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Abstract: The main objective of this article is to present an efficient numerical method to solve the delay differential equation of
fractional order. We use the Caputo ’s fractional derivative for solving the fractional differentiation. The properties of shifted Chebyshev
polynomials are exploited to reduce the Delay Fractional Differential Equation (DFDE) to a linear or non-linear easilysolvable system
of algebraic equations. A comparison is given between the present method and Adomian Decomposition Method (ADM) with the
help of solved numerical illustrative example. The resultsshows that proposed method is very effective and simple. Which reveals the
validity and applicability of the method.
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1 Introduction

In recent years, fractional calculus has become more important than the ordinary calculus. The ordinary calculus has

achieved the discovery at its peak point. That’s why, the mathematician and researchers feel the need of fractional

calculus. Fractional Differential Equations (FDEs) is generalization of Ordinary Differential Equations (ODEs) because

FDEs describe values on each point continually and distinguished the gaps between the two integers. This is the reason

that after the discovery of fractional calculus, it is observed that FDEs have more real in natural phenomena than to the

ODEs [5-6]. As far as the geometrical and physical interpretation of integer order differentials and integrals are

concerned, they have the clear physical interpretation in calculus. Fractional derivative and integral are actually the

superset of the ordinary or integer order derivative and integral and hence fractional derivative and integral give more

deep result and realistic natural phenomena than the ordinary or integer order derivative and integral ones. The

geometrical interpretation of Integer order differentialand integration can be seen in classical geometry whereas some

researchers seek the geometrical interpretation of fractional differential and integral in fractal geometry as the classical

geometry is the subclass of fractal geometry [23,30].

The study of FDEs in fractional calculus is one of the most popular subject in many mathematical scientific areas

including the image processing, earthquake and biomedicalengineering , viscoelasticity [3], finance [25], hydrology[4]

and control system [1]. In all these fields of studies, it is important to find out the exact or approximate solutions of

FDEs but unfortunately we do not have any method to find the exact solution of such type of FDEs so therefore we use

approximation to the exact solution. To find out the exact solution of such type of FDEs and other scientific application is

very difficult task in mathematics. The exact solution help us to understand the mechanism and complexity of the

problem as compare to the approximate solution [30]. To obtain the exact analytic solutions of FDEs, it is very difficult
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and some time impossible to deal with the complexities computations in these equations. So it is better to look for some

useful approximations and numerically techniques such as variation iteration method [9], homotopy perturbation

method [27], collection method [16-20], Galerkin method, Laplace transform and Fourier transform methods and other

methods [2,7,8,10,11,12,13,15,22].

The DFDEs are the differential equations in which derivative of unknown function at some certain point is given in terms

of the values of the function at previous time. The fraction are also called the Time-Delay System or sometime, Dead

-Time System. The fractional partial differential equations with delay have attracted a significant attention of the

scientists and researchers due to their frequent appearance in the models of actual applications in the last decades. The

DFDEs are mostly used in medical sciences, networks, cell biology, control theory, climate models and many

others [30]. The delay term in the fractional partial differential equation does not only make more difficult and

complicated to the exact solution but also change the long time dynamic property of system. This is the reason that

makes researcher to attract such type of equations for simulation.

The DFDEs (Delay Fractional Differential Equations) have been solved by various mathematician and researchers in

literature. But the most recent numerical solution of DFDEsare solved by M.A Iqbal el at.[14] (2013) by Chebyshev

wavelets numerical technique , M.M Khader and A.S Hendy [16](2015), used the legendre seudospectral method , N.

Mahmoud Sherif el at. [21] (2014) used the spline functions technique, H. Osama Mohammed and Abbas I. Khlaif [24]

(2014) used Adomian Decomposition Method (ADM).

The organization of this paper is as follows: In section 2, weintroduce some notations and definitions regarding to

Caputo’s fractional derivatives and delay differential equation of fractional order. In section 3, we introduce Chebyshev

polynomials on interval [-1,1] and shifted chebyshev polynomials on the interval [0,1] and find the approximate formula

for fractional derivative with weight function. In section3, we give the procedure for solving DFDE and collocate

formulated equation at some suitable points together with boundary values conditions. In section 4, we present two

numerical examples to show the validity of the method. In this section we compare the solution of one of the example

with example solved in [24] and find that our solved example give more accuracy to the exact solution than the one’s in

[24]. Also the graphically comparison between the exact andapproximate values by the proposed method are

given. Finally in last section, we give some remarks about calculations and graphs in our paper.

