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Abstract: We present a 2D - mathematical model for tumor angiogenesis and solve it by linearizing it using an initial data perturbation
approximation method. This method is a well-known and highly effective method to obtain solutions of coupled non-linear differential
equations. This method shows that a few terms of the obtainedapproximate solution are enough to get an idea about the movement
of endothelial, macrophage and pericyte cells in the extra cellular matrix, which are needed for the initiation of tumorangiogenesis.
MATLAB-generated figures are provided.
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1 Introduction

Angiogenesis is known as the process through which new bloodvessels form from pre-existing vessels. It is crucial to
tumor growth, but it is not unique to that process: formationof a functional vascular network occurs during
embryogenesis and later in growing tissues. Tumor-inducedangiogenesis provides the crucial link between the avascular
phase of solid tumor growth and the more harmful vascular phase. It is also known that it occurs in three sequential steps
[1]. First, the endothelial cells(EC)lining the vascular basal lamina(BL)(or basement membrane)degrade this membrane.
Second, the EC migrate and proliferate (via mitosis) into the extracellular matrix (ECM). Finally, capillary loops form.
One of the major components of the ECM is fibronectin, a large,highly adhesive glycoprotein particularly abundant in
plasma, connective tissue matrices, and BL [ 2]. It is also known to enhance EC adhesion to collagen and is produced by
EC [3]. As stated in [4, 5] EC are stimulated by a tumor angiogenic factor for angiogenesis to occur. Also, active enzyme
stimulates the EC migration [6]. Once the EC are stimulated,the tendency of them as time evolves is towards the
transition probability density function (TPDF) [7] of active enzyme and fibronectin (see [8] for mathematical proof of
this). Endothelial cell migration and proliferation also occur during endothelial repair in situ; the ability to penetrate the
vascular basement membrane, on the other hand, is an aspect of endothelial cell behavior uniquely expressed during
angiogenesis[9]. We have also introduced pericyte cells (PC) and macrophage cells (MC) to our model to examine their
role in angiogenesis. As stated in [23] PC are adjacent to capillaries. These cell types have a small, oval cell body with
multiple processes extending for some distance along the vessel axis. These primary processes then give rise to
orthogonal secondary branches which encircle the vascularwall and penetrate the BL to directly contact the underlying
endothelium. Tumor cells are also able to attract inflammatory cells, such as MC, which contribute to the production of
angiogenic factors in an environment already enriched withangiogenic stimuli [23].

There have been many mathematical models on tumor angiogenesis (see[10-13] and references therein). For example, in
[11] the authors propose a review and critical analysis of the asymptotic limit methods focused on the derivation of
macroscopic equations for a class of equations modeling complex multicellular systems by methods of the kinetic theory
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for active particles, and in [12] the authors deal with the derivation of macroscopic equations of biological tissues for a
class of nonlinear equations, with quadratic type nonlinearity, modeling complex multicellular systems. Also, in [13] a
continuous model for three early stage events in angiogenesis, initiation, sprout extension, and vessel maturation, is
presented, and in [8,14], a mathematical model for capillary network formation is presented, and a mathematical analysis
of it is given in one and two dimensions, respectively. On theother hand, in [15] the authors study some qualitative
properties of the solutions of a nonlinear flux-limited equation arising in the transport of morphogens in biological
systems, and in [16], to eliminate non biological behaviorsfrom diffusion models the authors introduce flux-limited
spreading, which implies a restricted velocity for morphogen propagation and a nonlinear mechanism of transport.

The lay out of the rest of the paper is as follows. First, we write down our two dimensional model equations [24]. In fact,
the derivation of eq. (5) only may be found in [17]. The otherswill be similar. Also, the details of the derivation of the
one dimensional version of our model can be found in [20]). Second, we linearize our model using an initial data
perturbation method and solve it with some parameter values. Finally, we close the paper by presenting the conclusion
and results section to emphasize the biological importanceof our mathematical analysis.

