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Abstract: Considered a para-Kenmotsu manifold with the curvaturelitiom S(X,Y).R= 0 and shown that it is an Einstein manifold.
Further, we consider para-Kenmotsu manifolds with the g R(X,Y).S= fQ(g,S) andR(X,Y).R= fQ(S R), known as th&icci
andgeneralised Ricgdseudo-symmetric manifolds respectively, and obtaineddtessary conditions for these manifolds to be non-
Einstein. The notationS(X,Y) andR(X,Y) denote the Ricci and Riemannian curvature tensors resphcti
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1 Introduction

Sato [LQ] defined the notions of an almost para contact RiemanniarifalddnAfter that, Adati and Matsumotol]
defined and studieg-Sasakian andp-Sasakian manifolds which are regarded as a special kint @fraost contact
Riemannian manifolds. Before Sato, KenmotShdefined a class of almost contact Riemannian manifolds.99b1
Sinha and Sai Prasad4] defined a class of almost para contact metric manifolds hampa&ra Kenmotsu (briefly
p-Kenmotsu) and special para Kenmotsu (brisfy*Kenmotsu) manifolds.

As a generalization of locally symmetric spaces, many géeradiave considered semi-symmetric spaces and in turn
their generalizations. Locally symmetric, semisymmetiad pseudosymmetric para-Sasakian manifolds are widely
studied by many geometer3 b, 6].

Motivated by these studies, Satyanarayana and Sai Pragpstiidied Weyl semisymmetric para-Kenmotsu manifolds,
and they prove that such a manifold is conformally flat andches ans p-Kenmotsu manifold. Further, they studieiB]
Weyl-pseudosymmetric para-Kenmotsu manifolds which ahe textended classes of Weyl-semisymmetric
para-Kenmotsu manifolds. They showed that evemdimensional, n > 4, para-Kenmotsu manifold is a
Weyl-pesudosymmetric manifold of the for C = —Q(g,C). Also, they studied para-Kenmotsu manifolds satisfying
the conditionC(X,Y).S= 0 whereC(X,Y) is the Weyl conformal curvature tensor aBds the Ricci tensor of the
manifold [13].

In this study, our aim is to obtain the characterisationsioERpseudosymmetric para-Kenmotsu manifolds and also th
para-Kenmotsu manifold satisfying the curvature condi®X,Y).R = 0 whereR(X,Y) is the curvature tensor and
S(X,Y) is the Ricci tensor of the manifold.

* Corresponding author e-makitsprasad@yahoo.com ®© 2018 BISKA Bilisim Technology


 http://dx.doi.org/10.20852/ntmsci.2018.250

100 BIS K A S.SunithaDevi, K. L. Sai Prasad and G. V. S. R. DeekshitutuR@ci pseudo-symmetric para-Kenmotsu...

2 Preliminaries

Let M;, be ann-dimensional differentiable manifold equipped with sture tensors®, &, n) where® is a tensor of type
(1, 1),¢ is a vector fieldn is a 1-form such that

n
(b) ®*(X) =X—-n(X)& X = ®X. @
Then the manifoldV, is called an almost para contact manifold.

Let g be the Riemannian metric such that, for all vector fieddsndY on M,

(@) g(X,&) =n(X)
(b) @& =0,n(®X) =0, rank® =n-1 @)

(©) 9(®X, ®Y) =g(X,Y)—n(X)n(Y).
Then the manifoldM, [10] is said to admit an almost para contact Riemannian stra¢tdré, n,g).

A manifold of dimensiom with Riemannian metrig admitting a tensor fieldp of type (1,1), a vector field and a
1-formn satisfying @), (2) along with

a)
b)
c)
(d)

(Exn)Y —(Oyn)X =0

(OxBymZ = [-9(X,Z) + n(X)n(2)]n(Y) + [-9(X,Y) + n(X)n(Y)In(Z) 3)
Ox& = °X =X —n(X)&E

(Ox @)Y = —g(X, ®Y)& —n(Y)PX

(
(
(

is called a para-Kenmotsu manifold or brieflyKenmotsu manifold14.

