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Abstract: In this paper, we have established the existence and representation of group inverse for 2×2 block matrix over the field of
complex numbersC in Minkowski spaceM . Further, for various types of block matrices the characterization theorems for the existence
of group inverse are determined.
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1 Introduction

LetC be a field of complex numbers and letFn(C) be the set of all matrices overC. ForA∈ Fn(C), the matrixX ∈ Fn(C)

is said to be the group inverse ofA if it holds that

AXA= A, XAX= X, AX = XA

It is well known that if the group inverse of a complex square matrix exists then it is unique and denoted byX = A♯ [1].

The generalized inverse of block matrix has important applications in statistical probability, mathematical programming,

numerical analysis, econometrics, game theory, control theory etc. For reference see [3,4,5]. The research on the

existence and representation of the group inverse for blockmatrices in Euclidean space has been done in wide range. For

the literature of the group inverse of block matrix in Euclidean space see [6,7,8,9,10,11,12].

In [13] the existence of anti-reflexive with respect to the generalized reflection anti-symmetric matrixP∼ and solution of

the matrix equationAXB= C in Minkowski spaceM is given. In [14] necessary and sufficient condition for the

existence of Re-nnd solution has been established for the matrix equationAXA∼ =C whereP,Q∈ Fn(Cn) andC∈Cn×n.

In [15] partitioned matrixM∼ in Minkowski spaceM was taken in the formM∼ =

[

A∼ −C∼G1

−G1B∼ D∗

]

to yield a

formula for the inverse ofM∼ in terms of the Schur complement ofD∗. In [17] the existence and representation of the

group inverse for block matrixM =

[

P∼ P∼

Q∼ 0

]

(P,Q ∈ Kn×n, whereP,Q ∈ Fn(C),(P∼)2 = P∼) and for other matrices

over skew fields in Minkowski space are given.

Minkowski SpaceM is an indefinite inner product space, in which the metric matrix associated with the indefinite inner

product is denoted byG and is defined as

G=

[

1 0

0 −In−1

]

, satisfyingG2 = In andG∗ = G.
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G is called the Minkowski metric matrix.In denotes then × n identity matrix. In caseu ∈ Cn, indexed as

u= (u0,u1, ...,un−1), G is called the Minkowski metric tensor and is defined asGu= (u0,−u1, ...,−un−1) [13]. For any

P∈Cn×n, the Minkowski adjoint ofP∈ Fn(C) denoted byP∼ is defined asP∼ = GP∗G whereP∗ is the usual Hermitian

adjoint andG the Minkowski metric matrix of ordern.

In this paper, we study the existence and representation of group inverse of some special type of block matrices formed

from the set of matrices{F,F∼,FF∼}, whereF is an idempotent matrix andF∼ is the Minkowski adjoint ofF and the

cross-sectional block matrices formed from the above set ofmatrices are

[

FF∼ F

F 0

]

,

[

F F

FF∼ 0

]

,

[

FF∼ FF∼

F 0

]

,

[

F F

F∼ 0

]

,

[

F FF∼

FF∼ 0

]

,

[

F FF∼

F∼ 0

]

and

[

F∼ F

F 0

]

.

2 Lemmas

Lemma 1. [2] Suppose that A∈ C
m×n, B ∈ C

n×m and if the group inverses of AB and BA exists, then the following

conditions hold.

(i) (AB)♯ = A((BA)♯)2B,(BA)♯ = B((AB)♯)2A;

(ii) (AB)♯A= A((BA)♯),(BA)♯B= B(AB)♯;

(iii) A(BA)♯B= (AB)♯AB,B(AB)♯A= (BA)♯BA;

(iv) AB(AB)♯A= AB(AB)♯A= A,BA(BA)♯B= B

Lemma 2. Let F ∈ Fn(C) then(FF∼)♯ and(F −F∼)♯ exists and

(i) there is a G-unitary matrix U such that

F =U

[

Ir P

0 0

]

U∼ (1)

FF∼ =U

[

G 0

0 0

]

U∼,G= Ir −PP∗ (2)

(F −F∼)♯ =U

[

0 P(P∗P)♯

(P∗P)♯P∗ 0

]

U∼ (3)

(ii) F(FF∼)♯ = (FF∼)♯ = (FF∼)♯F∼.