2 The model

In the x− y plane we envisage a capillary segment of lengthl2 microns located along they axis on the interval[0, l2]
with a tumor source located somewhere along the linex= l1 (Figure1)[8]. We rescalex by x/l1 andy by y/l2 so that this
rectangle becomes a unit square. Therefore, we now have 0≤ x,y≤ 1. Basically, the problem consists of two parts: (i) the
dynamics on they axis, namely, in the capillary (1D model);(ii)the dynamicsin the unit square, namely, in the ECM (2D
model). We couple those two dynamics via some boundary conditions (see [17] for details). An initial data perturbation
solution of the 1D model, a model in which only endothelial cell has been considered as a tumor cell, is obtained in [22],
and an initial data perturbation solution of the 2D model is the focus of this paper.
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Fig. 1: ECM

The following set of differential equations model the angiogenesis mechanisms in the extra cellular matrix (ECM), where
we assume there are no proliferation of cells in the ECM [24]

∂U
∂ t

=−
λ2UM

1+ν2U
, (1)

∂V
∂ t

=
λ2UM

1+ν2U
−

λ1VN
1+ν1V

, (2)
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∂C
∂ t

=
λ1VN

1+ν1V
− µC, (3)

∂F
∂ t

= β (1−F)FN−
λ4CF

1+ν4F
, (4)

∂N
∂ t

= DN∇.

(

N∇
(

ln

(

N
T(C,F)

)))

, (5)

∂S
∂ t

= DS∇.

(

S∇
(

ln

(

S
T3(F)

)))

, (6)

∂M
∂ t

= DM∇.

(

M∇
(

ln

(

M
T4(U)

)))

. (7)

Here

U = chemotactic agent

V = angiogenic factor

C = proteolytic enzyme

F = fibronectin

N = endothelial cell density

S= pericyte cell density

M = macrophage cell density.

The equations (1)-(4) are obtained by using the law of mass action whereas the cell equations (5)-(7) are obtained by
using the reinforced random walk idea [18]. Our initial conditions are
U(x,y,0) = εθ1(x,y),V(x,y,0) = εθ2(x,y),C(x,y,0) = 0, F(x,y,0) = 1,N(x,y,0) = S(x,y,0) = M(x,y,0) = 1, while our
boundary conditions areNx = Sx = Mx = 0 at x= 0,1 and Ny = Sy = My = 0 at y= 0,1.

Hereε is some small positive perturbation parameter. We choose the functionsθi(x,y)(i = 1,2) of the form

θi(x,y) = Ax2(1− x)y,(i = 1,2)

whereA is a constant such that
∫ 1

0

∫ 1

0
θi(x,y)dxdy= 1.

Also, we takeT(C,F) = T1(C)T2(F), whereT1(C) = (C+α1
C+α2

)γ1, andT2(F) = (F+β1
F+β2

)γ2, andT3(F) = (F+α3
F+α4

)γ3, T4(U) =

(U+β3
U+β4

)γ4. Hereαi ,βi andγi are some positive constants such that 0< α1 ≪ 1< α2, 0< β2 ≪ 1< β1, 0< α3 ≪ 1≪ α4

and 0< β3 ≪ 1≪ β4.

3 Model analysis and solutions

To solve our model using initial data perturbation analysiswe let

U(x,y, t) = εU∗(x,y, t,ε), V(x,y, t) = εV∗(x,y, t,ε),
F(x,y, t) = 1− εF∗(x,y, t,ε), C(x,y, t) = εC∗(x,y, t,ε),
N(x,y, t) = 1+ εN∗(x,y, t,ε), S(x,y, t) = 1+ εS∗(x,y, t,ε),
M(x,y, t) = 1+ εM∗(x,y, t,ε),

(8)
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whereε is as above. As it is clear, equations (5)-(7) can be written as follows

