.410×10−3 8.289×10−5 4.529×10−6 3.354×10−7 5.932×10−11

(a) N = 4 (b) N = 16

(c) N = 64

Fig. 2: Graphs of exact and approximate solutions for Example 2.

5 Conclusion

The Sinc-Galerkin Method is applied to the different fractional order differential equations. All computations associated

with the examples are done using Mathematica. The exact and approximate solutions are compared for all the examples.

It can be concluded that the Sinc-Galerkin method is a quite effective and accurate method. We aim to apply the Sinc-

Galerkin Method to the fractional order partial differential equations in our later studies.
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