
NTMSCI 6, No. 1, 37-51 (2018) 37

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2018.244

Uncertain random programming models for fixed charge
multi-item solid transportation problem
Hasan Dalman

Istanbul Gelisim University, Deparment of Computer Engineering, Avcilar, Istanbul, Turkey

Received: 28 September 2017, Accepted: 23 October 2017
Published online: 3 February 2018.

Abstract: This paper presents uncertain random programming models for the fixed charge multiobjective multi-item solid
transportation problem, which contains uncertain random variables for fixed charges, unit transportation costs, source, destination and
conveyance constraints. Utilizing both uncertainty and randomness, the uncertain random programming model is first turned into an
expected value programming model under chance constraints. Thus a deterministic model of the uncertain random model isobtained.
Finally, numerical examples are given to illustrate the models.
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1 Introduction

The classical transportation problem (TP) consists of supply and demand constraints. But, in practice, decision makers

are usually faced with more constraints such as goods constraint or mode constraints of carrying. In such conditions, TP

is turned into a solid transportation problem (STP). The STPis first used by Shell [1] and then, Haley [2] presented a

solution procedure for solving the STP.

The classical transportation problems in which different items are going to carry from diverse production points to

diverse user points using various modes of conveyance are termed multi-item STPs.

Due to the lack of information, data deficiencies, complexity and unpredictable events, transportation systems are

generally vague. To illustrate these types of impreciseness, the multi-item STPs are extensively studied under the fuzzy,

stochastic and interval parameters [3-8].

It is admitted that a fundamental of probability theory is that the estimated probability distribution is near enough tothe

long-run cumulative frequency. Thus, there is no fear the parameters can be used as random variables when the adequate

statistical data is present. Yet if there is no adequate statistical data, our fear is how to handle with the impreciseness of

real world. Surely, taking into account the relevant parameters like fuzzy variables may be practicable, but it is

inconvenient. Generally, decision-makers have no alternative aside form consult the field specialist to interpret the

corresponding parameters. It indicates that the belief degree which depends seriously on the personal experiences. That

is, the belief degree is an impreciseness, which is called ashuman uncertainty. For this, uncertainty theory was

introduced by Liu [9] and refined by Liu [10] depend on normality, duality, subadditivity and product axioms.
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Since then, the uncertainty theory becomes a branch of mathematics. Also, uncertainty theory have studied both

theoretically and practically in literature [10,18].

TPs based on the uncertainty theory has been studied by some scholars. Cui and Sheng [19] gave an uncertain

programming model for the STP. Zhang et al.[20] investigated uncertain fixed charge solid transportationproblem, and

Gao et al. [21] presented uncertain models on railway transportation planning problem. Dalman [22] introduced a

multi-item STP with uncertain variables.

However, randomness and uncertainty usually consist complex systems. After the uncertain programming is presented in

[23], Liu [ 24] introduced chance theory for representing such types of complex events including both uncertainty and

randomness. Then some basic notations were given. After that, Liu [25] showed the operational law for calculating a

monotone function of uncertain random variables and introduced the formula to calculate expected value. Uncertain

random programming models have been investigated in literature [26]-[30] and so on.

According to my reading, no work has been given on uncertain random programming model for fixed charge multi-item

solid transportation problems with uncertain random variables. Thus, this paper focuses on uncertain random

programming for fixed charge multi-item solid transportation problem with uncertain random variables. Using the

expected value of each objective function under the chance constraints, the model is transformed into a deterministic

model. Finally, numerical examples are presented to illustrate the models.

This paper is constructed as follows: Section 2 presents some definitions and theorems about uncertainty and chance

theory. Section 3 presents a definition for an uncertain random programming model. Based on uncertainty and

randomness, the fixed charge multi-item STP model is modeledin Section 4. Numerical examples are given to illustrate

different fixed charge multi-item STP model with some uncertain random variables in Section 5.

2 Preliminaries

2.1 Uncertainty theory

Basic definitions and notations of uncertainty theory are given here.

