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Abstract: In the current study, a comprehensive analysis of nonlifrearvibrations of a flexible rotating beam attached withttirsg
angle to a rigid hub is perused. The system is supposed toljecsed to an external torque and a rotation dissipatiod l@hich
collectively referred to as perturbations. A set of two syl coupled second-order ordinary nonlinear differdreiguations with
an ignorable coordinate is used to depict the dynamics ofnttigidual mode in plane flexural deflection of the arm andoitsrall
rotational motion. For the unperturbed system which is @peeial case in this work, the system angular momentum peesymot
the hub rotational speed, becomes a specified constant airm&urthermore, in order to consider the effect of beamedéfins on
the overall motion and vice versa, utilizing torque-cohém approach is necessary. It is noteworthy that here thoeerful analytical
methods for instance Modified Differential Transformatidathod (MDTM), Variation Iteration Method (VIM) and finalljomotopy
Perturbation Method (HPM) have been introduced to invastighe comportment and frequency of cantilever rotatirgrsewith
a setting angle. These methods are useful and practicabldng a wide variety of nonlinear equations. Comparisomoagst the
obtained results by all the presented methods and Numexataiion reveal that all the afore-mentioned methods ageifstantly
effective and efficient especially MDTM.

Keywords: Cantilever beam, natural frequency, modified differentiahsformation method (MDTM).

1 Introduction

Nowadays, the rotating components are significantly ndticex wide variety of industries such as turbine, compressor
helicopter rotor blades, airplane propellers, satellitteanas, robotic arms and various cooling fans. It is prgatat

the dynamic property of the above instruments has to befissbtighly solved and understood if their high performance
is perfectly fulfilled. The dynamic behavior of rotating Inesis highly complex and thus in order to have an acceptable
concept of this issue, they are generally modeled in the fofra simple rotating beam. Studies demonstrate that
increasing the rotational speed tends to stiffen the beara {d the centrifugal force) and thus increases its flexural
natural frequencies and the beam deflections affect theatbvaotion of the rotating beam. Most of the studies like
Hamdan and Al-Bedoor[1] considered the free vibrationstditing beams (undamped system with no torque). In other
words, the rotational speed was assigned a constant valugroe dependent function and introduced as an input to the
system. Therefore in those studies, researchers did netdmrthe influence of the beam elastic vibrations on tha rigi
body motion. On the other hand, only few studies have looket the more realistic, so called rigid-flexible coupling
case where the rigid body motion is affected by the flexiblanbelastic deflections in addition to the overall motion
effect on these deflections. In a rotating undamped systemagnitude and duration of the external torque which were
applied for a specified starting period sets the steady sitaonal speed or angular position.

The scrutiny for vibration characteristics of rotating tresshas been investigated for a long period of time. A magmifice
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Fig. 2: The rotating beam with a setting angle
Fig. 1: The rotating straight beam. (y).

review of this issue can be found in published papers giverL&igsa[2], Rammurati[3] and Rao[4]. Totally, the
researches about the rotating beam from the orientatiomedbéam relative to the hub can be divided into the following
several formst) the rotating straight beam (Fig.1)) the rotating beam with a setting angie) (Fig.2).1ll) the rotating
beam with an inclined anglg(p) (Fig.3) and some other forms which are graphically desctib the following chapter

of this article in Fig.4 and Fig.5. Undoubtedly obtaininge texact solution of differential equations with variable
coefficients for these kinds of system is not convenient Blet aome assumptions and elimination of parameters and a
little simplification, we can extract the final governing atjon for this mentioned system. Therefore, it will be very
simple to evaluate natural frequency of the system.

Entirely, the basic solutions for rotating beam mechanissroéten solved by approximation methods, take for example:
the finite element method[5,6], the Galerkin method[7], Reyleigh-Rits method[8], the perturbation method[9], the
finite difference method[10] and the dynamic stiffness rodfthil]. But in this case study, Modified Differential
Transformation Method (MDTM), Variation Iteration Meth@dIM) and finally Homotopy Perturbation Method(HPM)
have been utilized to investigate the mentioned system elp and to yield natural frequency of the proposed beam.

