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Abstract: In this study, we examine properties of some subgroups afiitdular group which can be characterized by algebraic and
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1 Introduction

ab
LetSL(2,Z) = cd :a,b,c,d€Z ad—bc=1 ;. Consider the action of the gro§i(2, Z) on the upper half-plane

ab ar+b
T= ,
cd cT+d

H:={ze C:Ilmz> 0} by T € H, in particularly the subgroufL(2,7) acts onH discontinually.

And also we recall that in many papers authors use the piggestecial linear groupSL(2,7Z) = SL(2,Z)/{+I } instead
of SL(2,Z). The grougPSL(2,7) is known the modular group, denoted Bywhich consists of the transformations

zaﬂ) with a,b,c.d € Z, ad—bc=1.
cz+d

We note that for convenience, the modular group and its sulpgrwill be represented by matrices with the understanding

0-1 11
that a matrix and its negative will be identified.is generated by = 10 andT = 01l These satisfy the

relationsS* = 1, (ST)® = S in SL(2,7Z). Moreover, one can show that these generate all relat@fs | S*,S*(ST)%) is
a presentation of the gro§i(2,7). A congruence subgroup of levglof the modular group is a subgroup which contains

10
Fr(N)=<yesSl2z):y= 01 (modN » for some positive integé. Thatis, any groug suchthal” (N) <G < I

is called a congruence subgroup of ledelCongruence subgroups are a class of arithmetic subgroliph are easy to
describe. For example the following are some well-knowrgtoance subgroups:

* % 1=«

N(N)=<yeSU2,Z):y= 0 (modN) p,(N)=< yeSU2,Z):y= 01 (modN)

In particular, all congruence subgroups of ledehre very important number theory and group theory. Besigesjote
that the existence of noncongruence subgroufi(?,7) was first announced by Felix Klein. Their construction of the
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subgroups used generators to define them.

Now we will take another subgroup of modular group,

ab
lon(N) = { (c d) €l(N):a= d(modrj}.

We point out a few interesting properties of the group.

Remark. (i) If n|N, thenlon(N) is a congruence subgroup of lewglandri (N) C Ion(N) C o(N).
(i) ForallN€Z", loa(N) = ro(N).

ab

Lemma 1.1f n|N, thenlo,(N) = {( d) €l :Nic, azl(modrj}.
' c

Proof. Given N|c andn|N, we must show thaa = d(modn if and only if a® = 1(modn. Therefored = a(modn <
becausegcd(a,n) = 1, ad = a’(modn < ad — bc= a? — b¢(modn) < asn|c 1 = a?(modn. Hence this prove is
completed.

Example 1.Letn=8. Thena? = 1(modB) < gcd(a,2) = 1, anda = 1(mod3) < gcd(a, 3) = 1. Whereas, for any prime
integerp > 3, there exists no such nontrivial modulsuch thae? = 1(modmn) < gcd(a, p) = 1.

2 Fundamental domain and cusps

We start by quickly recalling the basic notation of fundataédomain for modular group and cusp used in this work. We
also mention a little stabilizer. If we gét then a system of coset representatives for the quafiar8L(2,Z) is

(es) (o) ()}

Consequently using this, one can draw the following pictifra fundamental domain fdr. Let F be the closed subset
of H given byF := {z€ H: |[Rez <  and |z > 1}. Here we writew = exp(27i /3) for the unique third root of unity in
the upper half plane. Actually every pointlis equivalent, under the action 8L(2,7Z), to a point ofF. If z,zy € F are
two distinct points that are in the sarB&(2,7)-orbit, then eithezy = z+1 orzy = —%. There are two points at infinity
that are in the closure df in the Riemann sphere, but notliy namelye ad 0. If we remove thé& orbits of w andi
from upper half plane, then the action becomes free and @tient space is a Riemann surface with hyperbolic metric.
It is acquainted with that it is the two punctured plai& {0,1}. If we hold on keeping the points with finite stabilizers
then the quotient \ H is a modular curve.

We will give only the statement since the following lemmaimkn.

Lemma 2.Let z be in F and let Stafy» 7,z be the stabiliser of z in $2,Z). Then Stal, 7, is

0-1
(1) cyclic of order 6 generated by SF (1 1 ) ifz=w,

1-1
(2) cyclic of order 6 generated by TS (1 0 ) ifz=w+1,
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Fig. 1: Fundamental domain fdr.

