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Abstract: Considered a para-Kenmotsu manifold with the curvature condition S(X,Y).R= 0 and shown that it is an Einstein manifold.
Further, we consider para-Kenmotsu manifolds with the conditionsR(X,Y).S= f Q(g,S) andR(X,Y).R= f Q(S,R), known as theRicci
andgeneralised Riccipseudo-symmetric manifolds respectively, and obtained the necessary conditions for these manifolds to be non-
Einstein. The notationsS(X,Y) andR(X,Y) denote the Ricci and Riemannian curvature tensors respectively.
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1 Introduction

Sato [10] defined the notions of an almost para contact Riemannian manifold. After that, Adati and Matsumoto [1]

defined and studiedp-Sasakian andsp-Sasakian manifolds which are regarded as a special kind of an almost contact

Riemannian manifolds. Before Sato, Kenmotsu [9] defined a class of almost contact Riemannian manifolds. In 1995,

Sinha and Sai Prasad [14] defined a class of almost para contact metric manifolds namely para Kenmotsu (briefly

p-Kenmotsu) and special para Kenmotsu (brieflysp-Kenmotsu) manifolds.

As a generalization of locally symmetric spaces, many geometers have considered semi-symmetric spaces and in turn

their generalizations. Locally symmetric, semisymmetricand pseudosymmetric para-Sasakian manifolds are widely

studied by many geometers [2,5,6].

Motivated by these studies, Satyanarayana and Sai Prasad [12] studied Weyl semisymmetric para-Kenmotsu manifolds,

and they prove that such a manifold is conformally flat and hence is ansp-Kenmotsu manifold. Further, they studied [13]

Weyl-pseudosymmetric para-Kenmotsu manifolds which are the extended classes of Weyl-semisymmetric

para-Kenmotsu manifolds. They showed that everyn-dimensional, n ≥ 4, para-Kenmotsu manifold is a

Weyl-pesudosymmetric manifold of the formR. C = −Q(g,C). Also, they studied para-Kenmotsu manifolds satisfying

the conditionC(X,Y).S= 0 whereC(X,Y) is the Weyl conformal curvature tensor andS is the Ricci tensor of the

manifold [13].

In this study, our aim is to obtain the characterisations of Ricci-pseudosymmetric para-Kenmotsu manifolds and also the

para-Kenmotsu manifold satisfying the curvature condition S(X,Y).R= 0 whereR(X,Y) is the curvature tensor and

S(X,Y) is the Ricci tensor of the manifold.

∗ Corresponding author e-mail:klsprasad@yahoo.com c© 2018 BISKA Bilisim Technology

 http://dx.doi.org/10.20852/ntmsci.2018.250


100 S. Sunitha Devi, K. L. Sai Prasad and G. V. S. R. Deekshitulu: On Ricci pseudo-symmetric para-Kenmotsu...

2 Preliminaries

Let Mn be ann-dimensional differentiable manifold equipped with structure tensors(Φ,ξ ,η) whereΦ is a tensor of type

(1, 1),ξ is a vector field,η is a 1-form such that

(a) η(ξ ) = 1

(b) Φ2(X) = X−η(X)ξ ; X = ΦX. (1)

Then the manifoldMn is called an almost para contact manifold.

Let g be the Riemannian metric such that, for all vector fieldsX andY onMn

(a) g(X,ξ ) = η(X)

(b) Φξ = 0,η(ΦX) = 0, rankΦ = n−1 (2)

(c) g(ΦX,ΦY) = g(X,Y)−η(X)η(Y).

Then the manifoldMn [10] is said to admit an almost para contact Riemannian structure (Φ,ξ ,η ,g).

A manifold of dimensionn with Riemannian metricg admitting a tensor fieldΦ of type (1,1), a vector fieldξ and a

1-formη satisfying (1), (2) along with

(a) (∇Xη)Y− (∇Yη)X = 0

(b) (∇X∇Yη)Z = [−g(X,Z)+η(X)η(Z)]η(Y)+ [−g(X,Y)+η(X)η(Y)]η(Z) (3)

(c) ∇Xξ = Φ2X = X−η(X)ξ

(d) (∇XΦ)Y =−g(X,ΦY)ξ −η(Y)ΦX

is called a para-Kenmotsu manifold or brieflyp-Kenmotsu manifold [14].