Fig. 3: The rotating beam with an inclined Fig. 4: The rotating beam with a flapping
anglequp). angle@).
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Fig. 5: The rotating beam with a flapping angl®) and a setting angleéd( p).

It is citable that in this case study, we mainly aim at the @itamal characteristics of rotating beams with a settingjen

Nomenclature

Hub radius

Hub mass

The angular velocity of hub

Setting angle

Uniform cross section area of the beam

Flexural rigidity

Constant length of the beam

Beam mass

Beam mass density

Assumed rotational linear viscous damping coefficient
Assumed bending linear viscous damping coefficient
Assumed mode shape

Small positive parameter

Dimensionless system parameter
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Dimensionless constant coefficient associated with thenasd mode of vibration
Angular momentum

Angular momentum of the system about the hub rotation axigled by a masg
momentum of inertia factor

Dimensionless hub radius to beam length ratio
u Dimensionless hub mass to beam mass ratio
Ta Constant amplitude of starting period

ts Time duration of starting period
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Fig. 6: (a). Cantilever beam diagram. (b). Deflected configuratidch@arm.

2 The dynamic model

The cantilever beam which has been depicted in Fig.6 istedthto a hub which is assumed to be a rigid disk with radius
Ry, my and rotating at an angular velocifyabout the Z-axis. The effect of torque T on the hub causesritaie only.
The X,Y,Z is system of fixed rectangular Cartesian coordirsates with origin at the center of the hub. The x,y,z and
the X'y, Z are two sets of rectangular Cartesian coordinate axesngtaith the hub with common origin at the root
of the beam. The setting angie is rotation of the hub about longitude axis of the beam. Thembés assumed to be
initially straight along the-axis clamped at its base to the hub surface, having a unifooss-sectional aref,, flexural
rigidity EI, constant length, massm, and densitp. The beam thickness is assumed to be small compared to gthlen
so that the effects of shear deformation and rotary inedialie ignored. It is notable that various dynamic models have
been proposed to represent the dynamics of rotating beamfl@15]). In these models different approaches, legadin
to various results, are utilized to account for the axiapldisement and centrifugal force. The mathematical moded us
here to describe the dynamics of the above beam system isialsgase of the single mode model introduced in the work
of Hamdan and EI-Sinawi [16]. Therefore, the governing wady differential equations of the beam system are defined
as follows.

(Ba-+ BocP)a + | (B7 — Cs)cosw+ 5 (s cosuu)qﬂ 6"+ [B2>— (CBs— B+ Broog ¥)§| g (1)

.2 .
+ Bsqd” +2B%Boq® + Cy1d =0

[Co+ (CBa— Bs + B1cos )] 6+ cosy [Br — CPBs+ 38507] A+ (Bs COSQU)qqz

I . 2
+2(CB4*B6*3100321.U)qq9:€(#*%Re) @

which

Br= 3 @PdE, o= [§ @"2dE, Bs = [3 @dE, Ba= [(JE @2dn)dE, Bs = J3 @S¢ @2dn)dE
Bo = o &(J& @2dn)dE, By = [3E(J§ @dn)dE Bs = [3(J§ @%dn)2dE, By = 3 @2¢2dE
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where, prime denotes a derivative with respect to the difaless arc length variabe= . Note that the case= Ois
used to indicate that the net driving torque, take for exantipe bracketed term in the right hand side of Eds zero
and will be referred to as the unperturbed system while tee ea0(net driving torque not equal to zero) will be referred
to as the perturbed system.

The degree of freedom in this dynamical system is the dinoetesss modal beam tip lateral flexural deflectips: {
(seeFig.6) and the overall rigid body rotatiofiu p which is an ignorable coordinate.

However, solving Ed. and Eq2 analytically is more difficult since they have to be solvedwo stages. In the first stage,
one has a starting torque. The results of this step shoulakes tand substituted as initial conditions to the secorgksta
in which one has a zero or a different specified torque. Tdifaig analytical analysis of the governing model in Eq.
and Eq2 for such systems, a coordinate transformation, which taiesntage of the fact tha is an ignorable
coordinate, is usually used to replé&ty an angular momentum variable of the system[17].