2 Preliminaries and notations

Definition 1.The Caputo’s fractional derivative w.r.t x of orderα denoted byd
(α) f (x)

dx and defined as follows:

d(α) f (x)
dx

=
1

Γ (m−α)

∫ x

0

f (m)(t)
(x− t)α−m+1dt , m−1< α < m, m∈ N x> 0, α > 0

For the function of the type f(x) = xn,n∈W = {0,1,2...}.The Caputo’s fractional derivative is defined as:

d(α)x2

dx
=











0, f or n∈W n< ⌈α⌉

Γ (n+1)
Γ (n+1−α)x

n−α , f or n∈W n≥ ⌈α⌉

Here ⌈α⌉ denotes the ceiling value ofα.It the smallest integer greater than or equal toα. Moreover if f(x) = c is any

constant function then its the Caputo’s fractional derivative will be zero like the integer order derivative i.ed
(α)c
dx =
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0. Amongst the main properties of Caputo’s fractional derivative,the most important property is the linearity propertyi.e

d(α)

dx
(λ f (x)+ µg(x)) = λ

d(α)

dx
f (x)+ µ

d(α)

dx
g(x)

whereλ andµ are constants [25].

In this paper, we use the following type of the delay differential equation of fractional orderα.

d(α)

dx
y(x) = f (x,y(x),y(g(x))), a≤ x≤ b, m< α ≤ m+1, m= 1,2,3... (1)

with the following boundary conditions;

y(a) = β0, y(b) = β1, y(x) = ψ(x),x∈ [a0, a] (2)

If α = 2,the above equation (1) is called classical second-order delay differential equation. In this case, we have

d2

dx
y(x) = f (x,y(x),y(g(x))), a≤ x≤ b

Hereg is the delay function which is to be assumed continues in the interval[a,b] and satisfies the inequalitya0 ≤ g(x)≤ x

for some fix real constanta0 for x∈ [a,b],ψ ∈C[a0,a].

3 Definitions and properties of chebyshev polynomials

Many authors and researcher use the Chebyshev polynomials not only for the solution of ODEs but also they use for

solving the FDEs. The Chebyshev polynomials are a sequence of orthogonal polynomials and widely used in many areas

of numerical analysis for simulation like least square approximation, uniform approximation and in spectral or

pseudospectral methods. The Chebyshev polynomials are also very important in approximation theory for

interpolation. One of the advantages of Chebyshev polynomials is the approximation of a functionf (x) by a polynomial

p(x) that gives a uniform and accurate description in the real interval [a,b]. Another advantage is to approximate a

function f (x) in terms of series expansion that form the basis of the FDEs [30]. The recurrence formula for Chebyshev

polynomials (also known as Chebyshev polynomials of first kind) on the interval[1,−1] is as follows:

T0(x) = 1,T1(x) = x

Tn+1(x) = 2xTn(x)−Tn−1(x) ,n= 1,2...

The orthogonality condition is

∫ 1

−1

Ti(x)Tj (x)√
1− x2

dx=











Π , f or i = j = 0
Π
2 , f or i = j 6= 0

0, f or i 6= j

The analytic form of Chebyshev polynomialsTn(x) of degreen over the interval[−1,1] is given by ;

Tn(x) = n
⌈ n

2⌉

∑
i=0

(−1)i2(n−2i−1) (n− i −1)!
(i)!(n−2i)

xn−2i

where⌈n
2⌉ denotes the integer part ofn

2 In order to use these polynomials,it is difficult to work overthe interval[−1,1].For

easy computations we shift these polynomials on the interval [0,1] and define the so called shifted Chebyshev polynomials
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by introducing the change of variablex= 2t−1. The recurrence formula of the shifted Chebyshev polynomialsT∗
n (t) are

defined as :

T∗
n (t) = Tn(2t −1) = T2n(

√
t)

where

T∗
0 (x) = 1 ,T∗

1 (x) = 2x−1

T∗
n+1 = (4x−2)T∗

n −T∗
n−1 , n= 1,2,3...

The analytic form of shifted Chebyshev polynomialsT∗
n (t) of degreen is given by ;

T∗
n (t) = n

n

∑
k=0

(−1)n−k 22k(n+ k−1)!
(2k)!(n− k)!

tk (3)

whereT∗
n (0) = (−1)n and T∗n (1) = 1. The orthogonality conditions for the shifted Chebyshev polynomial are given by,

∫ 1

0

T∗
i (x)T

∗
j (x)√

x− x2
dx= δi, jh j

wherehk =
bk
2 Π with b0 = 1,bk = 1,k≥ 1.

We can approximate the solution of the equation of the type defined in (1) with the boundary conditions in (2) as the

infinite series of shifted Chebyshev polynomials,

x(t) =
∞

∑
i=0

ciT
∗
i (t) (4)

The coefficientsci are given by;

ci =



















1
Π
∫ 1

0
x(t)T∗

0 (t)√
t−t2

dt, f or i = 0

2
Π
∫ 1

0
x(t)T∗

i (t)√
t−t2

dt, f or i = 1,2...