A p-Kenmotsu manifold admitting a 1-formη satisfying

(a) (∇Xη)Y = g(X,Y)−η(X)η(Y), and (4)

(b) (∇Xη)Y = ϕ(X,Y), whereϕ is an associate ofΦ

is called a special para-Kenmotsu manifold or brieflysp-Kenmotsu manifold [14].

Let (Mn, g) be an n-dimensional,n≥ 3, differentiable manifold of class C∞ and let∇ be its Levi-Civita connection. Then

the Riemannian Christoffel curvature tensorR of type (1, 3) is given by [3]:

R(X,Y)Z = ∇X∇YZ−∇Y∇XZ−∇BW. (5)

whereBW= [X,Y]Z, The Ricci operatorSand the (0,2)-tensorS2 is defined by

g(SX,Y) = S(X,Y), (6)

and

S2(X,Y) = S(SX,Y). (7)
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It is known that in ap-Kenmotsu manifold the following relations hold good [14]:

(a) S(X,ξ ) =−(n−1)η(X)

(b) g[R(X,Y)Z,ξ ] = η [R(X,Y,Z)] = g(X,Z)η(Y)−g(Y,Z)η(X)

(c) R(ξ ,X)Y = η(Y)X−g(X,Y)ξ (8)

(d) R(X,Y,ξ ) = η(X)Y−η(Y)X; whenX is orthogonal toξ .

If the Ricci curvature tensorS is of the form

S= aId +bη ⊗ ξ , (9)

where a and b are smooth functions onMn, then the almost paracontact Riemannian manifoldMn is called as an

η-Einstein manifold and ifb= 0 then it is an Einstein manifold [2].

Furthermore we define the tensorsR(X,Y).SandR(X,Y).R on (Mn, g) by

(R(X,Y).S)(Z,W) =−S(R(X,Y)Z,W)−S(Z,R(X,Y)W) (10)

and

(R(X,Y).R)(Z,W)U = R(X,Y)R(Z,W)U −R(R(X,Y)Z,W)U −R(Z,R(X,Y)W)U −R(Z,W)R(X,Y)U ; (11)

whereX,Y,Z,W ∈ χ(Mn), χ(Mn) being the Lie algebra of vector fields onMn.

For a(0,k)-tensor field T,k≥ 1, on (Mn, g) we define the tensorsR. T andQ(g,T) by

(R(X,Y).T)(X1,X2, ...,Xk) =−T(R(X,Y)X1,X2, ...,Xk)−·· ·−T(X1, ...,Xk−1,R(X,Y)Xk), (12)

Q(g,T)(X1,X2, ...,Xk;X,Y) =−T((X∧Y)X1,X2, ...,Xk)−·· ·−T(X1, ...,Xk−1,(X∧Y)Xk) (13)

respectively [8,15], where the endomorphism(X∧Y) is defined by

(X∧gY)Z = g(Y,Z)X−g(X,Z)Y. (14)

If the tensorsR(X,Y).SandQ(g,S) are linearly dependent then the manifoldMn is called Ricci pseudo-symmetric [15].

This is equivalent to

R.S= f Q(g,S), (15)

holding on the setUS = {x∈ Mn/S 6= 0 at x}, wheref is some function ofUS.

Analogously, if the tensorsR(X,Y).R and Q(S,R) are linearly dependent then the manifoldMn is called Ricci

generalised pseudo-symmetric [15]. This is equivalent to

R.R= f Q(S,R), (16)
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holding on the setUR = {x∈ Mn/R 6= 0 at x}, where f is some function ofUR. An important subclass of this class of

manifolds realizing the condition is:

R.R= Q(S,R). (17)

For example, in the literature cited in [7], every three dimensional manifold satisfies the above equation identically. Also,

the above equation will be satisfied by the semi-Riemannian manifolds which satisfies the equality

ω(X)R(Y,Z)+ω(Y)R(Z,X)+ω(Z)R(X,Y) = 0, whereω is a non-zero 1-form.

Moreover, the conditionR.R= Q(S,R) also appears in the theory of plane gravitational waves.

The paper is organized as follows: After preliminaries, in section 3 we characterise a para-Kenmotsu manifold satisfying

the curvature conditionS(X,Y).R= 0. In Section 4, we study Ricci pseudo-symmetricp-Kenmotsu manifold. It is shown

that a p-Kenmotsu manifold is Ricci pseudo-symmetric if and only ifit is an Einstein manifold providedf 6= −1.