Definition 1. LetL be aσ -algebra on a nonempty setΓ . A set functionM is called anuncertain measureif it satisfies the

following axioms:

Axiom 1. (Normality Axiom) M{Γ }= 1;

Axiom 2. (Duality Axiom) M{Λ}+M{Λc}= 1 for anyΛ ∈ L;

Axiom 3. (Subadditivity Axiom) For every countable sequence of{Λi} ∈L, we have

M

{

∞
⋃

i=1

Λi

}

≤
∞

∑
i=1

M{Λi}.
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The triplet(Γ ,L,M) is called anuncertainty space, and each elementΛ in L is called anevent. In addition, in order to

obtain an uncertain measure of compound event, a product uncertain measure is defined by Liu [10] by the following

product axiom:

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k= 1,2, · · · The product uncertain measureM is an

uncertain measure satisfying

M

{

∞

∏
k=1

Λk

}

=
∞
∧

k=1

Mk{Λk}

whereΛk are arbitrarily chosen events fromLk for k= 1,2, · · · , respectively.

Definition 2. (Liu [9]). An uncertain variableξ is a measurable function from an uncertainty space(Γ ,L,M) to the set

of real numbers, i.e., for any Borel set B of real numbers, theset

{ξ ∈ B}= {γ ∈ Γ |ξ (γ) ∈ B}

is an event.

Definition 3. (Liu [9]). The uncertainty distributionΦ of an uncertain variableξ is defined by

Φ(x) =M{ξ ≤ x} , ∀x∈ ℜ.

Definition 4. (Liu[9]). Let ξ be an uncertain variable. Theexpected valueof ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the above two integrals is finite. An uncertain variableξ is called linear if it has a linear

uncertainty distribution

Φ (x) =















0, x≤ a

(x−a)/(b−a) , a≤ x≤ b

1, x≥ b

denoted by Ł(a,b) where a and b are real numbers with a< b. Suppose thatξ1 andξ2 are independent linear uncertain

variables Ł(a1,b1) and Ł(a2,b2) . Then the sumξ1+ ξ2 is also a linear uncertain variable Ł(a1+a2,b1+b2) .

Definition 5. (Liu[31]). Let ξ be an uncertain variable with a regular uncertainty distributionΦ(x). If the expected value

is available, then

E[ξ ] =
∫ 1

0
Φ−1(α)dα

whereΦ−1(α) is theinverse uncertainty distributionof ξ .

Theorem 1.(Liu [31]). Assumeξ1,ξ2, · · · ,ξn are independent uncertain variables with regular uncertainty distributions

Φ1,Φ2, · · · ,Φn, respectively. If the function f(x1,x2, · · · ,xn) is strictly increasing with respect to x1,x2, · · · , xm and strictly
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decreasing with respect to xm+1,xm+2, · · · ,xn, thenξ = f (ξ1,ξ2, · · · ,ξn) has an inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1−α), · · · ,Φ−1

n (1−α)
)

.

In addition, Liu and Ha [32] shown that the uncertain variableξ has an expected value

E[ξ ] =
∫ 1

0
f
(

Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1−α), · · · ,Φ−1

n (1−α)
)

dα.

Theorem 2. (Liu[31]). Let ξ andη be independent uncertain variables with finite expected values. Since then, for any

real numbers a and b, we obtain

E[aξ +bη ] = aE[ξ ]+bE[η ].

Theorem 3.(Liu[31]). Let g({x,ξ1,ξ2, . . . ,ξn) be constraint function. This function is strictly increasing with respect to

ξ1,ξ2, . . . ,ξk and strictly decreasing with respect toξk+1. ξ1,ξ2, . . . ,ξk are also independent uncertain variables with

uncertain distributionsΦ1,Φ2, . . . ,Φn, respectively, then the chance constraint

M {g({x,ξ1,ξ2, . . . ,ξn)≤ 0} ≥ α

holds if and only if

g
(

{x,Φ−1
1 (α), . . . ,Φ−1

k (α),

Φ−1
k+1(1−α), . . . ,Φ−1

n (1−α)
)

≤ 0.

2.2 Uncertain random variables

Definition 6. An uncertain random variable is a measurable functionξ from a chance space(Γ ,L,M)× (Ω ,A,P) to

the set of real numbers such that{ξ ∈B} is an event inL×A for any Borel setB.

