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Abstract: We present a 2D - mathematical model for tumor angiogenesisalve it by linearizing it using an initial data perturioat
approximation method. This method is a well-known and higtffective method to obtain solutions of coupled non-lindiéferential
equations. This method shows that a few terms of the obtapedoximate solution are enough to get an idea about the nmeve
of endothelial, macrophage and pericyte cells in the ex¢talar matrix, which are needed for the initiation of tunargiogenesis.
MATLAB-generated figures are provided.
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1 Introduction

Angiogenesis is known as the process through which new blesdels form from pre-existing vessels. It is crucial to
tumor growth, but it is not unique to that process: formatimina functional vascular network occurs during
embryogenesis and later in growing tissues. Tumor-indaogibgenesis provides the crucial link between the avascul
phase of solid tumor growth and the more harmful vasculas@hiais also known that it occurs in three sequential steps
[1]. First, the endothelial cells(EC)lining the vasculashl lamina(BL)(or basement membrane)degrade this membra
Second, the EC migrate and proliferate (via mitosis) indktracellular matrix (ECM). Finally, capillary loops for
One of the major components of the ECM is fibronectin, a lanighly adhesive glycoprotein particularly abundant in
plasma, connective tissue matrices, and BL [ 2]. It is alsowmto enhance EC adhesion to collagen and is produced by
EC [3]. As stated in [4, 5] EC are stimulated by a tumor angmgéctor for angiogenesis to occur. Also, active enzyme
stimulates the EC migration [6]. Once the EC are stimulated,tendency of them as time evolves is towards the
transition probability density function (TPDF) [7] of aati enzyme and fibronectin (see [8] for mathematical proof of
this). Endothelial cell migration and proliferation alsccar during endothelial repair in situ; the ability to pena¢d the
vascular basement membrane, on the other hand, is an aspaudathelial cell behavior uniquely expressed during
angiogenesis[9]. We have also introduced pericyte cell @hd macrophage cells (MC) to our model to examine their
role in angiogenesis. As stated in [23] PC are adjacent tdl@apes. These cell types have a small, oval cell body with
multiple processes extending for some distance along tilseeleaxis. These primary processes then give rise to
orthogonal secondary branches which encircle the vasaatiand penetrate the BL to directly contact the underlying
endothelium. Tumor cells are also able to attract inflammyatells, such as MC, which contribute to the production of
angiogenic factors in an environment already enriched avittiogenic stimuli [23].

There have been many mathematical models on tumor angisig€see[10-13] and references therein). For example, in
[11] the authors propose a review and critical analysis efalymptotic limit methods focused on the derivation of
macroscopic equations for a class of equations modelingplmulticellular systems by methods of the kinetic theory
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for active particles, and in [12] the authors deal with thewdg¢ion of macroscopic equations of biological tissueségo
class of nonlinear equations, with quadratic type nonlityganodeling complex multicellular systems. Also, in |18
continuous model for three early stage events in angioggnegiation, sprout extension, and vessel maturatign, i
presented, and in [8,14], a mathematical model for capilt@twork formation is presented, and a mathematical aisalys
of it is given in one and two dimensions, respectively. On dkiger hand, in [15] the authors study some qualitative
properties of the solutions of a nonlinear flux-limited e arising in the transport of morphogens in biological
systems, and in [16], to eliminate non biological behavioosn diffusion models the authors introduce flux-limited
spreading, which implies a restricted velocity for morpbogropagation and a nonlinear mechanism of transport.

The lay out of the rest of the paper is as follows. First, weentdiown our two dimensional model equations [24]. In fact,
the derivation of eq. (5) only may be found in [17]. The otheil be similar. Also, the details of the derivation of the
one dimensional version of our model can be found in [20]kcdBe, we linearize our model using an initial data
perturbation method and solve it with some parameter vakieslly, we close the paper by presenting the conclusion
and results section to emphasize the biological importahoer mathematical analysis.