A p-Kenmotsu manifold admitting a 1-form satisfying

(@) (Oxn)Y =g(X,Y) —n(X)n(Y), and (4)
(b) (Oxn)Y = ¢(X,Y), whereg is an associate ap

is called a special para-Kenmotsu manifold or brisfiyKenmotsu manifold14)].

Let (M, g) be an n-dimensionat,> 3, differentiable manifold of class®Cand let be its Levi-Civita connection. Then
the Riemannian Christoffel curvature tensvof type (1, 3) is given byJ:

R(X,Y)Z = Ox0OyZ — OyOxZ — Opw.- (5)
whereBW = [X,Y]?, The Ricci operatoBand the (0,2)-tens@ is defined by
9(SXY) = S(X,Y), (6)

and

S(X,Y) = S(SXY). 7)

(© 2018 BISKA Bilisim Technology
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It is known that in ap-Kenmotsu manifold the following relations hold godd:

a) S(X,¢) = —(n=1)n(X)

(

(b) gR(X,Y)Z,&] = n[R(X,Y,Z2)] = 9(X,Z)n(Y) - 9(Y,Z)n(X)

(©) R(E,X)Y = n(Y)X—g(X,Y)& (8)
(d) R(X,Y, &) =n(X)Y —n(Y)X; whenX is orthogonal tcf.

If the Ricci curvature tensdBis of the form
S=alg+bn®é, 9)

wherea and b are smooth functions oM, then the almost paracontact Riemannian manifdidis called as an
n-Einstein manifold and ib = 0 then it is an Einstein manifol@®].

Furthermore we define the tens&X,Y).SandR(X,Y).Ron My, g) by
(R(X,Y).9)(Z,W) = —S(R(X,Y)Z,W) — S(Z,R(X,Y)W) (10)
and
(R(X,Y).R)(Z,W)U = R(X,Y)R(Z,W)U — R(R(X,Y)Z,W)U — R(Z,R(X,Y)W)U — RIZ,W)R(X,Y)U;  (11)
whereX,Y,Z,W € x(Mn), x(Mn) being the Lie algebra of vector fields df.
For a(0,k)-tensor field Tk > 1, on My, g) we define the tensoRs T andQ(g, T) by

(ROX,Y).T) (X, X2, ..., %) = =T(ROX,Y) X1, Xa, o, Xie) — -+ - = T(X, -0, Xe1, ROX, Y ) X ), (12)

Q(9, T) (X1, X2, s X X, Y) = =T((XAY) X1, X2y ooy X)) — -+ = T(Xa, o0, X1, XAY)X) (13)
respectively §,15], where the endomorphistX AY) is defined by
(XAgY)Z=9(Y,2)X—g(X,Z)Y. (14)

If the tensorR(X,Y).SandQ(g,S) are linearly dependent then the manifdlg is called Ricci pseudo-symmetrit5).
This is equivalent to

RS=f Q(g,9), (15)

holding on the sdt)s = {xe Mn/S # 0 at X}, wheref is some function oUs.

Analogously, if the tensorfk(X,Y).R and Q(S,R) are linearly dependent then the manifdid, is called Ricci
generalised pseudo-symmetrid]. This is equivalent to

RR=f Q(SR), (16)

(© 2018 BISKA Bilisim Technology
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holding on the setUr = {xe Mn/R # 0 at X}, wheref is some function oJg. An important subclass of this class of
manifolds realizing the condition is:

RR=Q(SR). (17)

For example, in the literature cited if][ every three dimensional manifold satisfies the above timualentically. Also,
the above equation will be satisfied by the semi-Riemanniaanifolds which satisfies the equality
Ww(X)R(Y,Z) + w(Y)R(Z,X) + w(Z)R(X,Y) = 0, wherew is a non-zero 1-form.

Moreover, the conditioR R= Q(S,R) also appears in the theory of plane gravitational waves.