Liu Liu [24] verified that a chance measure meets normality, duality, and monotonicity properties. If an uncertain

random variable turns to an uncertain variable, the chance distribution seems uncertainty distribution of an uncertain

variable. Similarly, if an uncertain random variable turnsto a random variable, the chance distribution seems

probability distribution of a random variable.

Definition 7. Liu [24]. Let (Γ ,L,M)× (Ω ,A,P) be a chance space, and letΘ ∈ L×A. Then the chance measure ofΘ
is defned as

Ch{Θ}=
1
∫

0

Pr{ω ∈ Ω |M {γ ∈ Γ (γ,ω) ∈Θ} ≥ x}dx

Definition 8. Liu [24]. Let ξ be an uncertain random variable. Then its chance distribution is defined by

Φ (x) =Ch{ξ ≤ x}

for any real numberx.
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Definition 9. Liu [24]. Letξ be an uncertain random variable. Then its expected value is defined by

E [ξ ] =
∞
∫

0

Ch{ξ ≥ x}dr−
0
∫

−∞

Ch{ξ ≤ x}dr

provided that at least one of the two integrals is finite.

Definition 10. Liu [24]. Let ξ be an uncertain random variable with regular chance distributionΦ. Then

E [ξ ] =
1
∫

0

Φ−1αdα.

Theorem 4.Liu [25]. Let ξ1,ξ2, ...,ξn be uncertain random variables on the chance space(Γ ,L,M)× (Ω ,A,P) and

also let f : Rn → R be a measurable function. Thusξ = f (ξ1,ξ2, ...,ξn) an uncertain random variable determined by

ξ (γ,ω) = f (ξ1 (γ1,ω1) ,ξ2 (γ2,ω2) , ...,ξn (γn,ωn))

for all (γ,ω) ∈ Γ ×Ω .

Theorem 5. Liu [25]. Let η1,η2, ...,ηm be independent random variables with probability distributionsΨ1,Ψ2, ...,Ψm,

respectively and letτ1,τ2, ...,τn be dependent and/ or independent uncertain variables then the uncertain random variable

ξ = f (η1,η2, ...,ηm,τ1,τ2, ...,τn)

has an expected value

E [ξ ] =
∫

Rm

E [ f (y1,y2, ...,ym, τ1,τ2, ...,τm)]dΨ1 (y1) ,dΨ2 (y2) , ...,dΨm(ym)

where E[ f (y1,y2, ...,ym, τ1,τ2, ...,τm)] is the expected value of the uncertain variable f(y1,y2, ...,ym, τ1,τ2, ...,τm) for

any real numbers y1,y2, ...,ym.

Theorem 6.Liu [25]. Assumeη1 andη2 are random variables,τ1 andτ2 are independent uncertain variables and also

f1 and f2 are measurable functions.Thus,

E [ f1 (η1, τ1)+ f2 (η2, τ2)] = E [ f1 (η1, τ1)]+E [ f2 (η2, τ2)] .

3 Uncertain random programming model for fixed charge multi-item solid transportation

problem

Suppose thatx= (x1,x2, ...,xn) is n− dimensioal decision vector,ξ = (ξ1,ξ2, ...,ξn) is n− dimensional uncertain random

vector,f (x,ξ ) andg j(x,ξ )≤ 0 are the uncertan random objective and constraint functions, respectively. Taking confidence

c© 2018 BISKA Bilisim Technology
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levelsα =
(

α1,α2, ...,αp

)

. Liu [25] formulated the following uncertain random programming model,















min
x

E[ f (x,ξ )], i = 1,2, ...,q

sub ject to

Ch{g j(x,ξ )≤ 0} ≥ α j , j = 1,2, · · · , p
(1)

In a multi item STP there is a multi product to be carried from aset of origins to a set of destinations by a set of both

similar or distinct conveyances. Every origin has such event to provide any of the destinations employing some of the

conveyances and every destination can receive its demand from some of the origins employing some of the conveyances.