2 The modd

In the x—y plane we envisage a capillary segment of lerigtmicrons located along thg axis on the intervalo, l,]

with a tumor source located somewhere along thediae; (Figurel)[8]. We rescalr by x/I; andy by y/I, so that this
rectangle becomes a unit square. Therefore, we now have 9 < 1. Basically, the problem consists of two parts: (i) the
dynamics on thg axis, namely, in the capillary (1D model);(ii)the dynamiicghe unit square, namely, in the ECM (2D
model). We couple those two dynamics via some boundary tondi(see [17] for details). An initial data perturbation
solution of the 1D model, a model in which only endothelidl has been considered as a tumor cell, is obtained in [22],
and an initial data perturbation solution of the 2D modeh&sfiocus of this paper.

y
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Fig. 1: ECM

The following set of differential equations model the anginesis mechanisms in the extra cellular matrix (ECM), eher
we assume there are no proliferation of cells in the ECM [24]
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Here

U = chemotactic agent

V = angiogenic factor

C = proteolytic enzyme

F = fibronectin

N = endothelial cell density

S = pericyte cell density

M = macrophage cell density

The equations (1)-(4) are obtained by using the law of maisrawhereas the cell equations (5)-(7) are obtained by
using the reinforced random walk idea [18]. Our initial caimhs are

U (X,y, 0) = 891(X,y),V(X,y, 0) = SBZ(X,y),C(X,y,O) =0, F(vavo) = 1’N(X7y70) = S(vavo) = M(vavo) =1, while our
boundary conditions aféy = S,=My=0 atx=0,1 and Ny=§=My=0 aty=0,1.

Heree is some small positive perturbation parameter. We choastutictionsg (x,y) (i = 1,2) of the form

GI(va> = sz(lfx)yv (I =1 2)

1 1
/ / & (x,y)dxdy= 1.
0 JO

Also, we takeT (C,F) = T1(C)T(F ), whereTy (C) = (&21)%, andTo(F) = (£54)%, andTs(F) = (F£2)%, T4(U) =

(8%‘53)”4. Hereq;, B andy are some positive constants suchthat 1 < 1< 02, 0< B <1< B, 0< a3k 1<K ay
and 0< B3 < 1 < Ba.

whereA is a constant such that

3 Model analysisand solutions

To solve our model using initial data perturbation analysidet

Uy t) =eU*(x,yt,g), V(X yt) =evVi(xyt,¢),

F(x,yt) =1—eF*(x,y,t,e), C(Xyt)=¢eC*"(X,y,t,€), (8)
N(XYt) =1+ eN* (X, yt,€), SXVyt)=1+€S(XWt,¢),
M(x,y,t) = 1+ eM* (X, \,t, €),
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wheree is as above. As it is clear, equations (5)-(7) can be writtefolows

% = 0ug (Vin () +Ou (N0 ()
3 —bsg (5 (+3)) +Dsg (S5 (3 )
=0 (M&In(5ity)) + oug (MG (7))

or, equivalently

ON 7} Tl' T, 7} T T,
0S__ 9 3’ 9 T3
E— 5(( ST— >+Dsd—y <SyST—3Fy) (10)
9 T 9 T
at —Du < — M2 UX> +Dug <|v|y—|v|T4Uy>. (11)
Here
Tliy1 o, — 0 T—ZIZ)Q B2—B1
L (a1+C)(a2+C)" T, (Bi+F)(B2+F)’
and ,
T 04— 03 Ti Ba—PBs

T PlasrF@+F) T “ErU)BrU)
If we use the variables given by eq. (8), the egs. (1)-(4) beco

AreU*(1+ eM*
suy — 28 (1+eM)
1+ veU*
e N2EU (LA EMY)  AseV: (14 eN’)
t */\ %/+(‘£28Ul*\l) 1+ vievs
1EV*(1+ eN*
* o C*
G 1+ vieV* HEL

A4€C*(1—€F*)

—eR* =BeF*(1—eF*)(1+eN*) — Trvai_eF)

Letting € — 0 we obtain the following set of differential equations:

Ui = —AU*, (12)
Vi =AU — AV, (13)
C' = MV* — uC*, (14)
* * )\4 *
R =—-BF" + 1+v4C . (15)
Solving (12) yields
U (xyt,8) = B1(x y)e 2. (16)

Writing thisU* in (13) to get
Vt* + AV = /\291(X, y)e’)‘zt

which is a linear equation whose solution is

A
VI (xyte) = 2 Biy) (e - e M) e MGy k). (17)
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Writing thisV* in equation (14) and solving the resulting equations we get

‘ _ A1A2 ot A1A2 gt
C*(x,y,t,€) = SIS O1(x,y)e "2t — CTESITEN 61(x,y)e
A1 it g ( A1A2 Ak )
+ u—/\lez(x ye 't e TE RIS 61(xy) —u—/\lez(x’” : (18)

We now write thisC* in equation (15) and obtain the solution of the resultingagigun as

A1A2A4

* _ — Aot
P S R 2B A O
B AA2Ag ety A1Ag At
a2 (= M) (B— M) ve) 2OV B A e v 2OV
g Ht )\1/\2/\4 )\1)\4
i G Ao B0 G g %)
n e*ﬁt |: )\1/\2/\491(X,y) ( 1 1 )
B—t|(Ar—A2)(L+va) \(H=A)(B—A1) (H—A2)(B—A2)
AA2A4 AAa
R T Y )
Similarly, if we plug the variables in (8) in equations (2 we obtain
* * * a;—0q * * BZ_Bl *
gNt - DN%(|:£NX _(1+8N )yl(al+£C*)(az+£C*)8CX_(1+8N )VZ(B1+1€F2(B2E1£F*)(_£FX ):|
* * oz — 01 * * 2 — Pl *
+DN§V{eNy(1+eN MG T e (ap Tec) < ~ (LHeN >V2(B1+1—8F*)(Bz+1—sF*)(er)]
as4—03 *
&5 = DS% {SS*‘_(l—i_gSk)%(aquleF*)(a4+1eF*)(_gF" )}
04— 03 *
+Dsﬁiy [eS{j— (1+gsk)%(a3+1—eF*)(a4+1—eF*) (—€Fy)
x A * * 47[33 *
eEM{" = Dm [SMX (14 eM )y4(B3+8U*)(B4+8U*)
* * 4 — P3 *
+DM%[£MV—(1+£M )y4(Bg+£U*)(B4+£U*)8Uy}
(19)
Letting € — 0 we obtain
x x Vl(az—al) * W(BZ_Bl) *
N = D N a0 C):XX+(B1+1&3(B221))F)
. ynlap—ar) Yo(P2 — 1 *
o G i ) 0)
=D (3§ ¥F*)+D (%MF)
N TN L
. _ « YalPa—P3 « Ya(Psa—P3
M _DM(MXX BB /== Uy; )—i—D (I\/I BB Uyy).

If we compute the constaAtabove we findA = 24. Therefored,, = 48(1—3x)yand6,, =0, (i = 1,2).
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On the other hand, we find th@;y U* =0, and
A1Az ot A1Az gt
s = 48(1— 3x ez — e
Coc = 48( )y[ul T S e Ty
1 7)\t —ut 112 1
+—e "t et -
M- (U=A)(H=A2) H—M
Ugx = 48(1— )ye Ad
MA2As ot
F: =48 e "2
e = 480309 (o T
17224 oMty A1A4 —Aqt
()\1 —A2) (U= A1)(B —~ A1)(1+va) (U =A1)(B—A1)(1+va)
+ )\1)\2/\4 /\1/\4

B—u \(U—A)(H—A2)(1+Va) (1 —A2)(1+Va)
+e3t{ Mok 1 - 1 >
(A1=22)(L+va) \ (U =A)(B—A1) (U—=A2)(B—A2)
B 1424 n A1As }}
(H=2A)(U=A2)(B—H)(L+Vva)  (B—H)(1+Va)

Therefore, egs. (21) now have the following form

N = Dn(Ng+ Njy) + F(x,y,1),
§ = Ds(Sx+ Sy) +9(x,y,t), (21)