The paper is organized as follows: After preliminaries,ent®n 3 we characterise a para-Kenmotsu manifold satigfyi
the curvature conditio8(X,Y).R= 0. In Section 4, we study Ricci pseudo-symmegriKenmotsu manifold. It is shown
that a p-Kenmotsu manifold is Ricci pseudo-symmetric if and onhitifs an Einstein manifold provided # —1.
Further, the concept of Ricci pseudo-symmetpd<enmotsu manifold is generalised and shown that the Ricci
generalised pseudo-symmetpidenmotsu manifold is an Einstein manifold providefi£ 1.

3 P-Kenmotsu manifold satisfying the curvature condition S(X,Y).R=0

In this section our aim is to find the characterisation of gé@amotsu manifolds satisfying the curvature condition
S(X,Y).R=0.

Theorem 1. Let M, (n > 4) be an n-dimensional p-Kenmotsu manifold. If the condi8oX,Y).R= 0 holds on M then
the manifold is am-Einstein manifold.

Proof. Assume thaM, is ann-dimensionaln > 4, p-Kenmotsu manifold satisfying the conditi®iX,Y).R= 0. Then we
have
(S(X,Y).R)(U,V)W =0. (18)

The equation18) implies
(XAsY)RU, V)W +R((XAsY)U,V)W+RU, (XAsY)V)W +RU,V) (X AsY)W = 0. (19)
Then from (4), the above equation reduces to

S(Y,RU,V)W)X — S(X, R(U,V)W)Y + S(Y,U)R(X,VIW — S(X,U)R(Y,V)W + (Y, V)RU, X)W

— S(X,V)R(U, Y)W + S(Y,W)R(U, V)X — S(X,W)R(U,V)Y = 0. (20)
By substitutingd =W = & in (20) and on using equatior{s) and (d) of (), we get
25(Y,V)X = 28(X,V)Y +2(n=1)n(V)n(Y)X = 2(n = )n (X)n (V)Y — Y. V)n (X)& 1)
+SXV)n(Y)§ +(n=1)g(V,X)n(Y)§ — (n—1)g(V,Y)n(X)¢ = 0.
Now by taking the inner product 02() with &, and on replacing with &, then from equationg)(a) we get that
S(Y,V) = (n—=1)g(Y,V) = 2(n—1)n(Y)n(V). (22)

This proves that the-Kenmotsu manifold with the conditio®X,Y).R= 0 is ann-Einstein manifold.

(© 2018 BISKA Bilisim Technology
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4 Ricci pseudo-symmetric para-Kenmotsu manifolds

In this section, we consider the manifold satisfying the ditton R(X,Y).S = fQ(g,S), known as the Ricci
pseudo-symmetric manifold. Let us assume that the manifpldn > 4) is ann-dimensional Ricci pseudo-symmetric
para-Kenmotsu manifold ar¥l,Y,U,V € x(Mp).

Then from (L5), we have
(R(X,Y).§)(U,V) = fQ(g,9(X,Y;U,V). (23)

The above equation is equivalent to
(R(X,Y).9)(U,V) = f((XAgY).S)(U,V). (24)
Then by using10), (13 and @4), we have
—S(R(X,Y)U,V) — S(U,R(X,Y)V) = f[-S((X AgY)U,V) — S(U, (X AgY)V)]. (25)
Using (14), equation 25) reduces to

—S(R(X,Y)U,V)—SU,R(X,Y)V) = f[—g(Y,U)S(X,V) +g(X,U)S(Y,V) —g(Y,V)SU, X) + g(X,V)SU,Y)].
(26)
By substitutingX = U = & in (26) and on using the equatio(a) and(c) of (8), we get

1+ f)[S(Y,V)+ (n—1)g(Y,V)] =0. (27)

Then from @7), eitherf = —1 or the manifold is an Einstein manifold of the fo¥,V) = (1—n)g(Y,V). Hence, from
the above result, we propose the following.

Proposition 1. Every n-dimensional Ricci pseudo-symmetric para-Kenmotsanifold M, is of the form
R(X,Y).S= —-Q(g,9), provided the manifold is non-Einstein.

Conversely, if the manifold is an Einstein manifold of thenfoSY,V) = (1 — n)g(Y,V), then it is clear that
R(X.Y).S= fQ(g,S).
Thus we state the following.

Theorem 2. An n-dimensional para-Kenmotsu manifolg M Ricci pseudo-symmetric if and only if the manifold is an
Einstein manifold provided # —1.