Thus, every origin can provide zero, one or more destinations and the demand for each destination can be met by at least

one origin. Each conveyance also is employed for zero, one ormore unlocked ways from the origins to the destinations

via conveyances. An unit cost is cosidered for carrying any quantity of products between the origins and the destinations

via distinct conveyances. The purpose of the multi item STP is to minimize the total transportation cost by obtaining an

optimal outcome of the products communicated in the unlocked directions by distinct conveyances.

Here the following notations are employed in all mathematical models of the multi item STP.

M : the number of origins,

N : the number of destinations,

L : the number of conveyances,

R : the number of items,

i, j,k, p : the indexes used for source, destination and conveyance, respectively.

ap
i : the capacity of products of itemp at originsi ,

bp
j : the demand of products of itemp at destinationj,

ek : the total transportation capacity of conveyancek,

cp
i jk is the unit cost of transporting one unit of itemp from sourcei to destinationj by conveyancek,

t p
i jk is the fixed charge of carrying any amount of itemp from sourcei to destinationj by conveyancek,

xp
i jk is the amount of itemp to be carried from sourcei to destinationj by conveyancek.

yp
i jk is a binary variable, it takes value of 1 if the route from sourcei to destinationj by conveyancek is opened. This

meanst p
i jk > 0. That is, if it is decided to send an amount of product from sourcei to destinationj by conveyancek the

value ofyp
i jk is 1. Otherwise it becomes 0.

Under these notations, a mathematical model of multi item STP can be formulated as follows:















































































f (x) = min
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
cp

i jkxp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
t p
i jkyp

i jk (a)

s.t.































































N
∑
j=1

L
∑

k=1
xp

i jk ≤ ap
i , ∀i ∈ M; ∀p∈ R (b)

M
∑

i=1

L
∑

k=1
xp

i jk ≥ bp
j ,∀ j ∈ N; (c)

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ ek,∀k∈ L (d)

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R (e)

yp
i jk =

{

1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R ( f )

(2)
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The objective function (a) minimizes the total transportation cost which is the sum of each unit cost. Constraint (b) assure

that the whole amount of productp carried from each origin to every destination should not be bigger than the capacity

of that origin. Constraint (c) warrants that the demand for each destination should be replied. Constraint (d) shows the

capacity of each conveyance constraint (e) portray non-negative variables,(f) represent binary variables, respectively.

We suppose thatxp
i jk ,y

p
i jk ,a

p
i ,b

p
j , and ek, are all uncertain random variables.Thus, we take them as uncertan random

varables i.e., the per unit costξ p
i jk , the fixed chargeη p

i jk , the capacity of each origin ˜ap
i , that of each destinatioñbp

j and

each conveyancẽbp
j are all uncertain random variables, respectively.

It means thatf (x,y;ξ ,η) is also uncertain random variables. Sincef has two uncertain random variables, it is hard to

rank them easily. One way of doing this is to convert the uncertain random programming model into the expected value

programming model.

Definition 11. A solution x∗ is referred to as the expected value of uncertain random fixedcharge multi item solid

transportation problem, if

E [ f (x∗,y∗;ξ ,η)]≤ E [ f (x∗,y∗;ξ ,η)]

holds for any feasible solution x.

Thus model(2) can be converted to its expected value programming model under chance constraints, as follows:



























































































min E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
cp

i jkxp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
t p
i jkyp

i jk

]

s.t.







































































Ch

{

N
∑
j=1

L
∑

k=1
xp

i jk ≤ ap
i

}

≥ α p
i , ∀i ∈ M; ∀p∈ R

Ch

{

M
∑

i=1

L
∑

k=1
xp

i jk ≥ bp
j

}

≥ β p
j ,∀ j ∈ N; ∀p∈ R

Ch

{

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ ek

}

≥ γk,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =

{

1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(3)

whereα p
i ,β

p
j ,γk are preconcerted confidence level for∀i ∈ M;∀i ∈ N;∀k ∈ M;∀k ∈ L;∀p∈ R.

In this model, the given parameters are either uncertain andrandom variables. ifap
i ,b

p
j ,ek are uncertain variables, the

change measure degenerates and becomes the uncertainty measure. At the same time, ifap
i ,b

p
j ,ek are random variables,

the change measure degenerates and becomes the probabilitymeasure.