Mt - DM(M* +M* )+h(X,y,t),

Here
ol —a) yp(B2—B1) .
f(X, yat) - I:)N 701(12 CXX+ I:)N —(Bl T 1) (Bz+ 1) FXX7
_ V3(a4 - 03) *
g(X7 yvt) = DSW Fxxa (22)
o Ya(Ba—Ba) -
h(x,y,t) = —Dwm Bofa ————Ugy,

whereC;,, K, andUy, are as above. In fact, equations (22) are all diffusion égostvith forcing terms. They are to be
solved with initial conditions

N*(X7y707£):S*(X7y707€):M*(X7y707€):05
and boundary conditions
=S =My=0 at x=0,1 and Ny=§=My=0 at y=0,1.

First we solve the homogeneous part of equations in (22) bynbthod of separation of variables. To do this we let
N*(x,y,t,€) = X(X)Y(y)T(t). Then, we get the following boundary value problem (BVP):

X" +AX=0 with X/(0)=X/(1)=0,
Y4+ uY =0 with Y'(0)=Y'(1)=0,T'+DnA + )T =

(© 2018 BISKA Bilisim Technology
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If A =0 we haveXy(x) = By = constant Yp(y) = Cp = constant
If A >0we havel, =n?®, n=12--- with Xy(x)= Bpcognmnx).
If u>0we haveum=nm?m®, m=12--- with Yn(y) =Cncogmmny).

It is clear that the above BVP has no negative eigenvaluess Tthe above BVP has the eigenvalues
Yam = An+ pim = (n? + m?) 12 and the corresponding eigenfunctiofign(X,y) = Xn(X)Ym(y) = cognrmx)cogmry). We
now solve the following inhomogeneous boundary value goh(IBVP):

N* = DN(Ng + Njy) + F(X,y,t) = DNAN® + f(x,y,t) with the initial conditionN*(x,y,0,¢) = 0 and the boundary
conditionsNy =0 at x=0,1 and Ny=0 at y=0,1 Note thatN*(x,y,t, &) can be represented by its series
expansion [21]

N*(x,y,t,€) =B+ i Brm(t) dnm(X,y). (23)

mn=1

HereB = 4 [3 [ N*(x,,0,&)dxdy= 0 and

Bnm(t) 4// N*(X, ¥, t, &) dnm(X, y)dxdy (24)

whereD = [0,1] x [0, 1]. Differentiating equation (25) with respect to t and using tiven partial differential equation
we get

da"“ —4f [ 5 N 4 elxdy= 4 | | on(aN ) guntixay+- [ [ tonmaxay (25)

The last integral on the right side is

fam(t) = 4 / / (%Y, ) Brm(%, y)dxdy

which is a known function of t. The first integral on the riglatncbe transformed by Green’s formula, and because
Ad’nm = _Vnm¢nm we obtain

n n n n aN* a
4 / / DN (AN*) $mdxdy= — yarDnd / / N* $rmdxdy-+ 4Dy / ( B — N ¢”m> ds
Jo J Jo Jop on

wheren is the outer normal vector to the boundarynf

Since bothal and ’M”m are zero oD, the second integral on the right side is zero. The first iratlean the right side
is equal to— yanN Bnm( ) and hence equation (26) becomes

dBum

at —YhmDNBnm+ fam(t). (26)

If we lett — 0 in equation (26) and use the initial conditiNii(x,y,0, &) = 0 we get [21]

Solving differential equation (27) with the initial conidit (28) gives

t
Bum(t) = /0 e WONE-T) £ ydr. (28)

(© 2018 BISKA Bilisim Technology
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Thus the solution of the given IBVP is complete. We now set

o — A1A2A4 o — A1A2A4
T M)A (B-A)A+va) T (= A2) (= A1)(B—Ar)(1+va)’
A1y
03 - ’
(H=A1)(B—A1)(1+ va)
6t = A1AoA4 B A1y

(B—H(H—AD(H—A2)(1+Vva) (B—H)(H—A)(L+Va)’