∂N
∂ t = DN

∂
∂x

(

N ∂
∂x ln

(

N
T(C,F)

))

+DN
∂
∂y

(

N ∂
∂y ln

(

N
T(C,F)

))

∂S
∂ t = DS

∂
∂x

(

S ∂
∂x ln

(

S
T3(F)

))

+DS
∂
∂y

(

S ∂
∂y ln

(

S
T3(F)

))

∂M
∂ t = DM

∂
∂x

(

M ∂
∂x ln

(

M
T4(U)

))

+DM
∂
∂y

(

M ∂
∂y ln

(

M
T4(U)

))

or, equivalently

∂N
∂ t

= DN

[

∂
∂x

(

Nx−N
T ′

1

T1
Cx−N

T ′
2

T2
Fx

)

+
∂
∂y

(

Ny−N
T ′

1

T1
Cy−N

T ′
2

T2
Fy

)]

(9)

∂S
∂ t

= DS
∂
∂x

(

Sx−S
T′

3

T3
Fx

)

+DS
∂
∂y

(

Sy−S
T′

3

T3
Fy

)

(10)

∂M
∂ t

= DM
∂
∂x

(

Mx−M
T ′

4

T4
Ux

)

+DM
∂
∂y

(

My−M
T ′

4

T4
Uy

)

. (11)

Here
T ′

1

T1
= γ1

α2−α1

(α1+C)(α2+C)
,

T ′
2

T2
= γ2

β2−β1

(β1+F)(β2+F)
,

and
T ′

3

T3
= γ3

α4−α3

(α3+F)(α4+F)
,

T ′
4

T4
= γ4

β4−β3

(β3+U)(β4+U)
.

If we use the variables given by eq. (8), the eqs. (1)-(4) become

εU∗
t =−

λ2εU∗(1+ εM∗)

1+ν2εU∗
,

εV∗
t =

λ2εU∗(1+ εM∗)

1+ν2εU∗
−

λ1εV∗(1+ εN∗)

1+ν1εV∗
,

εC∗
t =

λ1εV∗(1+ εN∗)

1+ν1εV∗
− µεC∗,

−εF∗
t = β εF∗(1− εF∗)(1+ εN∗)−

λ4εC∗(1− εF∗)

1+ν4(1− εF∗)

Letting ε → 0 we obtain the following set of differential equations:

U∗
t =−λ2U

∗, (12)

V∗
t = λ2U

∗
−λ1V

∗, (13)

C∗
t = λ1V

∗
− µC∗, (14)

F∗
t =−βF∗+

λ4

1+ν4
C∗. (15)

Solving (12) yields
U∗(x,y, t,ε) = θ1(x,y)e

−λ2t . (16)

Writing thisU∗ in (13) to get
V∗

t +λ1V
∗ = λ2θ1(x,y)e

−λ2t ,

which is a linear equation whose solution is

V∗(x,y, t,ε) =
λ2

λ1−λ2
θ1(x,y)(e

−λ2t
−e−λ1t)+e−λ1tθ2(x,y). (17)
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Writing thisV∗ in equation (14) and solving the resulting equations we get

C∗(x,y, t,ε) =
λ1λ2

(λ1−λ2)(µ −λ2)
θ1(x,y)e

−λ2t
−

λ1λ2

(λ1−λ2)(µ −λ1)
θ1(x,y)e

−λ1t

+
λ1

µ −λ1
θ2(x,y)e

−λ1t +e−µt
(

λ1λ2

(µ −λ1)(µ −λ2)
θ1(x,y)−

λ1

µ −λ1
θ2(x,y)

)

. (18)

We now write thisC∗ in equation (15) and obtain the solution of the resulting equation as