Let us assume that thecp
i jk is

(

cp
i jk

)′
for uncetain variables and

(

cp
i jk

)′′
for random variables. Similarly,t p

i jk is
(

t p
i jk

)′
for

uncetain variables and
(

t p
i jk

)′′
for random variables. Moreover,ap

i ,b
p
j ,ek are

(

ap
i

)′
,
(

bp
j

)′
,(ek)

′ for uncertain variables

and
(

ap
i

)′′
,
(

bp
j

)′′
,(ek)

′′ for random variables.
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Then model (3) can be transformed into an equivalent form as follows:































































































































































min E









R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′
xp

i jk +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′′
xp

i jk +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′
yp

i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′′
yp

i jk









s.t.































































































































M

{

N
∑
j=1

L
∑

k=1
xp

i jk ≤
(

ap
i

)′
}

≥ α p
i , ∀i ∈ M; ∀p∈ R

Pr

{

N
∑
j=1

L
∑

k=1
xp

i jk ≤
(

ap
i

)′′
}

≥ α p
i , ∀i ∈ M; ∀p∈ R

M

{

M
∑

i=1

L
∑

k=1
xp

i jk ≥
(

bp
j

)′}

≥ β p
j ,∀ j ∈ N; ∀p∈ R

Pr

{

M
∑

i=1

L
∑

k=1
xp

i jk ≥
(

bp
j

)′′}

≥ β p
j ,∀ j ∈ N; ∀p∈ R

M

{

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ (ek)
′
}

≥ γk,∀k∈ L

Pr

{

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ (ek)
′′
}

≥ γk,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =

{

1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(4)

Lemma 1. Suppose
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
independent uncertain vaiables with regular uncertainty

distributionsΦ
(ap

i )
′ ,Φ(

bp
j

)′ ,Φ(ek)
′ ,Φ(

cp
i jk

)′ ,Φ(
t p
i jk

)′ , respectively. And also suppose
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
are

independent random vaiables with regular probability distributionsΨ(ap
i )

′ ,Ψ(
bp

j

)′ ,Ψ(ek)
′ ,Ψ(

cp
i jk

)′ ,Ψ(
t p
i jk

)′ . Thus, model (4)

converts into the following conventional mathematical programming model.























































































































































min











R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Φ−1
(

cp
i jk

)′ (α)dα +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Ψ−1
(

cp
i jk

)′′ (α)dα

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
yp

i jk

1
∫

0
Φ−1
(

t p
i jk

)′ (α)dα +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
yp

i jk

1
∫

0
Ψ−1
(

t p
i jk

)′′ (α)dα











s.t.



















































































































N
∑
j=1

L
∑

k=1
xp

i jk ≤ Φ−1

(ap
i )

′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

N
∑
j=1

L
∑

k=1
xp

i jk ≤Ψ−1

(ap
i )

′′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ Φ−1

(bp
i )

′

(

β p
j

)

,∀ j ∈ N; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥Ψ−1

(bp
i )

′′

(

β p
j

)

,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ Φ−1
(ek)

′ (1− γk) ,∀k∈ L

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤Ψ−1
(ek)

′ (1− γk) ,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =

{

1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(5)
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Proof.From Theorem 6 and linear property of the expected value of uncertain random variables, we obtain

E















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′
xp

i jk +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′′
xp

i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′
yp

i jk +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′′
yp

i jk















=























E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′
xp

i jk

]

+E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

cp
i jk

)′′
xp

i jk

]

+E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′
yp

i jk

]

+E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

t p
i jk

)′′
yp

i jk

]

=















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
E

[

(

cp
i jk

)′]

xp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
E

[

(

cp
i jk

)′′]

xp
i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
E

[

(

t p
i jk

)′]

yp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
E

[

(

t p
i jk

)′′]

yp
i jk

=



















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

1
∫

0
Φ−1
(

cp
i jk

)′ (α)dα +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

1
∫

0
Ψ−1
(

cp
i jk

)′′ (α)dα

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

1
∫

0
Φ−1
(

t p
i jk

)′ (α)dα +
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

1
∫

0
Ψ−1
(

t p
i jk

)′′ (α)dα

From Theorem 3, the first uncertain constraints

M

{

N

∑
j=1

L

∑
k=1

xp
i jk ≤

(

ap
i

)′
}

≥ α p
i ,∀i ∈ M;∀p∈ R

are equivalent to the constraints
N

∑
j=1

L

∑
k=1

xp
i jk ≤ Φ−1

(ap
i )

