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Abstract: Inrecentyears, the study of bi-univalent functions havbg@d momentum mainly due to the pioneering work of Sraxast
et al. [L9], which has actually revived the study of the coefficientigdeons involving bi-univalent functions. With motivatioroim the
work of Srivastava et al10)], in the present paper we introduce a new subclgsgp] of the function clasg of bi-univalent functions
defined in the open unit disK = {z< C: |2 < 1}. Further, for the functions in this subcla$s [¢] we obtain bounds ofay|, |ag| and

|ay]-
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1 Introduction

Let 2 denote the class of functions analytic in the open unit@lisk {ze C: |z] < 1}, </ denote the class of functions
in 2 given by:

f(2) = S v 1
(2) ZJFk;ak 1)

and.” denote the subclass of consisting of the functions univalenth We have from the Koebe one quarter theorem
[5] that the image ofU under every functiorf € . contains a disk of radius/%#. Hence, every functiofi € . has an
inversef ~1 such thatf ~* (f(2)) =z (ze U) andf (f~1(w)) =w, (jw| <ro(f),ro(f) > 1/4). In fact we have:

g(w) = fH(w) = w— aw? + (283 — ag) W® — (5a3 — Sapag +as) W+ - . )

Let > = {f €.7 : both f and f~! are univalent iU} denote the class of bi-univalent functionslin See 9] (also see
[2]) for brief information and examples on the claSsRecently, in their pioneering work on the subject of bivahént

functions, Srivastava et al19] actually revived the study of the coefficient problems imimg bi-univalent functions.
Later, many researchers (vig][ [4], [6], [8], [12], [13], [14], [15], [18], [20], [23], [24] etc.) obtained initial coefficient
bounds for the functions in various subclasses ofAlso, some researchers (vizg], [17], [21], [22] etc.) obtained
initial coefficient bounds for subclasses of m-fold symriedti-univalent functions.

In 1972, Ozaki and Nunokawa ()] stated and proved the univalence criterion that iff(e) € <,

2f'(2)

@2

<1l (zeU),
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thenf(z) is univalent inU and hencd € .. Also, let.7 (1) denote the class of functiori§z) € .7 such that:

2f'(2)
(f(2)?

wherep is real and7 (1) = 7. Clearly,.7 (u) C 7 C .7.

-1

<M (zeU,0<pu<l,

For two analytic functiong andg, we say that the functiof is subordinate tg, written asf(z) < g(z); (z€ U) if there
exists a Schwarz functiow, which is analytic inU with w(0) = 0 and|w(z)| < 1 for z€ U such thatf (z) = g(w(2)). In
particular, if the functiorg is univalent inU, then we have the equivalence:

f(2) < 9(2) <= f(0) = g(0), f(U) C g(U).

Let ¢ be an analytic function with positive real partlhsuch thatp(0) = 1, @ (0) > 0 andg(U) is symmetric with respect
to the real axis. Hence we have,
@(z) = 1+ B1z+ByZ + B3 +---, (B > 0). ()

In 1967, Lewin [7] investigated the clas§ and proved thatay| < 1.51, after which Netanyahud] showed that
max s |az| = 4/3 and further, Brannan and Cluni#] conjectured thatay| < /2. In recent years, after a seminal paper
by Srivastava et al.19)], the study of coefficient problems of bi-univalent functgohave gathered momentum. But still
the problem of coefficient bound féew|, (n=3,4,---) is an open problem.

The object of the present paper is to introduce the subcase] of the bi-univalent function class defined on the
open unit diskU and to prove thafiao| < min{1,/B1}, |ag| < By and|as| < 3By /2 for the functions in this subclass.

We need to recall the following lemma (seel]) to prove our main result.

Lemma 1If p(z) € &, then|py| < 2 for each ne N where % be the class of functions analytic thwith O (p(z)) > 0
and p(2) have the form (2) = 1+ pyz+ poZ2 + psZ+--- forze U.

2 Main result

Definition 1.A function f(z) € X given by () is said to be in the clasg[g] if the following conditions are satisfied:

(sz/(z)) <@(z) (ze)

(f()

and

<w29’ (W)
(9(w))®
where the functions g anglare defined by2) and @) respectively.

) <@ow) (wel)

Theorem 1Let the function §z) € X given by () be in the class7s[¢]. Then,
a2l <min{1,vBi}, |as|<Bi, a4 <3B1/2.