F∗(x,y, t,ε) =
λ1λ2λ4

(λ1−λ2)(µ −λ2)(β −λ2)(1+ν4)
θ1(x,y)e

−λ2t

−
λ1λ2λ4

(λ1−λ2)(µ −λ1)(β −λ1)(1+ν4)
θ1(x,y)e

−λ1t +
λ1λ4

(µ −λ1)(β −λ1)(1+ν4)
θ2(x,y)e

−λ1t

+
e−µt

β − µ

(

λ1λ2λ4

(µ −λ1)(µ −λ2)(1+ν4)
θ1(x,y)−

λ1λ4

(µ −λ1)(1+ν4)
θ2(x,y)

)

+
e−β t

β − µ

[

λ1λ2λ4θ1(x,y)
(λ1−λ2)(1+ν4)

(

1
(µ −λ1)(β −λ1)

−
1

(µ −λ2)(β −λ2)

)

−
λ1λ2λ4

(µ −λ1)(µ −λ2)(β − µ)(1+ν4)
θ1(x,y)+

λ1λ4

(β − µ)(1+ν4)
θ2(x,y)

]

.

Similarly, if we plug the variables in (8) in equations (9)-(11) we obtain

εN∗
t = DN

∂
∂x

[

εN∗
x − (1+ εN∗)γ1

α2−α1

(α1+ εC∗)(α2+ εC∗)
εC∗

x − (1+ εN∗)γ2
β2−β1

(β1+1− εF∗)(β2+1− εF∗)
(−εF∗

x )

]

+DN
∂
∂y

[

εN∗
y − (1+ εN∗)γ1

α2−α1

(α1+ εC∗)(α2+ εC∗)
εC∗

y − (1+ εN∗)γ2
β2−β1

(β1+1− εF∗)(β2+1− εF∗)
(−εF∗

y )

]

εS∗t = DS
∂
∂x

[

εS∗x − (1+ εS∗)γ3
α4−α3

(α3+1− εF∗)(α4+1− εF∗)
(−εF∗

x )

]

+DS
∂
∂y

[

εS∗y − (1+ εS∗)γ3
α4−α3

(α3+1− εF∗)(α4+1− εF∗)
(−εF∗

y )

]

εM∗
t = DM

∂
∂x

[

εM∗
x − (1+ εM∗)γ4

β4−β3

(β3+ εU∗)(β4+ εU∗)
εU∗

x

]

+DM
∂
∂y

[

εM∗
y − (1+ εM∗)γ4

β4−β3

(β3+ εU∗)(β4+ εU∗)
εU∗

y

]

.

(19)
Letting ε → 0 we obtain

N∗
t = DN

(

N∗
xx−

γ1(α2−α1)

α1α2
C∗

xx+
γ2(β2−β1)

(β1+1)(β2+1)
F∗

xx

)

+DN

(

N∗
yy−

γ1(α2−α1)

α1α2
C∗

yy+
γ2(β2−β1)

(β1+1)(β2+1)
F∗

yy

)

S∗t = DS

(

S∗xx−
γ3(α4−α3)

α3α4
F∗

xx

)

+DS

(

S∗yy−
γ3(α4−α3)

(α3+1)(α4+1)
F∗

yy

)

M∗
t = DM

(

M∗
xx−

γ4(β4−β3)

β3β4
U∗

xx

)

+DM

(

M∗
yy−

γ4(β4−β3)

β3β4
U∗

yy

)

.

(20)

If we compute the constantA above we findA= 24. Thereforeθixx = 48(1−3x)y andθiyy = 0,(i = 1,2).
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On the other hand, we find thatC∗
yy = F∗

yy =U∗
yy = 0, and

C∗
xx = 48(1−3x)y

[

λ1λ2

(λ1−λ2)(µ −λ2)
e−λ2t

−
λ1λ2

(λ1−λ2)(µ −λ1)
e−λ1t

+
λ1

µ −λ1
e−λ1t +e−µt

(

λ1λ2

(µ −λ1)(µ −λ2)
−

λ1

µ −λ1

)]