First by defining the following constants.
Ki=B, Ko=Ps Ks=(Br—CpBs)cosy, Ksq= %BsCOSl.U, Ks = B°Bs
Ke =CPBs— B+ B1COS ), Ky =2BBo
Therefore, we can write Ejand Eg2 more briefly
(K1 +Ka0®)d+ (Ka + Ka0?) 0 + (Ks — Keéz)q +Ka0¢? + K7q3 +CqrG=0 (3
ot ke?) 6+ (ks + kac) 8-+ 2kaq i () +2k6qqe—s(mo —Curb) 4)
After the following substitution
B=Co+Keq® and D =Kz+Keq? (5)
into Eq4, the above dynamic model becomes
(Ke+Ke?)G + (Ks + K4q2)é + (Ks — Ke6%)a+ Koad + K70® + Cyr§ = 0 (6)
) ™
where B and D are given in E§. Moreovet, if
Ps =BO+Dq (8)
Eq.(7) becomes

Py —Dq
5 ) 9)

1 (Po) = el G

Note thatT = 9.

Next a coordinate transformation from tAend q coordinates tBy andq coordinates is carried out by substituting

5 Po—Dq
o=~ (10)

(© 2018 BISKA Bilisim Technology


www.ntmsci.com

64 BIS K A M. S HJafari, A.R. Ahmadi, et al.: Analytical approximatégions for investigating non-damped system...

In Eq.6 and Eq7, performing the long mathematical manipulations and nétgiup to third-order terms, the transformed
equations are

(So+ S197) 6+ 062 + (S7— S8P2)q + S9PeqP + S100° + S14Ps + Car(S15 + S1697) G = O. (11)
. T Py — (Kz+ Ka0?)g
Py = f(m —Cyr( (Cot KeP) ) (12)

where

S = CiK1 —K3Co, St = 2K1KeCo + CiKz — K3Kg — 2K3K4Co,
Sy = KZKg — 2CoK3Ka + KoC3, S7 = KsC3, Sg = Ke, Sy = CoKa + KK, (13)
Si0= K7C3 + 2KsKsCo, S1a = CoKs, Si5=C2, Si6 = 2KeCo.

Itis noteworthy thefy, S, ..., Sig depend on the assumed mode of vibration and the system para@e! andu.

3 Unperturbed system

In this paper, what we mean by the unperturbed motion of tiséemy is that system is assumed to rotate freely with
zero net driving torque (right hand side of Eq.(12) is zeho)the present work, for simplicity of analysis, we take the
rotational dissipatioGyg, as well as the bending dampi@grto be zero and the external applied torqu be the smooth
half-sine-wave.

AW
T_ TA.sm(tS)ﬁogtgts (14)
Oift >tg

Substituting foiCygr = 0 and Egql4into Eq.12 and integrating the resulting equation from Q4d¢eads to the following
expression for the unperturbed motion angular momentuamnpetePs.

2Tat
A= _ Constant (15)
Myl 2

0 =

with units S*.ThusPs=0 and Eq(11) after setting Gr= 0, dividing by S and rearranging becomes

.. S7%2 Slz..SA-z S103
+(z—=P)a+ =94+ =q9°+ =g =0. 16
G+(g g Rlatgaatgua+gd (16)
As expressed in the later chapter, the interest in this papeith that the first mode of vibration which is supposed to
dominate the dynamics of the rotating beam. So, the consteficients(Sy, S, S, S7, S, Si0) are evaluated based on
this first mode vibration assumption.

In order to lighten the mathematical computation, we carritevEq16 with new definition for the constants as follows.

G+ wfq+ 1?6+ dogd® + dag® = 0 17)
where
> S S S S Sio
=2 _Bp2g = 2, = g, = 20 18
w; 5 §ohiTg%=gB g (18)

An approximate solution of Egjis in the form of

q(t) = A; coswt + Azcos 3wt (29)
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and the initial conditions take the form of
q(0) =Ag(0) =0. (20)

It is noteworthy that there are two different modes of vilmatccording to tablel as follows

Table 1: Values of variables in Eq. for the two modes.

Mode Wy d; do
1 1 1 1
2 0 1 1

As it was previously noted, in this case study we just anallgedirst mode of vibration and for simplicity, we change the
appearance of the first mode of vibration into the followiognf

d2
dt?