Further, the concept of Ricci pseudo-symmetricp-Kenmotsu manifold is generalised and shown that the Ricci

generalised pseudo-symmetricp-Kenmotsu manifold is an Einstein manifold providedn f 6= 1.

3 P-Kenmotsu manifold satisfying the curvature condition S(X,Y).R= 0

In this section our aim is to find the characterisation of para-Kenmotsu manifolds satisfying the curvature condition

S(X,Y).R= 0.

Theorem 1. Let Mn (n≥ 4) be an n-dimensional p-Kenmotsu manifold. If the conditionS(X,Y).R= 0 holds on Mn then

the manifold is anη-Einstein manifold.

Proof.Assume thatMn is ann-dimensional,n≥ 4, p-Kenmotsu manifold satisfying the conditionS(X,Y).R= 0. Then we

have

(S(X,Y).R)(U,V)W = 0. (18)

The equation (18) implies

(X∧SY)R(U,V)W+R((X∧SY)U,V)W+R(U,(X∧SY)V)W+R(U,V)(X∧SY)W = 0. (19)

Then from (14), the above equation reduces to

S(Y,R(U,V)W)X−S(X,R(U,V)W)Y+S(Y,U)R(X,V)W−S(X,U)R(Y,V)W+S(Y,V)R(U,X)W

−S(X,V)R(U,Y)W+S(Y,W)R(U,V)X−S(X,W)R(U,V)Y = 0.
(20)

By substitutingU =W = ξ in (20) and on using equations(c) and (d) of (8), we get

2S(Y,V)X−2S(X,V)Y+2(n−1)η(V)η(Y)X−2(n−1)η(X)η(V)Y−S(Y,V)η(X)ξ

+S(X,V)η(Y)ξ +(n−1)g(V,X)η(Y)ξ − (n−1)g(V,Y)η(X)ξ = 0.
(21)

Now by taking the inner product of (21) with ξ , and on replacingX with ξ , then from equation (8)(a) we get that

S(Y,V) = (n−1)g(Y,V)−2(n−1)η(Y)η(V). (22)

This proves that thep-Kenmotsu manifold with the conditionS(X,Y).R= 0 is anη-Einstein manifold.
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4 Ricci pseudo-symmetric para-Kenmotsu manifolds

In this section, we consider the manifold satisfying the condition R(X,Y).S = f Q(g,S), known as the Ricci

pseudo-symmetric manifold. Let us assume that the manifoldMn (n ≥ 4) is ann-dimensional Ricci pseudo-symmetric

para-Kenmotsu manifold andX,Y,U,V ∈ χ(Mn).

Then from (15), we have

(R(X,Y).S)(U,V) = f Q(g,S)(X,Y;U,V). (23)

The above equation is equivalent to

(R(X,Y).S)(U,V) = f ((X∧gY).S)(U,V). (24)

Then by using (10), (13) and (24), we have

−S(R(X,Y)U,V)−S(U,R(X,Y)V) = f [−S((X∧gY)U,V)−S(U,(X∧gY)V)]. (25)

Using (14), equation (25) reduces to

−S(R(X,Y)U,V)−S(U,R(X,Y)V) = f [−g(Y,U)S(X,V)+g(X,U)S(Y,V)−g(Y,V)S(U,X)+g(X,V)S(U,Y)].

(26)

By substitutingX =U = ξ in (26) and on using the equations(a) and(c) of (8), we get

(1+ f )[S(Y,V)+ (n−1)g(Y,V)] = 0. (27)

Then from (27), either f =−1 or the manifold is an Einstein manifold of the formS(Y,V) = (1−n)g(Y,V). Hence, from

the above result, we propose the following.

Proposition 1. Every n-dimensional Ricci pseudo-symmetric para-Kenmotsu manifold Mn is of the form

R(X,Y).S=−Q(g,S), provided the manifold is non-Einstein.

Conversely, if the manifold is an Einstein manifold of the form S(Y,V) = (1− n)g(Y,V), then it is clear that

R(X,Y).S= f Q(g,S).

Thus we state the following.

Theorem 2. An n-dimensional para-Kenmotsu manifold Mn is Ricci pseudo-symmetric if and only if the manifold is an

Einstein manifold provided f6=−1.

