Bounds on initial coefficients for a new subclass of bi-univalent functions

Amol B. Patil ${ }^{1}$, Uday H. Naik ${ }^{2}$
${ }^{1}$ Department of First Year Engineering, AISSMS's, College of Engineering, Pune-411001, India
${ }^{2}$ Department of Mathematics, Willingdon College, Sangli-416415, India

Received: 12 January 2017, Accepted: 4 August 2017
Published online: 11 February 2018.

Abstract

In recent years, the study of bi-univalent functions have gathered momentum mainly due to the pioneering work of Srivastava et al. [19], which has actually revived the study of the coefficient problems involving bi-univalent functions. With motivation from the work of Srivastava et al. [19], in the present paper we introduce a new subclass $\mathscr{T}_{\Sigma}[\phi]$ of the function class Σ of bi-univalent functions defined in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Further, for the functions in this subclass $\mathscr{T}_{\Sigma}[\phi]$ we obtain bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$.

Keywords: Analytic function, Univalent function, Bi-univalent function, Coefficient bound.

1 Introduction

Let \mathscr{H} denote the class of functions analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}, \mathscr{A}$ denote the class of functions in \mathscr{H} given by:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

and \mathscr{S} denote the subclass of \mathscr{A} consisting of the functions univalent in \mathbb{U}. We have from the Koebe one quarter theorem [5] that the image of \mathbb{U} under every function $f \in \mathscr{S}$ contains a disk of radius $1 / 4$. Hence, every function $f \in \mathscr{S}$ has an inverse f^{-1} such that $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)$. In fact we have:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

Let $\Sigma=\left\{f \in \mathscr{S}\right.$: both f and f^{-1} are univalent in $\left.\mathbb{U}\right\}$ denote the class of bi-univalent functions in \mathbb{U}. See [19] (also see [2]) for brief information and examples on the class Σ. Recently, in their pioneering work on the subject of bi-univalent functions, Srivastava et al. [19] actually revived the study of the coefficient problems involving bi-univalent functions. Later, many researchers (viz [3], [4], [6], [8], [12], [13], [14], [15], [18], [20], [23], [24] etc.) obtained initial coefficient bounds for the functions in various subclasses of Σ. Also, some researchers (viz [16], [17], [21], [22] etc.) obtained initial coefficient bounds for subclasses of m -fold symmetric bi-univalent functions.

In 1972, Ozaki and Nunokawa [10] stated and proved the univalence criterion that if for $f(z) \in \mathscr{A}$,

$$
\left|\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-1\right|<1 \quad(z \in \mathbb{U})
$$

[^0]then $f(z)$ is univalent in \mathbb{U} and hence $f \in \mathscr{S}$. Also, let $\mathscr{T}(\mu)$ denote the class of functions $f(z) \in \mathscr{A}$ such that:
$$
\left|\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-1\right|<\mu \quad(z \in \mathbb{U}, 0<\mu \leq 1)
$$
where μ is real and $\mathscr{T}(1)=\mathscr{T}$. Clearly, $\mathscr{T}(\mu) \subset \mathscr{T} \subset \mathscr{S}$.
For two analytic functions f and g, we say that the function f is subordinate to g, written as $f(z) \prec g(z) ;(z \in \mathbb{U})$ if there exists a Schwarz function w, which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ for $z \in \mathbb{U}$ such that $f(z)=g(w(z))$. In particular, if the function g is univalent in \mathbb{U}, then we have the equivalence:
$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0), f(\mathbb{U}) \subset g(\mathbb{U})
$$

Let ϕ be an analytic function with positive real part in \mathbb{U} such that $\phi(0)=1, \phi^{\prime}(0)>0$ and $\phi(\mathbb{U})$ is symmetric with respect to the real axis. Hence we have,

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots,\left(B_{1}>0\right) . \tag{3}
\end{equation*}
$$

In 1967, Lewin [7] investigated the class Σ and proved that $\left|a_{2}\right|<1.51$, after which Netanyahu [9] showed that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$ and further, Brannan and Clunie [1] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. In recent years, after a seminal paper by Srivastava et al. [19], the study of coefficient problems of bi-univalent functions have gathered momentum. But still the problem of coefficient bound for $\left|a_{n}\right|,(n=3,4, \cdots)$ is an open problem.