2 2
W(t) +w(t) 4+ w(t)? <%w(t)) +w(t) (%W(t)) +w(t)®=0. (21)

Also, we have changed the appearance of the boundary comgliti the form of

W(0) =A=1, D(w(0)) = 0. (22)

4 Basic ideas

4.1 The basic idea of homotopy perturbation method

Consider the following equation
Au) — f(r) =0, r (23)

With the boundary condition of
Ju
B(u,%) =0;rerl (24)

whereA is a general differential operatd,denotes to the boundary operatbfr) is a given analytical functior; is the
boundary of domairf2 and% refers to the differentiation along the normal drawn outigdrom. The operator A can
be divided into two parts: a linear pdrtand a nonlinear part N [18-19]. Therefore, Egcan be rewritten as follows

L(u)+N(u)—f(r)=0. (25)
In the case that the nonlinear E§has no small parameter, we can construct the following Homot
H(v,p) = (1-p)[L(V) - L(w)]+Pp[A(V) - ()] =0 (26)

where,
vibp): Q x[0,1]—R (27)

In Eg26, p € [0,1] is an embedding parameter amgd is the first approximation that satisfies the boundary cadiiVe
can assume that the solution of considered equation canthmed as a power series in p, in this manner

n .
v:Z)p'vi:vo+pv1+p2v2+p3v3+.... (28)
i=

(© 2018 BISKA Bilisim Technology
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And the best approximation for solution is

U:|im1V:V0+V1+V2+V3+V4+.... (29)
p—

When Eg26 corresponds to Eg3 and Eq29 becomes the approximate solution of the considered nanleguation. By
increasing the number of series terms inZ8)the accuracy of the results will be augmented and they doaildsed as
an exact solution.

4.2 The basic idea of differential transformation method

If f(t) is analytic in the time domaif, then it will be differentiated continuously with respectimet

(d“f ()

¢ (t.k)= daik

Vi=T (30)

Fort =t; then¢ (t,k), where k belongs to the set of non-negative integers, ddrastéhe K-domain. Therefore, B.
can be rewritten as follows
d®f (1)
t=t;

where F(K) is called the spectrum of f(t)tat t; in the K-domain. Iff (t) can be represented by the Taylor series, then it

can be represented as )
< ((t=t)
f(t) _k;( " >.F(k). (32)

Eq.32is called the inverse transform Bfk). Then, according to the symbol D which is denoting the diffigied transform
process and its combination by Bd.and Eq32, we obtain

w 4k
t=5 (S ) Fr=oF K. (33)

From the above definitions, it is easy to obtain the basic emttical operations of DTM in Table 2 as

Table 2: Basic transformation for simple functions by DTM.

Time definition Transformed function
w(t)=oa.u(t)£B.v(t) W(k) = a.U (k) £B.V(k
w(t) = (d™u(t)) /(dt™) w(k) = EGRRU (ke m)
W (t) = u(t)v(t) W (K) = gu(l).V(k—I)
=

wit) =t W<k>6<km>{é e
w(t) = exp(t)

W(K) =g
w(t) = sin(wt + a) W (k) = (‘l*(’—:() sin( +a)
W (t) = cos(wt + a) W (k) = ("lj—,k) cos(¥ + a)

(© 2018 BISKA Bilisim Technology
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To end up, using the differential transform [20], a diffeiehequation in the domain of interest can be transforméal in
an algebraic equation in the k domain and f(t) can be obtaigete finite-term Taylor series expansion plus a remainder
as

00 _$)\k
t=5 (S ) FR+Rua 59

4.3 Variation iteration method

To clarify the basic ideas of VIM, we consider the followinifferential equation
Lu+Fu=qg(t) (35)

whereL is a linear operatof; is a nonlinear operator argft) is a heterogeneous term. According to VIM, we can write
down a correction function as follows

Uns2(t) = Un(t) + ./0‘t A (Lun(T) + Fiin(1) — g(1)) dt (36)

whereA is a general Lagrangian multiplier which can be identifietroplly via the variational theory. The subscript
indicates thenth approximation and’'n is considered as a restricted variation [21-23], idein = 0.