′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

Similarly, other constraints M

{

M
∑

i=1

L
∑

k=1
xp

i jk ≥
(

bp
j

)′}

≥ β p
j ,∀ j ∈ N;∀p∈ R;M

{

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ (ek)
′
}

≥ γk,∀k ∈ L are

equivalent to the inequalities
M
∑

i=1

L
∑

k=1
xp

i jk ≥ Φ−1

(bp
i )

′

(

β p
j

)

,∀ j ∈ N; ∀p ∈ R;
R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ Φ−1
(ek)

′ (1− γk) ,∀k ∈ L,

respectively. However,the first probabilistic constraints

Pr

{

N

∑
j=1

L

∑
k=1

xp
i jk ≤

(

ap
i

)′′
}

≥ α p
i ,∀i ∈ M;∀p∈ R

can be written as:

Pr

{

(

ap
i

)′′ ≥
N

∑
j=1

L

∑
k=1

xp
i jk

}

≥ α p
i ,∀i ∈ M; ∀p∈ R

Then the following inequality can be obtained easily.

1−Ψ

{

N

∑
j=1

L

∑
k=1

xp
i jk

}

≥ α p
i
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That is,

Ψ

{

N

∑
j=1

L

∑
k=1

xp
i jk

}

≤ 1−α p
i

Thus,

Pr

{

N

∑
j=1

L

∑
k=1

xp
i jk ≤

(

ap
i

)′′
}

≥ α p
i

are equivalent to the inequalities
N

∑
j=1

L

∑
k=1

xp
i jk ≤Ψ−1

(ap
i )

′′
(

1−α p
i

)

.

Other constraints can be proven in this way. So the proof is verify.

4 Numerical examples

Example 1.Suppose that
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
are independent uncertain linear vaiables

Ł
(

a(ap
i )

′ ,b(ap
i )

′

)

,Ł

(

a(bp
j )

′ ,b(bp
j )

′

)

,Ł
(

a(ek)
′ ,b(ek)

′

)

,Ł

(

a(cp
i jk)

′ ,b(cp
i jk)

′

)

,Ł

(

a(tp
i jk)

′ ,b(tp
i jk)

′

)

,

and also
(

ap
i

)′′
,
(

bp
j

)′′
,(ek)

′′,
(

cp
i jk

)′′
,
(

t p
i jk

)′′
are the normal probability variables

N

(

µ(ap
i )

′′ ,σ(ap
i )

′′

)

,N

(

µ(bp
j )

′′ ,σ(bp
j )

′′

)

,N
(

µ(ek)
′′ ,σ(ek)

′′

)

,N

(

µ(cp
i jk)

′′ ,σ(cp
i jk)

′′

)

,N

(

µ(tp
i jk)

′′ ,σ(tp
i jk)

′′

)

,

Thus, model (5) transforms into the following equivalent deterministic single objective programming model.

min

















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

a(
cp
i jk

)′+b(
cp
i jk

)′

)

2 xp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

cp
i jk

)′′xp
i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

a(
t
p
i jk

)′+b(
t
p
i jk

)′

)

2 yp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

t p
i jk

)′′yp
i jk

















s.t.



















































































































N
∑
j=1

L
∑

k=1
xp

i jk ≤ α p
i a

(ap
i )

′ +
(

1−α p
i

)

b
(ap

i )
′ , ∀i ∈ M; ∀p∈ R

N
∑
j=1

L
∑

k=1
xp

i jk ≤ µ
(ap

i )
′′ +σ

(ap
i )

′′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ a
(bp

i )
′
(

1−β p
j

)

+b
(bp

i )
′β p

j ,∀ j ∈ N; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ µ
(bp

i )
′′ +σ

(bp
i )

′′β p
j ,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ a(ek)
′ (1− γk)+b(ek)