U∗
xx = 48(1−3x)ye−λ2t

F∗
xx = 48(1−3x)y

{

λ1λ2λ4

(λ1−λ2)(µ −λ2)(β −λ2)(1+ν4)
e−λ2t

−
λ1λ2λ4

(λ1−λ2)(µ −λ1)(β −λ1)(1+ν4)
e−λ1t +

λ1λ4

(µ −λ1)(β −λ1)(1+ν4)
e−λ1t

+
e−µt

β − µ

(

λ1λ2λ4

(µ −λ1)(µ −λ2)(1+ν4)
−

λ1λ4

(µ −λ1)(1+ν4)

)

+e−β t
[

λ1λ2λ4

(λ1−λ2)(1+ν4)

(

1
(µ −λ1)(β −λ1)

−
1

(µ −λ2)(β −λ2)

)

−
λ1λ2λ4

(µ −λ1)(µ −λ2)(β − µ)(1+ν4)
+

λ1λ4

(β − µ)(1+ν4)

]}

.

Therefore, eqs. (21) now have the following form

N∗
t = DN(N∗

xx+N∗
yy)+ f (x,y, t),

S∗t = DS(S∗xx+S∗yy)+g(x,y, t),

M∗
t = DM(M∗

xx+M∗
yy)+h(x,y, t),

(21)

Here

f (x,y, t) =−DN
γ1(α2−α1)

α1α2
C∗

xx+DN
γ2(β2−β1)

(β1+1)(β2+1)
F∗

xx,

g(x,y, t) = DS
γ3(α4−α3)

α3α4
F∗

xx,

h(x,y, t) =−DM
γ4(β4−β3)

β3β4
U∗

xx,

(22)

whereC∗
xx,F

∗
xx andU∗

xx are as above. In fact, equations (22) are all diffusion equations with forcing terms. They are to be
solved with initial conditions

N∗(x,y,0,ε) = S∗(x,y,0,ε) = M∗(x,y,0,ε) = 0,

and boundary conditions

N∗
x = S∗x = M∗

x = 0 at x= 0,1 and N∗
y = S∗y = M∗

y = 0 at y= 0,1.

First we solve the homogeneous part of equations in (22) by the method of separation of variables. To do this we let
N∗(x,y, t,ε) = X(x)Y(y)T(t). Then, we get the following boundary value problem (BVP):

X′′+λX = 0 with X′(0) = X′(1) = 0,
Y′′+ µY = 0 with Y′(0) =Y′(1) = 0,T ′+DN(λ + µ)T = 0.
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If λ = 0 we haveX0(x) = B0 = constant, Y0(y) =C0 = constant.

If λ > 0 we haveλn = n2π2, n= 1,2, · · · with Xn(x) = Bncos(nπx).

If µ > 0 we haveµm = m2π2, m= 1,2, · · · with Ym(y) =Cmcos(mπy).

It is clear that the above BVP has no negative eigenvalues. Thus the above BVP has the eigenvalues
γn,m = λn+ µm = (n2+m2)π2 and the corresponding eigenfunctionsϕnm(x,y) = Xn(x)Ym(y) = cos(nπx)cos(mπy). We
now solve the following inhomogeneous boundary value problem (IBVP):

N∗
t = DN(N∗

xx + N∗
yy) + f (x,y, t) = DN∆N∗ + f (x,y, t) with the initial conditionN∗(x,y,0,ε) = 0 and the boundary

conditionsN∗
x = 0 at x = 0,1 and N∗

y = 0 at y = 0,1. Note thatN∗(x,y, t,ε) can be represented by its series
expansion [21]

N∗(x,y, t,ε) = B+
∞

∑
m,n=1

Bnm(t)ϕnm(x,y). (23)