5 Applications

5.1 Homotopy perturbation method
Considering EdL, according to the HPM, the homotopy, B§is gained as follows
d2 d2 , [ d? d 2 5
H(f,P) = (1= P) (g Wlt) +W(t)) + Pz W(t) +w(t) +-W(t)? ( Zw(t) ) +w(t) ( zowlt) ) +w(*)H(f,p)
=1 dzwt w(t dzWt w(t) 4+ w(t)? dzwt wit) (St i w(t)® 37
= (1= P)(GW(t) + WD) + Pl (1) +W() + W(t)? (WD) ) +w(t) (wld) ) +w©)).  @37)
On the basis of HPM theory, we assuntgj in the form of

W (1) = wo (1) + pwy (1) + pPwa (t) + pPwa (1) + ... (38)

Now, after substituting E§8into Eq37 and some simplification and rearranging them which weredasepowers of
p-terms, we have

2
PO wo(t) + %Wo(t) (39)
a2 d 2 d2
B g al0) +valt) +vo(t)| )| +wa(t? | Gzwolt) (40)
2 2
B 3no(0)2wa(0)+ 26(0) | i 0] [ v 0] + S 0+ we(0? | Sows 1)
d2 d 2
+ 2wWg (t) Wy (t) [@Wo (t)] + W» (t) + W (t) |:aW0 (t)] (41)
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3 d? 2 d 2 2 d?
5w (1) | G0 1) + 3mo(t) + () + e 1) oo 0]+ Bma(t/wa(0) + 2w ) wat) | Gwo(t)|
2 2 2
200w (1) | G (0] + 200(0) | o 0] | Swe 0] + 0| Same 0] + a0+ et

2| oo(0)] [ o 0] +wo) [ Sw ) 2)

By continuing the above process, higher accuracy will baiokd. Solving EQR9to Eq42 with considering appropriate
initial  conditions which means __the right hand side of théid@hiconditions should be equal to zerothat is
{w(t=0)=0,w (t =0) =0} for the afore-mentioned equations with the exception oBBavhich for this case we
should consider the main boundary condition,Z2gTherefore, we will have

Wo(t) = cogt) (43)
wy(t) = f%sin(t) (t —cos(t)sin(t)) (44)
Wy (t) = Z—El_)Gcos(t) + 6—34005(t)zsin( t)t+ %Ssm(t)t - %cos(t)t%r 6—54cos(t) %Scos(t)?’ (45)

Therefore, in regard to the given explanationstwwill be achieved as follows

{w(t) = 'IDiLnlWo (t) 4+ p.wy (1) + p%wa (1) +p>.wa (t) +...} (46)
Eventually, we have
4345 1 15 » . 9 1
w(t) = 4096005(t) = sin(t)(t — cogt) sin(t ))+ﬁcos(t) sin(t)t + 2563ln(t)t 128c05(t
941 21 103

40+ 108?)cogt)3 (47)

> cogt)*sin(t)t + 121288(

o 5 “ 3 Y9 7
6122°°SV)” ~ 5560081 1536005(” 512

1 2 1 3 .
As it is obvious, solution of terms varies periodically amdeiach step more accuracy has been gainedo(®ocan be
charted in Fig.7 as follows

5.2 Variational iteration method

In order to solve Eq21 with the boundary conditions of EQ2 utilizing VIM, we construct a correction function as
follows

2

2
ol = (1) + [ 2 ( (0)-+ (1) + (02 (ezn(r)) +n(r) (o)) +wn<r>3>dr (48)

It is notable that recently a new method has been introducestder to find lagrange multiplier which needs less
computational work in comparison to the previous methoaHlsws

To start, it is necessary to separate the linear part of tha difierential equation which in this case study is Bq)(
afterwards this is the best time to take its Laplace tramsfolFor the next step, we should utilize
the first term of Derivative Laplace Transform Theorand equals it td—1)" wheren denotes to the highest order of
derivative of the linear part of our equation. Then with takinverse Laplace transform and substitution (A-B) indtef
the variant of our answer which A and B refer to the integralarg of our correction function and the top range of
integral, respectively. It is easy to understand the afoestioned procedure in accordance to these formulae.