The object of the present paper is to introduce the subclass $\mathscr{T}[\phi]$ of the bi-univalent function class Σ defined on the open unit disk \mathbb{U} and to prove that $\left|a_{2}\right| \leq \min \left\{1, \sqrt{B_{1}}\right\},\left|a_{3}\right| \leq B_{1}$ and $\left|a_{4}\right| \leq 3 B_{1} / 2$ for the functions in this subclass.

We need to recall the following lemma (see [11]) to prove our main result.
Lemma 1.If $p(z) \in \mathscr{P}$, then $\left|p_{n}\right| \leq 2$ for each $n \in \mathbb{N}$ where \mathscr{P} be the class of functions analytic in \mathbb{U} with $\mathfrak{R}(p(z))>0$ and $p(z)$ have the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ for $z \in \mathbb{U}$.

2 Main result

Definition 1.A function $f(z) \in \Sigma$ given by (1) is said to be in the class $\mathscr{T}_{\Sigma}[\phi]$ if the following conditions are satisfied:

$$
\left(\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}\right) \prec \phi(z) \quad(z \in \mathbb{U})
$$

and

$$
\left(\frac{w^{2} g^{\prime}(w)}{(g(w))^{2}}\right) \prec \phi(w) \quad(w \in \mathbb{U})
$$

where the functions g and ϕ are defined by (2) and (3) respectively.
Theorem 1.Let the function $f(z) \in \Sigma$ given by (1) be in the class $\mathscr{T}_{\Sigma}[\phi]$. Then,

$$
\left|a_{2}\right| \leq \min \left\{1, \sqrt{B_{1}}\right\}, \quad\left|a_{3}\right| \leq B_{1}, \quad\left|a_{4}\right| \leq 3 B_{1} / 2
$$

Proof.Using Definition 1 we can write:

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}=\phi(u(z)) \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w^{2} g^{\prime}(w)}{(g(w))^{2}}=\phi(v(w)) \quad(w \in \mathbb{U}) \tag{5}
\end{equation*}
$$

where the functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$ are analytic with $u(0)=v(0)=0$.
Define the functions s and t as:

$$
s(z)=\frac{1+u(z)}{1-u(z)}=1+s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots,(z \in \mathbb{U})
$$

and

$$
t(w)=\frac{1+v(w)}{1-v(w)}=1+t_{1} w+t_{2} w^{2}+t_{3} w^{3}+\cdots,(w \in \mathbb{U})
$$

Clearly s and t both satisfies the conditions of Lemma 1 and hence,

$$
\begin{equation*}
\left|s_{n}\right| \leq 2,\left|t_{n}\right| \leq 2,(n \in \mathbb{N}) \tag{6}
\end{equation*}
$$

Solving for $u(z)$ and $v(w)$, we get:

$$
u(z)=\frac{1}{2}\left[s_{1} z+\left(s_{2}-\frac{s_{1}^{2}}{2}\right) z^{2}+\left(s_{3}-s_{1} s_{2}+\frac{s_{1}^{3}}{4}\right) z^{3}+\cdots\right],(z \in \mathbb{U})
$$

and

$$
v(w)=\frac{1}{2}\left[t_{1} w+\left(t_{2}-\frac{t_{1}^{2}}{2}\right) w^{2}+\left(t_{3}-t_{1} t_{2}+\frac{t_{1}^{3}}{4}\right) w^{3}+\cdots\right],(w \in \mathbb{U}) .
$$

Using these expansions in equation (3), we obtain:

$$
\begin{aligned}
\phi(u(z))= & 1+\frac{1}{2} B_{1} s_{1} z+\left[\frac{1}{2} B_{1}\left(s_{2}-\frac{s_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} s_{1}^{2}\right] z^{2}+ \\
& {\left[\frac{1}{2} B_{1}\left(s_{3}-s_{1} s_{2}+\frac{s_{1}^{3}}{4}\right)+\frac{1}{2} B_{2}\left(s_{1} s_{2}-\frac{s_{1}^{3}}{2}\right)+\frac{1}{8} B_{3} s_{1}^{3}\right] z^{3}+\cdots }
\end{aligned}
$$

and

$$
\begin{aligned}
\phi(v(w))= & 1+\frac{1}{2} B_{1} t_{1} w+\left[\frac{1}{2} B_{1}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} t_{1}^{2}\right] w^{2}+ \\
& {\left[\frac{1}{2} B_{1}\left(t_{3}-t_{1} t_{2}+\frac{t_{1}^{3}}{4}\right)+\frac{1}{2} B_{2}\left(t_{1} t_{2}-\frac{t_{1}^{3}}{2}\right)+\frac{1}{8} B_{3} t_{1}^{3}\right] w^{3}+\cdots }
\end{aligned}
$$