HereB= 4
∫ 1

0

∫ 1
0 N∗(x,y,0,ε)dxdy= 0 and

Bnm(t) = 4
∫ ∫

D
N∗(x,y, t,ε)ϕnm(x,y)dxdy, (24)

whereD = [0,1]× [0,1]. Differentiating equation (25) with respect to t and using the given partial differential equation
we get

dBnm(t)
dt

= 4
∫ ∫

D

∂N∗

∂ t
ϕnmdxdy= 4

∫ ∫

D
DN(∆N∗)ϕnmdxdy+4

∫ ∫

D
f ϕnmdxdy. (25)

The last integral on the right side is

fnm(t) = 4
∫ ∫

D
f (x,y, t)ϕnm(x,y)dxdy,

which is a known function of t. The first integral on the right can be transformed by Green’s formula, and because
∆ϕnm=−γnmϕnm we obtain

4
∫ ∫

D
DN(∆N∗)ϕnmdxdy=−γnmDN4

∫ ∫

D
N∗ϕnmdxdy+4DN

∫

∂D

(

∂N∗

∂n
ϕnm−N∗ ∂ϕnm

∂n

)

dS

wheren is the outer normal vector to the boundary ofD.

Since both∂N∗

∂n and ∂ϕnm
∂n are zero on∂D, the second integral on the right side is zero. The first integral on the right side

is equal to−γnmDNBnm(t) and hence equation (26) becomes

dBnm

dt
=−γnmDNBnm+ fnm(t). (26)

If we let t → 0 in equation (26) and use the initial conditionN∗(x,y,0,ε) = 0 we get [21]

Bnm(0) = 0. (27)

Solving differential equation (27) with the initial condition (28) gives

Bnm(t) =
∫ t

0
e−γnmDN(t−τ) fnm(τ)dτ. (28)
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Thus the solution of the given IBVP is complete. We now set

c1 =
λ1λ2λ4

(λ1−λ2)(µ −λ2)(β −λ2)(1+ν4)
, c2 =

λ1λ2λ4

(λ1−λ2)(µ −λ1)(β −λ1)(1+ν4)
,

c3 =
λ1λ4

(µ −λ1)(β −λ1)(1+ν4)
,

c4 =
λ1λ2λ4

(β − µ)(µ −λ1)(µ −λ2)(1+ν4)
−

λ1λ4

(β − µ)(µ −λ1)(1+ν4)
,

c5 =
λ1λ2λ4

(λ1−λ2)(1+ν4)

(

1
(µ −λ1)(β −λ1)

−
1

(µ −λ2)(β −λ2)

)

−
λ1λ2λ4

(µ −λ1)(µ −λ2)(β − µ)(1+ν4)
+

λ1λ4

(β − µ)(1+ν4)
,

c6 =
λ1λ2

(λ1−λ2)(µ −λ2)
, c7 =

λ1λ2

(λ1−λ2)(µ −λ1)
, c8 =

λ1

µ −λ1
,

c9 =
λ1λ2

(µ −λ1)(µ −λ2)
.

Then, one has
F∗

xx = 48(1−3x)y
(

c1e−λ2t +(c3− c2)e−λ1t + c4e−µt + c5e−β t
)

,

C∗
xx = 48(1−3x)y

(

c6e−λ2t +(c8− c7)e−λ1t +(c9− c8)e−µt
)

,

U∗
xx = 48(1−3x)ye−λ2t .

We also set,

c10 =−DN
γ1(α2−α1)

α1α2
, c11 = DN

γ2(β2−β1)

(β1+1)(β2+1)
,

c12 = DS
γ3(α4−α3)

α3α4
, c13 =−DM

γ4(β3−β4)

β3β4
.