′γk,∀k∈ L

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ µ(ek)
′′ +σ(ek)

′′ (1− γk) ,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =

{

1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k ∈ L; ∀p∈ R

(6)
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Example 2.Suppose
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
are independent uncertain zigzag variables

Z
(

a(ap
i )

′ ,b(ap
i )

′d(ap
i )

′

)

,Z

(

a(bp
j )

′ ,b(bp
j )

′d(bp
j )

′

)

,Z
(

a(ek)
′ ,b(ek)

′d(ek)
′

)

,Z

(

a(cp
i jk)

′ ,b(cp
i jk)

′d(cp
i jk)

′

)

,Z

(

a(tp
i jk)

′ ,b(tp
i jk)

′d(tp
i jk)

′

)

,

and also
(

ap
i

)′′
,
(

bp
j

)′′
,(ek)

′′,
(

cp
i jk

)′′
,
(

t p
i jk

)′′
are the normal probability variables

N

(

µ(ap
i )

′′ ,σ(ap
i )

′′

)

,N

(

µ(bp
j )

′′ ,σ(bp
j )

′′

)

,N
(

µ(ek)
′′ ,σ(ek)

′′

)

,N

(

µ(cp
i jk)

′′ ,σ(cp
i jk)

′′

)

,N

(

µ(tp
i jk)

′′ ,σ(tp
i jk)

′′

)

,

respectively. Let confidence levelsα p
i ,β

p
j ,γk be greater than 0.5. Then, model (5) transforms into the following equivalent

deterministic single objective programming model.

min

















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

a(
c
p
i jk

)′+2b(
c
p
i jk

)′+d(
c
p
i jk

)′

)

4 xp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

cp
i jk

)′′xp
i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

a(
t p
i jk

)′+2b(
t p
i jk

)′+d(
t p
i jk

)′

)

4 yp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

t p
i jk

)′′yp
i jk

















s.t.



















































































































































N
∑
j=1

L
∑

k=1
xp

i jk ≤
(

2α p
i −1

)

a
(ap

i )
′ +2

(

1−α p
i

)

b
(ap

i )
′ , ∀i ∈ M; ∀p∈ R

N
∑
j=1

L
∑

k=1
xp

i jk ≤ µ
(ap

i )
′′ +σ

(ap
i )

′′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ a(bp
i )

′
(

2−2β p
j

)

+b(bp
i )

′
(

2β p
j −1

)

,∀ j ∈ N; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ µ
(bp

i )
′′ +σ

(bp
i )

′′β p
j ,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ a(ek)
′ (2γk−1)+2b(ek)

′ (1− γk) ,∀k∈ L

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ µ(ek)
′′ +σ(ek)

′′ (1− γk) ,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =







1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(7)

Example 3.Suppose
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
are independent uncertain normal variables

N

(

e(ap
i )

′ ,σ(ap
i )

′

)

,N

(

e(bp
j )

′ ,σ(bp
j )

′

)

,N
(

e(ek)
′ ,σ(ek)

′

)

,N

(

e(cp
i jk)

′ ,σ(cp
i jk)

′

)

,N

(

e(tp
i jk)

′ ,σ(tp
i jk)

′

)

,

and also
(

ap
i

)′′
,
(

bp
j

)′′
,(ek)

′′,
(

cp
i jk

)′′
,
(

t p
i jk

)′′
are the normal probability variables

N

(

µ(ap
i )

′′ ,σ(ap
i )

′′

)

,N

(

µ(bp
j )

′′ ,σ(bp
j )

′′

)

,N
(

µ(ek)
′′ ,σ(ek)

′′

)

,N

(

µ(cp
i jk)

′′ ,σ(cp
i jk)

′′

)

,N

(

µ(tp
i jk)

′′ ,σ(tp
i jk)

′′

)

,
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Thus, model (5) transforms into the following equivalent deterministic single objective programming model.

min















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
e(

cp
i jk

)′xp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

cp
i jk

)′′xp
i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
e(

t p
i jk

)′yp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

t p
i jk

)′′yp
i jk















s.t.















































































































































































N
∑
j=1

L
∑

k=1
xp

i jk ≤ e
(ap

i )
′ +

√
3σ
(a

p
i )