0-1
(3) cyclic of order 4 generated byS (1 0 ) ifz=i,

0
otherwise.
1

-1
(4) cyclic of order 2 generated byl = ( 0

Definition 1. The projective line ove® is the extended rational number &t:= QU {co}.

The groupSL(2,7Z) acts onP* by the same formula giving the action &h yx = g’(‘jg for y € SL(2,7), x € PL. Here the
right-hand side is to interpreted 8sf x = o, and as» if cx+d = 0.

Theorem 1.The action of S[2,7) onP! is transitive.

Proof. It suffices to show that for everye Q, there existy € SL(2,7Z) such thateo = x. We writex = £ with a,c coprime

a-s
integers. Then there exist integerssuch thaar + cs= 1, the matrixy = has the required property. One easily
cr

1b

) ‘be Z} . And we have a bijection

control that the stabilizer ob in SL(2,Z) is SL(2,Z)e = {i (O 1

0:SU2,2)/SU2,7Z)0 — P, O(YSU2,Z)w) = yoo

Definition 2. Let G be a congruence subgroup. The set cusps of G is the sairbit§in P2, i.e. the quotient Cusp€) =
G\PL

Especially, we have a surjective mélp G\ SL(2,Z) — CuspgG).

Example 2.Let G = Iy(p), p is prime. To compute the set of cuspsigfp), we determindy(p) orbits inPL. The orbit
of w c Plis

ab a
lo(p)-0=<¢ =+ . a,b,ccdeZ andad—bcp=1; =¢— | aceZ, gcdlacp =1;.
o(p) { (de> © | p } 1 geda.cp ~ 1
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Therefore we can writelp(p) - 0 = {Es | r,seZ, ged(r,s)=1 and p|s}. Likewise, the orbit of 0 is

lo(p) -0 = {g \ b,deZ, gcd(b,d)=1 and p)(s}. From this description of the two orbits it is clear that every

element ofP! is in exactly one of them. In particulafo(p) has two cusps, namely the two elemestsand 0 of
lo(p) \ PL. And also there is an isomorphism

A To(p)\SU2,Z) — K\ SL2,Zp)

ab
where k = {i (O 1/a) ] acZy, beZp}. It is known that|SL(2,Zp)| = p(p — 1)(p+ 1). Furthermore, the
_ [su2.z)|

description above of implies|k| = p(p—1). Therefore we obtain the indexSL(2,Z) : lo(p)] Tk

—p+1

Example 3. The groupl °(N) = g
c

N = 11. Then the group °(11) has index/SL(2,Z) : r°(11)| = 12. It has two cusps» and 0. It has generated by 4
generatorsT, andTy which stabilizeco and 0 respectively and two parabolic generatoendB subject to one condition
ToToABA 1B 1 =1,

e SU2,7) \ b=0 (modN)} congruence subgroup of modular group. Let

Definition 3. G is a group with no nontrivial normal subgroups. Then G idegla simple group.

The importance of finite simple groups lies in their role agddug blocks of finite groups. The important thing is the
classification of finite simple groups. Indeed all finite siengroups were classified in 1983. In addition E. Mathieu
discovered five strange finite simple groups. These groups ¥irst called sporadic in the book of W. Burnside. The
modern classification race started with the many papersastfimally shown that every finite simple group is isomorphic
to one of the following(1) An alternating grough, for n > 5. (2) A cyclic groupZ, of prime orderp. (3) A simple
group of Lie type over a finite field, e.d?SL(n,Fq). (4) Some one of the sporadic simple groups. All 26 finite sporadic
simple groups: Mathieu (5), Janko (2), Hall-Janko, Conw@), Higman-Sims, Higman-Janko-Mckay, McLaughlin,
Suzuki, Held, Rudvalis, Fischer (3), O’'Nahn, Lyons, Har&ltaton, Thompson, Baby Monster and The Monster. The
smallest sporadic group is the Mathieu grddp;, which has order 7920, and the largest of the sporadic is kramsithe
The Monster group, denotéd which has order approximately-810°3. Although the Monster groubl was discovered
within the context of finite simple groups, hints later beg@emerge thet it might be strongly related to other branches
of mathematics. One of these is the theory of modular funstand modular forms.