Yy 1 - 1
T M- AT+ va) ((ummm (u)\z)(B)\z))

AA2A4 A1

M- M)B-mAtva)  B-patve)

o A1Ao o A2 o A

T M)A T M)Ay P p—AL
A2

(U—=A1)(H—A2)

Then, one has
Fi = 48(1—3x)y (cre 2 + (c3 — Cp)e Mt + cqe M 4 cse Pl

Cix = 48(1— 3x)y (Coe™ ' + (Cg — C7)e Mt + (cg — cg)e™H),

Uy, = 48(1— 3x)ye M.

We also set,
yi(az—a1) y2(B2—B1)
Clo= Dy ¢ =Dy PV
10 N a10> 11 N (B1+1)(B+1)
ys(aa — a3) y4(Bs — PBa)
Cip=Dg——*, Cci3=-Dy————.
TS aay 1 M BaBa

Therefore, we get
f(X, yat) = ClOC;:X"i_ CllFX*Xa g(X, yat) = ClZFX*xv h(X7 yvt) = C13U;X7

so that these functions can be written as follows
f(Xv yvt) = 48(1 - SX)yfl(t)v g(X, yat) = 48(:12(1 - SX)ygl(t)v h(X, yvt) = 48C13(1 - 3X)ye7A2t7
where

f1(t) = (C1C10+ CoC11)€ 2 + (Cr0(C3 — C2) + C11(Cs — €7))€ 1" + (CaC10+ C11(Co — Cg) )€ H! + Crocse™ P

Mt

g1(t) = cre ™ + (c3—cp)e M + cue M +cse Pl

(© 2018 BISKA Bilisim Technology
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Thus we obtain

1,1 2304
fam(t) = 1921‘1(t)/O /0 (1— 3x)ycognmx)cogmry)dxdy= ~ o 12emo1e fi(t), nm=12---.

Similarly we consider the following two IBVPs:

§ = Ds(Sx+ Fy) +9(x¥:1),

(29)
S'(xy,0,6)=0, §=0 at x=01, §=0 at y=0,1,
and
M = D (M +Myy) +h(x v, ),
(30)
M*(x,y,0,6) =0, ,My=0 at x=0,1, My=0 at y=0,1
If the solutions of the equations (30) and (31) are represtoy their eigenfunction expansion,
S*(Xv yvta ‘g) = C+ z:nblcnm(t)‘pnm(xv Y),
(31)
M*(x,y,t,€) =H + z;omzl Hnm(t) $nm(X,y),
respectively, we obtai@ =H =0, and
Cnm(t) = 4fst*(X,y,t,8)¢nm(x,y)dXdy
Hnm(t) = 4ffDM*(Xayat78)¢nm(xay)dXdy
If we set
Onm(t) =4[ [5 9% Y, t)dam(X,y)dxdy ham(t) =4 [ [p h(X,y,t) dnm(X, y)dxdy (32)
one obtains
Com(t) = Joe mPst=Tgun(T)dT, Ham(t) = Jge hmPut=Dhy(1)dr, (33)

B —2304;; B —23043 e
where gnm(t) = (2n—1)2(2m—1)2n491(t)’ hnm(t) = (2n—1)2(2m—1)2n4€ .

On the other hand, we calculate

t
Bnm(t) :eiyhmDNt/ eyhmDNTfnm(T)dT

0
2304

t
= — —YhmDnt YhmDN T
(2n—1)2(2m— 1)2714e /o © fu(r)dr

2304 t
- _ —YhmDnt YhmDN T —A2T

+ (c10(C3 — C2) + C11(Cs — C7) )€ M7 + (CaCr0+ C11(Co — Cg) )& HT + cloc5eBT] dr

2304 — (nP4+m2) 2Dyt C1C10+ CeC11 <e<<n2+m2>nZDN42)t a 1)
(2n—1)2(2m—1)2m* (N2 +mP) 2Dy — A2