In particular, if we considerQ(g,S) = 0, then we can state the following.

Corollary 1. An n-dimensional para-Kenmotsu manifold Mn satisfies the condition Q(g,S) = 0 if and only if Mn is an

Einstein manifold.

5 Ricci generalised pseudo-symmetric para-Kenmotsu manifolds

In this section, we consider the manifold satisfying the condition R(X,Y).R= f Q(S,R), known as the Ricci generalised

pseudo-symmetric manifold. Let us assume that the manifoldMn (n ≥ 4) is an n-dimensional generalised Ricci

pseudo-symmetric para-Kenmotsu manifold andX,Y,U,V ∈ χ(Mn).

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


104 S. Sunitha Devi, K. L. Sai Prasad and G. V. S. R. Deekshitulu: On Ricci pseudo-symmetric para-Kenmotsu...

Then from (16), we have

(R(X,Y).R)(U,V)W = f Q(S,R)(X,Y;U,V)W. (28)

The above equation is equivalent to

(R(X,Y).R)(U,V)W = f ((X∧SY).R)(U,V)W. (29)

Then by using (11), (13) and (29), we get

R(X,Y)R(U,V)W−R(R(X,Y)U,V)W−R(U,R(X,Y)V)W−R(U,V)R(X,Y)W = f [(X∧SY)R(U,V)W

−R((X∧SY)U,V)W−R(U,(X∧SY)V)W−R(U,V)(X∧SY)W].
(30)

Using (14), equation (30) reduces to

R(X,Y)R(U,V)W−R(R(X,Y)U,V)W−R(U,R(X,Y)V)W−R(U,V)R(X,Y)W = f [S(Y,R(U,V)W)X

−S(X,R(U,V)W)Y−S(Y,U)R(X,V)W+S(X,U)R(Y,V)W−S(Y,V)R(U,X)W

+S(X,V)R(U,Y)W−S(Y,W)R(U,V)X+S(X,W)R(U,V)Y.

(31)

By substitutingX =U = ξ in (31) and on using the equations(a), (c) and(d) of (8), we get

−g(V,W)Y+g(V,W)η(Y)ξ −R(Y,V)W+η(Y)η(W)V −g(V,W)η(Y)ξ −η(Y)η(W)V +g(Y,W)V

= f [η(W)S(Y,V)ξ − (n−1)g(V,W)Y− (n−1)R(Y,V)W−S(Y,W)V

+(n−1)g(Y,W)η(V)ξ +S(Y,W)η(V)ξ +(n−1)g(V,Y)η(W)ξ ].

(32)

Now, by taking the inner product of (32), we get

−g(V,W)g(Y,Z)−g(R(Y,V)W,Z)+g(Y,W)g(V,Z) = f [S(Y,V)η(W)η(Z)− (n−1)g(V,W)g(Y,Z)

− (n−1)g(R(Y,V)W,Z)−S(Y,W)g(V,Z)+ (n−1)g(Y,W)η(V)η(Z)

+S(Y,W)η(V)η(Z)+ (n−1)g(V,Y)η(W)η(Z)].

(33)

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any point. Now, by taking the summation over

i = 1,2, ..,n of the relation (33) for V =W = ei , we get

S(Y,Z)+ (n−1)g(Y,Z) = n f [S(Y,Z)+ (n−1)g(Y,Z)]. (34)

The above equation implies eitherf = 1/n or the manifold is an Einstein manifold of the formS(Y,Z) =−(n−1). Hence,

from the above result, we propose the following.

Proposition 2. Every n-dimensional Ricci generalised pseudo-symmetric para-Kenmotsu manifold Mn is of the form

R(X,Y).R= 1/n Q(S,R), provided the manifold is non-Einstein.

Thus we state the following.

Theorem 3. An n-dimensional Ricci generalised para-Kenmotsu manifold Mn is an Einstein manifold provided n f6= 1.

In particular, if we considerQ(S,R) = 0, then from the above theorem we state the following.

Corollary 2. If an n-dimensional para-Kenmotsu manifold Mn satisfies the condition Q(S,R) = 0 then the manifold Mn is

an Einstein manifold.
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Remark.The above findings are quite in similar to the results obtained for Ricci pseudo-symmetric para-Sasakian

manifolds [7].
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