Let u be the indexg, the number of inequivalent elliptic fixed point of ordereg,the number of inequivalent elliptic
fixed point of order 3 antl the number of inequivalent cusps. Thus, the Riemann-Haif@imula gives the genus as

(E_ _2_2&)_

1
:1 —
9=1+35\% 2 3

2

Genus is important in topological meaning for any groups lkinown that the sdtl \ I of orbits has the structure of
a Riemann surface with one point removed. This is a Riemarfaci of genus 0. When we remove one point of it,
we obtain a set that can be identified with So, we have an isomorphism of Riemann surféce \ I — C. One

can obtain more examples adjoiningfgN) the Fricke involutionwy(z) = N7 which of course can be realized as

0-1
an element oPSL(2,R). That islp(N)" = <I'0(N), % (N 0 ) > WhenN is a primep, it is just the groupgo(p)™
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generated byy(p) and the Fricke involutiornv,. Moreover we say thafy(p)* has the genus 0 property if and only if
p=2,3,57,11,13,17,19,23,29 31,41,47,59,71. Since M| = 246.320.59 76.112.13%.17.19.23.29.31.41.47.59.71, these
are the prime divisors of the order of the Monster grdMipNVe know thato,(N) is a Fuchsian group, a discrete subgroup
of PSL(2,R), whose fundamental domain has finite area, therefore it kgmature consisting of the geometric invariants
o = (g;m, My, ...,my; S) whereg is the genus of the compactified quotient spaegn, ..., m; the periods of the elliptic
generators, andis parabolic class number. This signature problem is in a thayidentity of discrete groups. But this
problem very hard to solve. Actually, the main purpose is #iudy is to set the foundations of a new method that this
method is named suborbital graphs.This way the signatatdgm transfer to the suborbital graphs.

3 Orbital graphs

We now explain imprimitivity of the action ofig(N) on PL. (I'h(N),P!) is transitive permutation group, comprising of
a grouplp(N) acting on a seP? transitively. vy, u, € P! satisfy u; =~ U, theny(v;) = y(uy) for all y € IH(N). In this
case equivalence relatioa on P! is invariant and equivalence classes form blocks. We(8g§N), P1) imprimitive, if
P! accepts some invariant equivalence relation differemhftbe identity relation and the universal relation. Otheewi
(Fo(N),PY) is primitive. These two relations are supposed to be trigkitions. In conclusion we have,

Theorem 2. (i) I'o(N) acts transitively oriP®.

la
(i) Io(N)e is the stabilizer ofo in P is the set o 01 ae’z

Proof. (i) It is enough to show that the orbit containingis P, If )—); € P, then ag(x,y) = 1, there exist),n; € Z
X N2

with xn1 —yn2 = 1. Then the eleme n of [o(N) sends» to ;—(/
1

(i) Since the action is transitive, stabilizers of any twoirgs in P! are conjugate. So it is sufficient to consider the

a b\ (1 1
stabilizerfo(N)o of 0. LetK & [H(N). We can see thaf(w) = ( N d) (0) = (O) . And thena=1,c=0,
c

la 11
d=1andb=a € Z. HenceK = 01l Thereforelp(N)« is the infinite cyclic group by the eleme tO 1

That is,lo(N)e = < ((1) i) >

RemarkThe elements offg n(N) like this
’ cN a—nk

a b
) ke Z.ltis clearly that folN # 1, Io(N)e < Fon(N) < Io(N).

We will define an equivalence relatieainduced onP! by l'o(N). Thenlp(N) acts imprimitively onPl Leté&; = Ba—?\l,
1
as 1 aL a2 Y2\ |
& = —— be elements oP*. Then there are the elemeriis:= andT, := in I'p(N) such that
BN BN & BN &,

Ti(0) = & andTy () = &. So we have

&1~ & ifonlyif T/ T, € Mon(N).
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0102 —yifoN Sy —yid,

(a1B2 — a2f1)N a18, — 21N
o231 =0 (modN) andd 0o, — a19,+ (Va1 — ya2)N =0 (modn are obtained. In addition that the number of the blocks
under~ is given by the indeX’ = |Io(N) : [on(N)|. The index is coset numbers. Consequently we have the blocks

And so from the above we can easily calculate ﬂ:fah—g = ( ) € lon(N). Hencea 3, —

[o0] ::{;—(/E]P’H(x,y):l andy=0 (modN}, [j] ::{§6P1|(x,y):1 andx— jy=0 (modN} where j # .

C. C. Sims introduced the idea of suborbital graphs for adfipgrmutation groups acting on a set. We use this idea as
follows for Ih(N) andP?.