In particular, if we conside®(g, S) = 0, then we can state the following.

Corollary 1. An n-dimensional para-Kenmotsu manifolg Bhtisfies the condition @,S) = 0 if and only if M, is an
Einstein manifold.

5 Ricci generalised pseudo-symmetric para-Kenmotsu manifolds

In this section, we consider the manifold satisfying thediton R(X,Y).R= fQ(S R), known as the Ricci generalised
pseudo-symmetric manifold. Let us assume that the man#td(n > 4) is an n-dimensional generalised Ricci
pseudo-symmetric para-Kenmotsu manifold ¥htt,U,V € x(Mp).

(© 2018 BISKA Bilisim Technology
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Then from (L6), we have
(R(X,Y).R)(U,V)W = fQ(S R)(X,Y;U,V)W. (28)

The above equation is equivalent to
(R(X,Y).R)(U,V)W = f((XAsY).R)(U,V)W. (29)
Then by using11), (13) and 9), we get

R(X,Y)R(U,V)W — R(R(X,Y)U,V)W — R(U, R(X,Y)V)W — R(U,V)R(X,Y)W = f[(X AsY)RU,V)W

—R((XAsY)U,V)W — R(U, (X AsY)V)W — R(U,V)(X AsY)W]. (30)

Using (14), equation 80) reduces to
R(X,Y)RU,V)W — R(R(X,Y)U,V)W — RU,R(X,Y)V)W — R(U,V)R(X,Y)W = f[S(Y,R(U,V)W)X
—S(X,RU,VIW)Y — S(Y,U)R(X,V)W + S(X,U)R(Y,V)W — S(Y,V)R(U, X)W (31)
+ S(X,V)RU, Y)W — Y,W)R(U,V)X + S(X,W)R(U,V)Y.
By substitutingX =U = & in (31) and on using the equatiofa), (c) and(d) of (8), we get
=gV, W)Y +g(V,W)n(Y)& =R, V)W+n(Y)n(W)V —g(V,W)n(Y)E —n(Y)n(W)V +g(Y,W)V
= fl[n(W)S(Y,V)& — (n—1)g(V,W)Y — (n— 1)R(Y,V)W — S[Y,W)V (32)
+(n=1)g(Y,W)n (V)& + (Y, W)n(V)& + (n—1)g(V,Y)n (W)¢&].
Now, by taking the inner product 089), we get
—9(V,W)g(Y,Z) —g(R(Y,V)W, Z) +9(Y,W)g(V, Z) = F[S(Y,V)n(W)n(Z2) — (n— )g(V.W)g(Y,Z)
—(n=1g(RY,V)W,Z) — Y, W)g(V,Z) + (n—1)g(Y,W)n(V)n(2) (33)
+S(Y,W)n(V)n(Z) + (n—1)g(V,Y)n(W)n(2)].

Let {&} (1 <i < n) be an orthonormal basis of the tangent space at any point, bipwaking the summation over
i=12,..,nof the relation 83) forV =W = g, we get

Y, Z2)+ (n=D)g(Y,Z2) = n Y, 2) + (n— D)g(Y, 2)]. (34)
The above equation implies eithee= 1/n or the manifold is an Einstein manifold of the fol®,Z) = —(n—1). Hence,
from the above result, we propose the following.

Proposition 2. Every n-dimensional Ricci generalised pseudo-symmetia-genmotsu manifold Mis of the form
R(X,Y).R=1/n Q(S R), provided the manifold is non-Einstein.

Thus we state the following.
Theorem 3. An n-dimensional Ricci generalised para-Kenmotsu mathifdy is an Einstein manifold provided rs 1.
In particular, if we conside®(S,R) = 0, then from the above theorem we state the following.

Corollary 2. If an n-dimensional para-Kenmotsu manifolg Bhtisfies the condition (§, R) = 0 then the manifold Mis
an Einstein manifold.

(© 2018 BISKA Bilisim Technology
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Remark.The above findings are quite in similar to the results obthifeg Ricci pseudo-symmetric para-Sasakian
manifolds [7].
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