Therefore, we get
f (x,y, t) = c10C

∗
xx+ c11F

∗
xx, g(x,y, t) = c12F

∗
xx, h(x,y, t) = c13U

∗
xx,

so that these functions can be written as follows

f (x,y, t) = 48(1−3x)y f1(t), g(x,y, t) = 48c12(1−3x)yg1(t), h(x,y, t) = 48c13(1−3x)ye−λ2t ,

where

f1(t) = (c1c10+ c6c11)e
−λ2t +(c10(c3− c2)+ c11(c8− c7))e

−λ1t +(c4c10+ c11(c9− c8))e
−µt + c10c5e−β t

g1(t) = c1e−λ2t +(c3− c2)e
−λ1t + c4e−µt + c5e−β t .
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Thus we obtain

fnm(t) = 192f1(t)
∫ 1

0

∫ 1

0
(1−3x)ycos(nπx)cos(mπy)dxdy=−

2304
(2n−1)2(2m−1)2π4 f1(t), n,m= 1,2, · · · .

Similarly we consider the following two IBVPs:

S∗t = DS(S∗xx+S∗yy)+g(x,y, t),

S∗(x,y,0,ε) = 0, S∗x = 0 at x= 0,1, S∗y = 0 at y= 0,1,
(29)

and
M∗

t = DM(M∗
xx+M∗

yy)+h(x,y, t),

M∗(x,y,0,ε) = 0, ,M∗
x = 0 at x= 0,1, M∗

y = 0 at y= 0,1.
(30)

If the solutions of the equations (30) and (31) are represented by their eigenfunction expansion,

S∗(x,y, t,ε) =C+∑∞
n,m=1Cnm(t)ϕnm(x,y),

M∗(x,y, t,ε) = H +∑∞
n,m=1Hnm(t)ϕnm(x,y),

(31)

respectively, we obtainC= H = 0, and

Cnm(t) = 4
∫ ∫

D S∗(x,y, t,ε)ϕnm(x,y)dxdy,
Hnm(t) = 4

∫ ∫

D M∗(x,y, t,ε)ϕnm(x,y)dxdy.

If we set
gnm(t) = 4

∫ ∫

D g(x,y, t)ϕnm(x,y)dxdy, hnm(t) = 4
∫ ∫

D h(x,y, t)ϕnm(x,y)dxdy, (32)

one obtains
Cnm(t) =

∫ t
0 e−γnmDS(t−τ)gnm(τ)dτ, Hnm(t) =

∫ t
0 e−γnmDM(t−τ)hnm(τ)dτ, (33)

where gnm(t) =
−2304c12

(2n−1)2(2m−1)2π4g1(t), hnm(t) =
−2304c13

(2n−1)2(2m−1)2π4e−λ2t .

On the other hand, we calculate

Bnm(t) =e−γnmDNt
∫ t

0
eγnmDNτ fnm(τ)dτ

=−
2304

(2n−1)2(2m−1)2π4e−γnmDNt
∫ t

0
eγnmDNτ f1(τ)dτ

=−
2304

(2n−1)2(2m−1)2π4e−γnmDNt
∫ t

0
eγnmDNτ

[

(c1c10+ c6c11)e
−λ2τ

+(c10(c3− c2)+ c11(c8− c7))e
−λ1τ +(c4c10+ c11(c9− c8))e

−µτ + c10c5e−β τ
]

dτ

=−
2304

(2n−1)2(2m−1)2π4e−(n2+m2)π2DNt
×

[

c1c10+ c6c11

(n2+m2)π2DN −λ2

(

e((n
2+m2)π2DN−λ2)t −1

)

+
c10(c3− c2)+ c11(c8− c7)

(n2+m2)π2DN −λ1

(

e((n
2+m2)π2DN−λ1)t −1

)

+
c4c10+ c11(c9− c8)

(n2+m2)π2DN − µ

(

e((n
2+m2)π2DN−µ)t

−1
)

+
c10c5

(n2+m2)π2DN −β

(

e((n
2+m2)π2DN−β )t

−1
)