′

π ln
1−α p

i
α p

i
, ∀i ∈ M; ∀p∈ R

N
∑
j=1

L
∑

k=1
xp

i jk ≤ µ
(ap

i )
′′ +σ

(ap
i )

′′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ e(bp
i )

′ +

√
3σ
(b

p
i )

′

π ln
β p

j

1−β p
j
,∀ j ∈ N; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ µ
(bp

i )
′′ +σ

(bp
i )

′′β p
j ,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ e(ek)
′ +

√
3σ
(ep

i )
′

π ln 1−γk
γk

,∀k∈ L

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ µ(ek)
′′ +σ(ek)

′′ (1− γk) ,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =











1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(8)

Example 4.Suppose
(

ap
i

)′
,
(

bp
j

)′
,(ek)

′,
(

cp
i jk

)′
,
(

t p
i jk

)′
are independent lognormal uncertain variables

N

(

e(ap
i )

′ ,σ(ap
i )

′

)

,N

(

e(bp
j )

′ ,σ(bp
j )

′

)

,N
(

e(ek)
′ ,σ(ek)

′

)

,N

(

e(cp
i jk)

′ ,σ(cp
i jk)

′

)

,N

(

e(tp
i jk)

′ ,σ(tp
i jk)

′

)

,

and also
(

ap
i

)′′
,
(

bp
j

)′′
,(ek)

′′,
(

cp
i jk

)′′
,
(

t p
i jk

)′′
are the normal probability variables

N

(

µ(ap
i )

′′ ,σ(ap
i )

′′

)

,N

(

µ(bp
j )

′′ ,σ(bp
j )

′′

)

,N
(

µ(ek)
′′ ,σ(ek)

′′

)

,N

(

µ(cp
i jk)

′′ ,σ(cp
i jk)

′′

)

,N

(

µ(tp
i jk)

′′ ,σ(tp
i jk)

′′

)

,

respectively. Moreover, let
(

cp
i jk

)′
,
(

t p
i jk

)′
be less thanπ/3. Then, model (5) transforms into the following equivalent

deterministic single objective programming model.
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min

















R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
σ(

cp
i jk

)′
√

3exp

(

e(
cp
i jk

)′

)

csc

(

σ(
cp
i jk

)′
√

3

)

xp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

cp
i jk

)′′xp
i jk

+
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
σ(

t p
i jk

)′
√

3exp

(

e(
t p
i jk

)′

)

csc

(

σ(
t p
i jk

)′
√

3

)

yp
i jk +

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
µ(

t p
i jk

)′′yp
i jk

















s.t.







































































































































































N
∑
j=1

L
∑

k=1
xp

i jk ≤ exp

(

e
(ap

i )
′ +

√
3σ
(ap

i )
′

π ln
1−α p

i
α p

i

)

, ∀i ∈ M; ∀p∈ R

N
∑
j=1

L
∑

k=1
xp

i jk ≤ µ
(ap

i )
′′ +σ

(ap
i )

′′
(

1−α p
i

)

, ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ exp

(

e
(bp

i )
′ +

√
3σ
(bp

i )
′

π ln
β p

j

1−β p
j

)

,∀ j ∈ N; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ µ
(bp

i )
′′ +σ

(bp
i )

′′β p
j ,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ exp

(

e(ek)
′ +

√
3σ
(ep

i )
′

π ln 1−γk
γk

)

,∀k∈ L

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ µ(ek)
′′ +σ(ek)

′′ (1− γk) ,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

yp
i jk =











1 i f xp
i jk > 0

0 i f xp
i jk = 0

, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(9)

5 Conclusions

In this paper, uncertain random programming models for the fixed charge multi-item solid transportation problem is

presented. Applying uncertainty and randomness, the modelis transformed into its deterministic form. Then the

deterministic model based on the expected value of each objective under the chance constraints is reduced to classical

single objective programming problems. Also, fixed charge multi-item STP models for each uncertain random variable

are illustrated with numerical examples. It is noted that uncertain random programming can be considered so widely in

real-world applications since uncertain criteria broadlyappear in all kinds of real-world mathematical programming

problems.
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