The Lagrangian multiplier can therefore be computed in tmnfof

(1) Separating the linear part of the equatien<, dt2 w(t) 4+ w(t)

(© 2018 BISKA Bilisim Technology
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Fig. 7: The result of HPM forw(t) in the time domain between<Qt < 6.
(2) Taking its Laplace transform> L {w(t)} +L{w(t)} = 1. SoL{w(t)} (s’ +1) = 1 then we have {w(t)} = 14%32
thereforew(t) = L1 { 14%32} = sin(t)
(3)Inas much ad = tErrrltw(t), finally A is obtained in the following form
A =sin(t —t) (49)
As a result, we obtain the following iteration formula
P G d 2
Whia (6) =i () + [ (Ean W (7) (1) [@wnm] v (1) [awnm} +wn<r>3> dr.  (50)
0
Now we start with an arbitrary initial approximation thatisfies the initial condition
Wo(t) = Acogt) (51)
On the basis of E§O, we have
t' o? o? d 2
wy (t) =wo (t) + / (—sin(—T+1) (EWO(T)ﬁLWo(T)Z [ﬁwo(r)] +wWo (T) [awn(r)} +Wo(r)3>dr. (52)
0
Substituting Eq.%1) into Eq. 62) and after some simplification, we have
wi(t) = gcos(t) - %tsin(t) - écos(t)?’ (53)

And so on.

In the same manner, the rest of the components of the itarftiula can be obtained. Therefore, the diagrarw(f)

is illustrated in Fig.8 as

(© 2018 BISKA Bilisim Technology
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Fig. 8: The result of VIM fora(t) in the time domain betweenQt < 6.

5.3 Differential transformation method

With regard to the explanation of differential transforinatMethod which was discussed completely in section 4.2 Eq
can be solved as follows

(k+1)(k+2)W(k+2) +W(k Z W(ky — L)(k+1—Kkp)(k+2—ky)W(k+2—kq)
ki=0L=
k ki
+ > > W) (k+1—ki)(ki—L+1)W(ky — L+ 1)W(k+1—ka) (54)
k170L70
W(L)W (ks — L)W(k—ky) =
Jrklzmzo b g

Then, we should take differential transform from the bougdzonditions in the form oD {w(t =0)} = D{1} and
D{ &w(t)|,_,} =D{0} so, we have

W(0)=1 and W(1) =0, (55)

In this step, we dedicate some values to K which are from 2 tee6quse according to the Eq.(55) we have the amounts
of W(k)fork = 0 and J) then by using maple package, we obtain these equations

(56)
and

W(3) =W(4) =W(5) =W(6) =W(7)=0 (57)

(© 2018 BISKA Bilisim Technology
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Fig. 9: The result of VIM forw(t) in the time domain between0t < 6.

then
W(8) == - (58)
- 896
With respect to the above equations, we can defifig as follows:
8
w(t) = 5 W(k).t“ (59)
K=0
Therefore, we have:
_q, 1o 1 g
wt)=1 2t + 896t (60)

Finally, the chart of thev(t)by DTM is depicted in Fig.9 as follows. Obviously, DTM is nosaitable method to solve
these kinds of equations. Therefore, another analytiqaicgeh is required to overcome this difficulty such as MDTM as
follows

5.4 Modified differential transformation method

As regards Fig.9. DTM is not accurate for solving this prablgo it should be improved by little changes in solution
procedure which is named MDTkr MSDTM. Briefly, the story of MDTM or MSDTM is the same as DTM but hetteg
solution domain is detached into small pieces and boundasrgitions are applied for each of these small pieces of domai
then these proceedings together can prevent a sudden tise gpecified domain. With regard to the afore-mentioned
explanations, the solution procedure is done as follows.

.15 1 4
Wo(t) =1 - St2+ =t (61)
and Wos(t = 0) = 0.875004 and Wo5(t =1) = —0.499930 (62)
For the next step wyo(t =0) =0.501612 and wio(t=1) = —0.986016 (63)
Afterthat wy 5(t =0) = —0.07267 and wys(t =1) = —1.22054 (64)
Then Woo(t =0) = —0.61244 and Woo(t = 1) = —0.872408 (65)
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wiit)

Fig. 10: The solution of Eq21 resulted by MDTM.