Since(p(N),PY) is transitive permutation group, thés(N) acts onP! x P! by

@ : [H(N) x (Pt x Pty — P x P!
(vi(a,B)) = (v(@).v(B))

wherey € Ih(N) anda, B € PL. The orbits of this action are suborbitalsi@{N). The orbit containinga, 8) is denoted
by O(a,B). FromO(a, 3) we can form a suborbital grah. Its vertices are the elements®f, and if (y, 6) € O(a, B)
there is a directed edge froyrto &. MoreoverO(a, a) is diagonal ofP* x P, The corresponding suborbital graph called
the trivial suborbital graph, it consists of a loop basedathevertex. By a circuit of lengtm, we mean a sequence
V1 — V2 — ... = Vim — V1 such that,; # vj fori # j, wherem > 3. If m= 3 orm= 4 the the circuit is known triangle or
quadrilateral.

As Iy(N) acts transitively oriP!, it permutes the blocks transitively. LE, denote the subgraphs @& whose vertices
form the block(e]. Similarly we may write subgraphg are for other blocksj # .

Theorem 3.Let ﬂ, and 22 be in the blocKe]. There is an edg(-g—1 — % in Fe if and only if either
1 2 1 2

(i) az =uaj(modN), B = uB;s(modN) andaif3, — Bi1az =N, or
(i) a2 =—uai(modN), B = —uBs(modN andaif3, — 102 = —N.

_ ay az _ ab a o u
Proof. (i) Let = — —- € F, then there exists sonfe:= €lp(N) suchthafl (0) = — = —andT (=) =
0 B Bz (cN d) oN) (=) =N B1 N
_autb _ a Hencea = aj, cN = ;. Then these equatiors = ua; (modN) and 3, = uB; (modN) are
CUN+dN By’ = 0y, = p1. q e = uay 2 = Upy
ab lu ap az
satisfied. So we have the matrix equatipn = . If we take determinant, it is easily seen
cNd ON Bl [32

thatai1 8, — Biaz = N. Conversely, we suppose thas = ua; (modN), B2 = uB; (modN andaif3, — B1a2 = N.
Then there exist integees ande; such thatry = ua; + N&y and B, = uf; + Né&p. In this case

ap & lu ai ua +Négg ap o>
Biea) \ON| \BruBi+Ne| |\ BB

a) &
is obtained. Sincer; 3, — B1a2 = N from determinants we get; &, — 3161 = 1. Consequently(ﬁ ) € p(N)
1 €2
a a
and—=* — =2 € F,.

B Bz
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(i) The proof for minus sign is similar. We get above matrgquation witha, andf; replaced by-a»; and—f3; so that
az —0a2

— — —= € Fo.
B —B2
Theorem 4.The subgraph & contains a hyperbolic triangle if and only if¢-u+ 1= 0(modN).
. . Qo Yo Xo Qo .
Proof. Assume first thaF,, has a triangle~ — — — — — —. It can be easily shown th@p,(N) permutes the

0 % Yo 0
vertices and edges &%, transitively. Therefore we suppose that the above triaisgteansformed undefp,(N) to the
1 1 i . .
- — h — X — —. Let h < ﬁ. Without loss of generality, from the edge %‘ — X0 the equation of
0 N Yo 0 N yoN YoN )
Xo = fuz(modN) and from theuyyN — xgN = —N equationxy = uyp+ 1 is achieved. Foyp = 1 situation,N — %
u+1.
% is found. Hencer + u+ 1= 0(modN). And alsoy, # 1 can not be true because

there is not an edge condition. Similarly?'j > y% holds then we conclude thaf — u+ 1= 0(modN). Consequently
0

u
andxg=u+1 eventuaIIyN —

we haveu? £u+ 1= 0(modN).

ut+l

. 1
On the other hand suppose thdt: u+ 1= 0(modN). Then, using Theorem 3., we see t%at—> % — N —

1
: . . 0
is a triangle inF.

As a result this theory reveal the relationship between p&ation groups and graphs .

Example 4.We can partitior?! into three disjoint subset, which are permutedbyrhe indexigl™ : [o(2)| = 3, these are
[0],[1] and[e], for N > 1. So action of” we have the set wise stabilizer [0f is I0(2). And " /[5(2) ~ PSL(2,Z;) ~ S
whereS; symmetric group. The automorphism group of preservingnteitson and colors i§ (2) which is generated by

91(2) = 72zz+1

-2 o L
and¢,(z) = %’ Additionally this is a free group of rank 2.

Fig. 2: Universal map fofO] and[1].
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