Proof. (i) By Theorem 2.3.1 of [16] we have aG-unitary matrixU such that

F =U

[

Q P

0 R

]

U∼,

whereQ is anr × r invertible upper triangular matrix andR is an upper triangular matrix with all diagonal elements zero.

Then fromF2 = F we haveQ= Q2 andR= R2, which givesQ= Ir andR= 0, hence (1) holds. Also,

F∼ =U

[

Ir 0

−P∗ 0

]

U∼

Now
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FF∼ =U

[

Ir −PP∗ 0

0 0

]

U∼ =U

[

G 0

0 0

]

U∼, G= Ir −PP∗

SinceFF∼ andF −F∼ are both hermitian matrices and their group inverse exists.To prove (3) we have

F −F∼ =U

[

0 P

P∗ 0

]

U∼.

Let X =

[

0 P

P∗ 0

]

andM =

[

0 P(P∗P)♯

(P∗P)♯P∗ 0

]

then by Lemma (1) and by the direct computation we have

MX = XM =

[

(PP∗)♯PP∗ 0

0 (PP∗)♯PP∗

]

.

Also we can check thatMXM = M andXMX = X and hence (3) holds.

(ii) It is easy to check this conclusion so proof is omitted.

3 Main results

Theorem 1. Suppose that F∈ Fn(C) and M=

[

FF∼ F

F 0

]

. Then M♯ exists and

M♯ =

[

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

]

(4)

Proof. Denote the right hand side of the equation(4) by X. Also we haveF2 = F , then

MXM =

[

FF∼ F

F 0

][

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

][

FF∼ F

F 0

]

=

[

F3F∼ F3

(FF∼)2−FF∼F2F∼+F2 FF∼F −FF∼F2

]

=

[

FF∼ F

F 0

]

= M

XMX =

[

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

][

FF∼ F

F 0

][

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

]

=

[

FF∼F −FF∼F2+F2F∼−F2P∼F F2

(FF∼)2F2− (FF∼)2F +F2−FF∼F2F∼F −FF∼F2

]

=

[

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

]

= X
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MX =

[

FF∼ F

F 0

][

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

]

=

[

F 0

FF∼−FF∼F F

]

XM =

[

FF∼(In−F) F

(FF∼)2(F − In)+F −FF∼F

][

FF∼ F

F 0

]

=

[

F 0

FF∼−FF∼F F

]

MX = XM

ThusM♯ = X

Theorem 2. Suppose that F∈ Fn(C) and M=

[

F F

FF∼ 0

]

. Then M♯ exists and

M♯ =

[

(FF∼)♯(F − In) (FF∼)♯F

FF∼(FF∼)♯− (FF∼)♯(F − In) − (FF∼)♯F

]

(5)

Proof. Let X denote the right-hand side matrix of(5). By F2 = F i.e.F is idempotent,(iv) of Lemma 1 and by definition

of group inverse we have

MX = XM =

[

FF∼(FF∼)♯ 0

F −FF∼(FF∼)♯ F

]

Similarly we can see thatMXM = M andXMX = X. ThusM♯ = X.

Theorem 3. Suppose that F∈ Fn(C) and M=

[

FF∼ FF∼

F 0

]

. Then M♯ exists and

M♯ =

[

−F +FF∼(FF∼)♯ FF∼(FF∼)♯

F −FF∼(FF∼)♯+(FF∼)♯F −FF∼(FF∼)♯

]

(6)

Proof. DenoteM♯ by X in (6). By the definition of group inverse and Lemma 1 and 2 we have

MX = XM =

[

F 0

FF∼(FF∼)♯−F FF∼(FF∼)♯

]

Similarly by direct computation we can haveMXM = M andXMX = X. ThusM♯ = X.