Also by using equation (1) and (2), we obtain:

$$
\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}=1+\left(a_{3}-a_{2}^{2}\right) z^{2}+2\left(a_{2}^{3}+a_{4}-2 a_{2} a_{3}\right) z^{3}+\cdots
$$

and

$$
\frac{w^{2} g^{\prime}(w)}{(g(w))^{2}}=1-\left(a_{3}-a_{2}^{2}\right) w^{2}-2\left(2 a_{2}^{3}+a_{4}-3 a_{2} a_{3}\right) w^{3}+\cdots
$$

Now, equating the coefficients in equation (4) and (5), we get $s_{1}=t_{1}=0$ and hence the further equalities becomes:

$$
\begin{equation*}
\left(a_{3}-a_{2}^{2}\right)=\frac{1}{2} B_{1} s_{2}, \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
2\left(a_{2}^{3}+a_{4}-2 a_{2} a_{3}\right)=\frac{1}{2} B_{1} s_{3} \tag{8}\\
-\left(a_{3}-a_{2}^{2}\right)=\frac{1}{2} B_{1} t_{2} \tag{9}\\
-2\left(2 a_{2}^{3}+a_{4}-3 a_{2} a_{3}\right)=\frac{1}{2} B_{1} t_{3} . \tag{10}
\end{gather*}
$$

Equation (7) and (9) in light of (6) gives:

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{1}{2} B_{1} s_{2}\right|=\frac{1}{2} B_{1}\left|s_{2}\right| \leq B_{1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2}^{2}-a_{3}\right|=\left|\frac{1}{2} B_{1} t_{2}\right|=\frac{1}{2} B_{1}\left|t_{2}\right| \leq B_{1} \tag{12}
\end{equation*}
$$

respectively.
By adding equation (8) in (10), we obtain:

$$
\begin{equation*}
2 a_{2}\left(a_{3}-a_{2}^{2}\right)=\frac{1}{2} B_{1}\left(s_{3}+t_{3}\right) \tag{13}
\end{equation*}
$$

which, by using equation (6) gives:

$$
\begin{equation*}
\left|a_{2}\left(a_{3}-a_{2}^{2}\right)\right|=\left|a_{2}\right|\left|a_{3}-a_{2}^{2}\right| \leq B_{1} . \tag{14}
\end{equation*}
$$

See that, equation (11) and (14) together yields:

$$
\begin{equation*}
\left|a_{2}\right| \leq 1 \tag{15}
\end{equation*}
$$

Also, by using the triangle inequality:

$$
\begin{equation*}
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right| \tag{16}
\end{equation*}
$$

in equation (12), we get:

$$
\left|a_{2}^{2}\right|-\left|a_{3}\right| \leq\left|a_{2}^{2}-a_{3}\right| \leq B_{1}
$$

which implies that:

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq B_{1} \tag{17}
\end{equation*}
$$

Equation (15) and (17) together yields:

$$
\left|a_{2}\right| \leq \min \left\{1, \sqrt{B_{1}}\right\} .
$$

Now, using the inequality (16) in equation (11), we can write:

$$
\left|a_{3}\right|-\left|a_{2}^{2}\right| \leq\left|a_{3}-a_{2}^{2}\right| \leq B_{1}
$$

from which, it is obvious that:

$$
\left|a_{3}\right| \leq B_{1} .
$$

Next, by subtracting equation (10) from (8), we get:

$$
\begin{equation*}
2\left(3 a_{2}^{3}+2 a_{4}-5 a_{2} a_{3}\right)=\frac{1}{2} B_{1}\left(s_{3}-t_{3}\right) \tag{18}
\end{equation*}
$$

Eliminating a_{2}^{3} by using equation (13) and (18), we get:

$$
4\left(a_{4}-a_{2} a_{3}\right)=\frac{1}{2} B_{1}\left(s_{3}-t_{3}\right)+3 \frac{1}{2} B_{1}\left(s_{3}+t_{3}\right)=\frac{1}{2} B_{1}\left(4 s_{3}+2 t_{3}\right)
$$

which, by using equation (6) gives:

$$
\begin{equation*}
\left|a_{4}-a_{2} a_{3}\right| \leq \frac{3}{2} B_{1} \tag{19}
\end{equation*}
$$