The other values are computed in the form of

Wy 5(t = 0) = —0.92594 andv, 5(t = 1) = —0.376913 (66)
and Wso(t =0) = —0.98977 and Wao(t =1) =0.12157 (67)
So vg5(t = 0) = —0.80438 and Was(t = 1) = 0.61968 (68)
Afterwards W o(t =0)=-0.37424 and Wy o(t =1) =1.08339 (69)
Then W s(t =0)=0.218356 and wys(t=1) =1.18731 (70)
Forthenextstep y\b(t =0)=0.716692 and Wso(t =1) =0.784768 (71)
Then ws(t = 0) = 0.981847 and Wss(t = 1) = 0.274777 (72)
Eventually wo(t =0)=0.991848 and Wgo(t =1) = —0.234724 (73)

Now, the solution procedure is done completely. Therefiiediagram ofo(t) has been achieved in Fig.10 as

5.5 Graphical results

According to the obtained formulae from the previous pafrthis paper, a comparison amongst the achieved solutions by
HPM,VIM and MDTM is yielded in Fig.11 as follows Eventualtyze error charts of the mentioned methods are illustrated
in Fig.12 as And also the above graphical results are showabie3 as follows
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Fig. 11: A comparison amongst MDTM, VIM, HPM and numerical solution.
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Fig. 12: The computational error afi(t)in the specified domain resulted by HPM,VIM and MDTM.
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Table 3: Obtained numerical values and errorsifiin the specified domain.

t Numeric HPM VIM MDTM The The The
Error of | Error of | Error of
HPM VIM MDTM
0 1 1 1 1 0 0 0
0.5 | 0.875004800.87342313 0.8734489P 0.8750043}7 0.00158166 0.00155588 0.00000043
1 0.50162102 0.49433444 0.4960055} 0.50161228 0.0072865} 0.00561544 0.00000875H
1.5 | 0.07260548 0.08371294 0.07936376 0.07267108 0.0111075p 0.0067583[L 0.00006564
2 0.61223450 0.6207768P2 0.62629234 0.61244206 0.00854232 0.01405784 0.0002075b
2.5 1 0.92732018 0.9473600¥ 0.96436965 0.9259463]1 0.02003988 0.03704946 0.00137380
3 0.99295068 1.03511220 1.01747398 0.98977396 0.04216160 0.02452329 0.00317666
3.5 | 0.80860942 0.82864765 0.82013868 0.80438519 0.02003822 0.01152925 0.00422423
4 0.3785128P 0.3759147( 0.40225586 0.3742433( 0.00259811]1 0.02374304 0.0042695P
4.5 | 0.2153263# 0.23896539 0.182248138 0.2183568]1 0.02363904 0.0330782[L 0.00303046
5 0.709438250.72077476 0.69595767 0.7166924} 0.01133650 0.01348058 0.0072542]
5.5 | 0.96554062 0.9754932P 1.03982953 0.9818471D 0.00995260 0.07428890 0.01630648
6 0.97180256 1.102388411 1.08513912 0.99184812 0.13058584 0.11333656 0.02004556

Due to Fig.12 and Table.3, the maximum errors of HPM, VIM anB in the specified domain are approximately
%13, %11 an@o2, respectively. Therefore, it is notable that amongst thegmentioned analytical methods, the achieved
solution by MDTM is considered approximately as the realarof the presented problem.

6 Conclusions

The research undertaken in this paper is devoted to thensamlivibrations of an inextensible rotating beam fixed with a
setting angle to a rigid hub. Moreover, the free vibratiothis rotating beam under a determined starting torque ubing
transformed equations has been investigated thoroughérefore by assuming a prescribed starting torque instead o
prescribed overall motion, the beam deflection influencenerrigid body motion and vice versa which means the effect
of rigid body motion on the beam deflection was acquired. ifgeds, three analytical methods were utilized in order
to obtain the vibrational frequency of the mentioned beaththe outcomes have been compared with numerical results
in order to check their precision and accuracy. It is notéimothat the obtained results by MDTM, VIM and HPM have
been showed graphically and compared together to get thesuitsble and precise solution. Eventually, on the basis of
the obtained results from Table.3 and Fig.12, it is clearah@ongst all of the applied analytical methods, MDTM is very
applicable in this special case.
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