C10(C3 — C2) + C12(Cs — C7) (e((n2+mZ)nZDN—A1>t _ 1) n C4C10+ C11(Co — Cg) (e((n2+mz)n20N—u>t _ 1)
(N2 +m2) 2D — A1 (N2 +m?) 2Dy — U

+ i (978
-

+

(© 2018 BISKA Bilisim Technology
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and

t
Cnm(t) - efw’lmDSt/‘O eW'ImDSTgnm(T)dT

- 2304312 —YhmDst /‘t YamDsT —A2T —A1LT —HT —BT
= Gno1)2em- 1)27146 I e X [Cle +(c3—Cp)e T +cge M+ cs€ }dr
_ 2304:12 ef(n2+m2)H2Dst % C1 (e((n2+m2)T[2Dsz2)t o 1)
(2n—1)2(2m—1)2m* (N2 +m?)2Ds — A,
CG3—C2 (N2+mP)m2Dg—A)t Cq (N2+m?)m2Dg— )t _
+ (N2 +m2)2Ds — Ay (e 1) * (2 +m2)mDs— (e 1)

)

* (n2+ mZ():jTZD B (e((n2+m2)rr2Dgfﬁ)t a 1) }
o

t
Hnm(t) — efyanMt/‘ eyanM Thnm(T)dT
0
2304 t
- _ — YhmDmt YhmDM T o—A2T
(2n—1)2(2m—1)22° /o e dr
2304 o (NP +m2) Dyt 1 % (e((n2+n12)n2DM —A)t _ 1)
(2n—1)2(2m— 1)2m* Dm(n2+m2)m2 — A, '

As a result, the solutiond*, S* andM* are all found now. Therefore, the desired solutions of éqnat(5)—(7) are
N(X,y,t) =1+ eN*(x, ¥, t,€),S5(X,¥,t) = 1+ €S (X, Y,1,€),M(X,y,t) = 14+ eM*(x, y,t, €).

4 Numerical example

The figures below have been generated by using MATLAB withpdwameter values; = 3.65;A2 = 2A1; A4 = Ag; U =
0.1;8=0.025v4=0.014;1 =1;01 = .85;02=1;)b=1;81=10;5,=8;\5=1;03=.85;a, = 1;ya = 1; 33 = .85, B4 =
1:DNy =3.6x 107 Ds= 3.6 x 10 %Dy = 3.6 x 10 % ¢ = 0.01. Figures 2-5 show the chemotactic agent, angiogenic
factor, enzyme, and fibronectin densities, while Figurés$how the endothelial, pericyte and macrophage cell dessit
att = 2, respectively. To obtain the numerical solutions of thikeguations we have used only four terms of the series
given by the eqgs. (24) and (32).

5 Conclusion and results

In this paper we have presented a 2D mathematical model fdfarg formation in tumor angiogenesis and solved it by
linearizing it using an initial data perturbation methothiSfmethod has been applied in [22] to a 1D model, a model in
which only endothelial cell has been considered as a tunibare originally presented in [19], and it was very effeetiv

to get the numerical solution of the model. However, in [2G} bne dimensional version of the model considered here
has been solved numerically by a classical explicit methbittakes too much time to get the solution. We believe that
the initial data perturbation method applied here is mucheneasier, faster and effective. Even with four-term exjmms

of the series solutions we have obtained what we expect tbiskmgically for the endothelial, pericyte and macrophage
cell movements in the ECM. This shows the effectivenessisfitiethod. Of course, a more effective solution for the cell
equations can be obtained by expanding more terms of thesssiution.

We must also mention the importance of the choices of thetiome6g (x,y) appearing in the initial data. They are the
functions that initiate the dynamics in the model equatidhshey are zero, all of the variables in the model stay
dormant, and no action begins in the ECM for the initiatiomogiogenesis.

(© 2018 BISKA Bilisim Technology
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U(x,y,t), Chemotactic Agent
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V(x,y,t), Angiogenic Factor
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F(x,y.t), Fibronectin
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M(x,y,t), MC density

Fig. 8: Four-term series solution of Macrophage cell equatidn-ag.
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