]
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and

Cnm(t) = e−γnmDSt
∫ t

0
eγnmDSτ gnm(τ)dτ

=−
2304c12

(2n−1)2(2m−1)2π4e−γnmDSt
∫ t

0
eγnmDSτ

×

[

c1e−λ2τ +(c3− c2)e
−λ1τ + c4e

−µτ + c5e−β τ
]

dτ

=−
2304c12

(2n−1)2(2m−1)2π4e−(n2+m2)π2DSt
×

[

c1

(n2+m2)π2DS−λ2

(

e((n
2+m2)π2DS−λ2)t −1

)

+
c3− c2

(n2+m2)π2DS−λ1

(

e((n
2+m2)π2DS−λ1)t −1

)

+
c4

(n2+m2)π2DS− µ

(

e((n
2+m2)π2DS−µ)t

−1
)

+
c5

(n2+m2)π2DS−β

(

e((n
2+m2)π2DS−β )t

−1
)

]

,

Hnm(t) = e−γnmDMt
∫ t

0
eγnmDMτhnm(τ)dτ

=−
2304

(2n−1)2(2m−1)2π4e−γnmDMt
∫ t

0
eγnmDMτe−λ2τdτ

=−
2304

(2n−1)2(2m−1)2π4e−(n2+m2)π2DMt 1
DM(n2+m2)π2−λ2

×

(

e((n
2+m2)π2DM−λ2)t −1

)

.

As a result, the solutionsN∗, S∗ andM∗ are all found now. Therefore, the desired solutions of equations (5)–(7) are
N(x,y, t) = 1+ εN∗(x,y, t,ε),S(x,y, t) = 1+ εS∗(x,y, t,ε),M(x,y, t) = 1+ εM∗(x,y, t,ε).

4 Numerical example

The figures below have been generated by using MATLAB with theparameter valuesλ1 = 3.65;λ2 = 2λ1;λ4 = λ2;µ =

0.1;β = 0.025;ν4 = 0.014;γ1 = 1;α1 = .85;α2 = 1;γ2 = 1;β1 = 10;β2= 8;γ3 = 1;α3 = .85;α4 = 1;γ4 = 1;β3 = .85;β4 =

1;DN = 3.6×10−5;DS = 3.6×10−2;DM = 3.6×10−4;ε = 0.01. Figures 2–5 show the chemotactic agent, angiogenic
factor, enzyme, and fibronectin densities, while Figures 6–8 show the endothelial, pericyte and macrophage cell densities
at t = 2, respectively. To obtain the numerical solutions of the cell equations we have used only four terms of the series
given by the eqs. (24) and (32).

5 Conclusion and results

In this paper we have presented a 2D mathematical model for capillary formation in tumor angiogenesis and solved it by
linearizing it using an initial data perturbation method. This method has been applied in [22] to a 1D model, a model in
which only endothelial cell has been considered as a tumor cell and originally presented in [19], and it was very effective
to get the numerical solution of the model. However, in [20] the one dimensional version of the model considered here
has been solved numerically by a classical explicit method which takes too much time to get the solution. We believe that
the initial data perturbation method applied here is much more easier, faster and effective. Even with four-term expansion
of the series solutions we have obtained what we expect to seebiologically for the endothelial, pericyte and macrophage
cell movements in the ECM. This shows the effectiveness of this method. Of course, a more effective solution for the cell
equations can be obtained by expanding more terms of the series solution.

We must also mention the importance of the choices of the functionsθi(x,y) appearing in the initial data. They are the
functions that initiate the dynamics in the model equations. If they are zero, all of the variables in the model stay
dormant, and no action begins in the ECM for the initiation ofangiogenesis.
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Fig. 2: Chemotactic agent att = 2.
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Fig. 3: Angiogenic factor att = 2.
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Fig. 4: Enzyme att = 2.
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Fig. 5: Fibronectin att = 2.
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Fig. 6: Four-term series solution of Endothelial cell equation att = 2.
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Fig. 7: Four-term series solution of Pericyte cell equation att = 2.
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Fig. 8: Four-term series solution of Macrophage cell equation att = 2.
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