ProofUsing Definitionl we can write:

=ou2) (zel) (4)
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and

=o(vw)) (wel), (5)

where the functions,v: U — U are analytic withu(0) = v(0) = 0.
Define the functions andt as:

S(z) = TLSZ; =1+ 812+ 92+ + -, (z€U)
and L
t(w) = 1+7zngv; =1+ tW+ W + WP+, (We U).

Clearlys andt both satisfies the conditions of Lemrhand hence,
[sh| <2, |th] <2, (n€N). (6)

Solving foru(z) andv(w), we get:

u(z) = [siz+ (@—%)22+(83—81$+§)23+---] , (ze )

NI =

and

v(w) = % [t1W+ <t2%>vv2+ <t3t1t2+§>w3+~l , (we ).

Using these expansions in equati@, (ve obtain:

P(u(z)) =1+ %BlSlZJF EBl (52 %) + %Bﬁ] 2+
[%Bl (83—5182+§) —i—%Bz (&Sz—g) +%Bs$ﬂ 2+

and

2 2

1 2\ 1 2\ 1. .3
[EBl(t3tlt2+Z)+§BZ<tlt2§ JréBgtl Wng

1 1 2\ 1, .-
QV(W)) = 1+ SBitaw+ | B (o~ 5 | + 7Bty WP+

Also by using equationl] and @), we obtain:

2f
(2)2 =1+ (ag—a3)Z+2(a3+ay—2apa3) 2+ -+

(f(2)
and 2d

g (w) 2 3

=1 (ag—a3) W — 2(2a3 + ay — 3apag) W+ - .
(9(w))?
Now, equating the coefficients in equatiah) &nd 6), we gets; =t; = 0 and hence the further equalities becomes:
5 1
(ag—a3) = 5B, (M
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1
2 (85 + a4 — 2a585) = 5B1s, 8)
o 1
—(ag—a3) = 5Bit2, 9)
1
—2(2a3 +as— 3apag) = >Bits. (10)
Equation ) and @) in light of (6) gives:
1 1
!as—a%!=‘§Blsz’=581|Sz|SBl (11)
and
5 1 1
\azfag\ = EBltZ = EBl [to] <Bs (12)
respectively.
By adding equationg) in (10), we obtain:
1
2ap (a3 —a3) = 5Bi(ss+ts), (13)
which, by using equatiorgj gives:
|ap (ag—a5) | = |a||as — &3] < B.. (14)
See that, equatiorif) and (L4) together yields:
lag| < 1. (15)
Also, by using the triangle inequality:
lla] -zl <z -2 (16)

in equation 12), we get:
|ag| — |ag| < |a5 —ag| < B,

which implies that:
|a3| <Bi. 17)

Equation (5) and (L7) together yields:
lag| < min{1,v/B1}.

Now, using the inequalityl(6) in equation {1), we can write:
|ag| — |a5| < |ag—a3| < Bx,

from which, it is obvious that:
lag| < Bx.

Next, by subtracting equatiod @) from (8), we get:

1
2 (383 + 2ay — 5azag) = >B1 (s3—13). (18)

(© 2018 BISKA Bilisim Technology
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Eliminatingag by using equation1(3) and (L8), we get:

1 1 1
4(ag—apaz) = éBl (s3—t3) +3§Bl (s3+13) = 581 (4s3+ 2t3)

which, by using equatior6j gives:
3
|ag — apag| < éBl. (19)

Finally, by using the inequalityl®) in equation 19), we get:

|aa| < 3B1/2.
This completes the proof of Theorein
Remarl{1] If the functiong is given by
1+2z\ )
02 =(1-,) =1+20z+2a 24, (zeU,0<a <1,
then the bounds are:
V2a ; (0<a<?i
|a2| S ( 2)
1 ; (3<a<y),
|ag| < 20 and|ag| < 3a.
Remarl2] If the functiong is given by
1+(1-2
©(2) = H?ZB)Z: 1+2(1-B)z+2(1-B)Z+---; (zeU,0<B< 1),
then the bounds are:
1 . (o<p<i
|a2| S (l— B — 2)
21-p) : (3<B<1),

|ag| <2(1—pB) andas| <3(1-p).

3 Conclusion

For the bi-univalent function class, Lewin [7] proved thafay| < 1.51, Netanyahud] proved thaimax s |ay| = 4/3 and
Brannan and Cluniel] conjectured thata,| < v/2; whereas for the function clas® [¢], we obtain an improved result
laz| < min{1,/By} which is even better estimate thgn| < 1. Also, we have an interesting problem here that, can we
generalize this theorem te,| < (n—1)By/2, forn > 37
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