Finally, by using the inequality (16) in equation (19), we get:

$$
\left|a_{4}\right| \leq 3 B_{1} / 2
$$

This completes the proof of Theorem 1.
Remark.[1] If the function ϕ is given by

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots ; \quad(z \in \mathbb{U}, 0<\alpha \leq 1)
$$

then the bounds are:

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{2 \alpha} & ; \quad\left(0<\alpha<\frac{1}{2}\right) \\ 1 & ; \quad\left(\frac{1}{2} \leq \alpha \leq 1\right)\end{cases}
$$

$\left|a_{3}\right| \leq 2 \alpha$ and $\left|a_{4}\right| \leq 3 \alpha$.
Remark.[2] If the function ϕ is given by

$$
\phi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots ; \quad(z \in \mathbb{U}, 0 \leq \beta<1)
$$

then the bounds are:

$$
\left|a_{2}\right| \leq\left\{\begin{array}{lll}
1 & ; \quad\left(0 \leq \beta \leq \frac{1}{2}\right) \\
\sqrt{2(1-\beta)} & ; \quad\left(\frac{1}{2}<\beta<1\right)
\end{array}\right.
$$

$\left|a_{3}\right| \leq 2(1-\beta)$ and $\left|a_{4}\right| \leq 3(1-\beta)$.

3 Conclusion

For the bi-univalent function class Σ, Lewin [7] proved that $\left|a_{2}\right|<1.51$, Netanyahu [9] proved that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$ and Brannan and Clunie [1] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$; whereas for the function class $\mathscr{T}_{\Sigma}[\phi]$, we obtain an improved result $\left|a_{2}\right| \leq \min \left\{1, \sqrt{B_{1}}\right\}$ which is even better estimate than $\left|a_{2}\right| \leq 1$. Also, we have an interesting problem here that, can we generalize this theorem to $\left|a_{n}\right| \leq(n-1) B_{1} / 2$, for $n \geq 3$?

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Brannan D.A., Clunie J.G. (Eds.), Aspects of Contemporary Complex Analysis, (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[2] Brannan D.A., Taha T.S., On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31 (2) (1986), 70-77.
[3] Căglar M., Deniz E., Srivastava H.M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41 (2017), 694-706.
[4] Căglar M., Orhan H., Yăgmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (7) (2013), 11651171.
[5] Duren P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York (1983).
[6] Frasin B.A., Aouf M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573.
[7] Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
[8] Naik U.H., Patil A.B., On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc., 25 (2017), 291-293.
[9] Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112.
[10] Ozaki S., Nunokawa M., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33 (1972), 392-394.
[11] Pommerenke Ch., Univalent functions, Vandenhoeck and Rupercht, Göttingen (1975).
[12] Porwal S., Darus M., On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21 (3) (2013), 190-193.
[13] Srivastava H.M., Bansal D., Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2) (2015), 242-246.
[14] Srivastava H.M., Bulut S., Căglar M., Yăgmur N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (5) (2013), 831-842.
[15] Srivastava H.M., Eker S.S., Ali R.M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (8) (2015), 1839-1845.
[16] Srivastava H.M., Gaboury S., Ghanim F., Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. No. 41 (2015), 153-164.
[17] Srivastava H.M., Gaboury S., Ghanim F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (3) (2016), 863-871.
[18] Srivastava H.M., Joshi S.B., Joshi S.S., Pawar H., Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5 (Special Issue 1) (2016), 250-258.
[19] Srivastava H.M., Mishra A.K., Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
[20] Srivastava H.M., Murugusundaramoorthy G., Magesh N., Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal., 1 (2) (2013), 67-73.
[21] Srivastava H.M., Sivasubramanian S., Sivakumar R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2) (2014), 1-10.
[22] Tang H., Srivastava H.M., Sivasubramanian S., Gurusamy P., The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Mathcal. Inequalities, 10 (4) (2016), 1063-1092.
[23] Xu Q.-H., Gui Y.-C., Srivastava H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994.
[24] Xu Q.-H., Xiao H.-G., Srivastava H.M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (23) (2012), 11461-11465.

[^0]: * Corresponding author e-mail: amol223patil@yahoo.co.in