Theorem 4. Suppose that F∈ Fn(C) and M=

[

F F

F∼ 0

]

. Then M♯ exists and

M♯ =

[

(FF∼)♯(F − In) (FF∼)♯F

F∼(FF∼)♯+F∼((FF∼)♯)2(In−F) − (F∼F)♯

]

(7)

Proof. DenoteM♯ by X in equation(7). Using Lemma 1 and 2 and the fact thatF2 = F we get
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MX = XM =

[

FF∼(FF∼)♯ 0

F∼(FF∼)♯(F − In) F∼(FF∼)♯F

]

Similarly we can prove thatMXM = M andXMX = X. ThusM♯ = X.

Theorem 5. Suppose that F∈ Fn(C) and M=

[

F FF∼

FF∼ 0

]

. Then M♯ exists and

M♯ =

[

((FF∼)♯)2(F − In) (FF∼)♯

((FF∼)♯)3(In−F)+ (FF∼)♯ − ((FF∼)♯)2

]

(8)

Proof. DenoteM♯ by X in equation(8). By the definition of group inverse and Lemma 1 and 2 and by the fact thatF2 = F

we get

MX = XM =

[

FF∼(FF∼)♯ 0

(FF∼)♯(F − In) FF∼(FF∼)♯

]

Similarly we can prove thatMXM = M andXMX = X. ThusM♯ = X.

Theorem 6. Suppose that F∈ Fn(C) and M=

[

F FF∼

F∼ 0

]

. Then M♯ exists and

M♯ =

[

FF∼(F − In) FF∼(FF∼)♯

F∼(FF∼)♯− (F∼F)♯+F∼((FF∼)♯)2 −F∼(FF∼)♯

]

(9)

Proof. DenoteM♯ by X in equation(9). By the definition of group inverse and Lemma 1 and 2 and by the fact thatF2 = F

we get

MX = XM =

[

FF∼(FF∼)♯ 0

F∼(FF∼)♯(F − In) F∼

]

Similarly we can prove thatMXM = M andXMX = X. ThusM♯ = X.

Theorem 7. Suppose that F∈ Fn(C) and M=

[

F∼ F

F 0

]

. Then M♯ exists and

M♯ =

[

((F −F∼)♯)2(In−F) (F −F∼)♯F∼F +F

FF∼(FF∼)♯[In− ((F −F∼)♯)2+(In−F)] −F∼(F −F∼)♯F∼F −F∼F

]

(10)

Proof. Let us denote the right-hand side matrix in(10) by X =

[

X1 X2

X3 X4

]

, whereXi ∈C
n×n, i = 1,2,3,4. Since by Lemma

(2) there is a unitary matrixU such that(1),(2)and(3) holds and alsoF2 = F . Now by Lemma 1 and 2 we have

X1 =U

[

0 (P∼P)♯P

0 −(P∼P)♯

]

U∼,

X2 =U

[

In−P(P∼P)♯P∼ 0

(P∼P)♯P∼ (P∼P)♯P∼F

]

U∼,

X3 =U

[

In −(P∼P)♯P

0 0

]

U∼,

X4 =U

[

In−P(P∼P)♯P∼ 0

0 0

]

U∼,
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So, we can rewriteM andX as following

M =

[

U 0

0 U

]











Ir 0 Ir P

−P∗ 0 0 0

Ir P 0 0

0 0 0 0











[

U∼ 0

0 U∼

]

X =

[

U 0

0 U

]











0 P(P∗P)♯ Ir −P(P∗P)♯P∗ 0

0 −(P∗P)♯ (P∗P)♯P∗ (P∗P)♯P∗P

Ir −P(P∗P)♯ − Ir +P(P∗P)♯P∗ 0

0 0 0 0











[

U∼ 0

0 U∼

]

Now by using Lemma 1 and 2, we get

MX = XM =

[

U 0

0 U

]











Ir 0 0 0

0 (P∗P)♯P∗P 0 0

0 0 Ir P

0 0 0 0











[

U∼ 0

0 U∼

]

It is now easy to check thatMXM = M andXMX = X and the proof is complete.

4 Conclusion

We extend the main results of [9] on block matrices from Euclidean space into Minkowski space. We also extend the

Hermitian adjoint into Minkowski adjoint to get the group inverse of block matrices in Minkowski space.
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