We consider the firstm+1 terms of the shifted Chebyshev polynomials. So Eq.(4) willtake the form :

xm(t) =
m

∑
i=0

ciT
∗
i (t) (5)

Theorem 1.Let xm(t) be the approximate solution of DFDE as defined in Eq.(5) and also suppose thatα > 0 , then

dαxm(t)
dx

=
m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ciΩ
(α)
i,k tk−α

whereΩ (α)
i,k is weight function and defined as

Ω (α)
i,k = (−1)i−k 22ki(i + k−1)!Γ (k+1)

(i − k)!(2k)!Γ (k+1−α)
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Proof.Due to linearity property of Caputo’s fractional derivative we can write Eq.(5) as

dαxm(t)
dx

=
m

∑
i=⌈α⌉

ci
dα

dx
(T∗

i (t)) (6)

From definition (1),d
α

dx (T
∗
i (t)) = 0 ,∀ i = 0,1, ...⌈α⌉−1,α > 0.

Again apply property of linearity on the analytic form of theshifted Chebyshev polynomials described in Eq.(3), we have

dα

dx
(T∗

i (t)) = i
i

∑
k=⌈α⌉

(−1)i−k 22k(i + k−1)!
(i − k)!(2k)!

dα

dx
(tk) ∀, i = ⌈α⌉+ ⌈α⌉+1....m

Apply definition (1), we have

dα

dx
(T∗

i (t)) = i
i

∑
k=⌈α⌉

(−1)i−k 22k(i + k−1)!Γ (k+1)
(i − k)!(2k)!Γ (k+1−α)

tk−α (7)

Using values from Eq.(7) into Eq.(6), we have

dαxm(t)
dx

=
m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ci(−1)i−k 22ki(i + k−1)!Γ (k+1)
(i − k)!(2k)!Γ (k+1−α)

tk−α

as desired.

4 Procedure for solution of the DFDE

In this section we use the Chebyshev’s collocation method tosolve the DFDE (1) together with the boundary conditions

(2) described in next section. For this purpose suppose thatthe approximate solutiony(x) is in term of finite numberm of

series of shifted Chebyshev polynomials.i.e

ym(x) =
m

∑
i=0

ciT
∗
i (x) (8)

Employing the Theorem (3) and Eq.(8) into the Eq.(1),we have

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ciΩ
(α)
i,k xk−α = f (x,

m

∑
i=0

ciT
∗
i (x),

m

∑
i=0

ciT
∗
i (g(x)) ,0< x< 1 , m+1< α < m (9)

By using the collocation method we collocate the above Eq.(4.2) at the pointsxp, p = 0,1, ...m−⌈α⌉ i.e total number

of collocated points will be(m+1−⌈α⌉). For appropriate collocated points we use the roots of the shifted Chebyshev

polynomialT∗
m+1−⌈α⌉(x).

m

∑
i=⌈α⌉

i

∑
k=⌈α⌉

ciΩ
(α)
i,k xk−α

p = f (xp,

m

∑
i=0

ciT
∗
i (xp),

m

∑
i=0

ciT
∗
i (g(xp)) , xp, p= 0,1, ...m−⌈α⌉ , m+1< α < m (10)

Employing the Eq.(8) in the boundary conditions Eq.(2), we can obtain⌈α⌉ equations as follows :

m

∑
i=0

(−1)ici = β0 ,

m

∑
i=0

ci = β1 (11)
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From Eq.(10) we get(m+ 1−⌈α⌉) algebraic equations and from Eq.(11) we get⌈α⌉ algebraic equations so we get

total (m+1) linear or non-linear algebraic equations which can easily be solved with the help of matrices for unknowns

cn,n= 0,1,2...m to calculate the approximate solutionym(x).

5 Numerical implementation

In this section, we solve numerically the fractional order delay differential equations using properties of shifted Chebyshev

polynomials.All the numerical results are obtained using MATLAB.

Example 1.Consider the following linear fractional delay differential equation ;

D1.5u(x) =−u(x)+u(
x
2
)+

7
8

x3+
6

Γ (2.5)
x1.5

with the boundary conditions ;

u(0) = 0,u(1) = 1 (12)

The exact solution of this problem isu(x)= x3. We implement the suggested method withm= 3 andm= 5 we approximate

the solution as, letm= 3 ,

u3(t) =
3

∑
i=0

ciT
∗
i (x)

Using Eq.(10) we have ,

3

∑
i=2

i

∑
k=2

ciΩ
(α)
i,k xk−α

p =−
3

∑
i=0

ciT
∗
i (xp)+

3

∑
i=0

ciT
∗
i (

xp

2
)+

7
8

x3
p+

6
Γ (2.5)

x1.5
p (13)

With p= 0,1 wherexp are the roots of shifted Chebyshev polynomialT∗
2 (x) and their values are:

x0 = 0.8536,x1 = 0.1464

By using Eq.(11) and Eq.(12) we have ,

c0− c1+ c2− c3 = 0 (14)

c0+ c1+ c2+ c3 = 1 (15)

Solving the Eq.(13) together with the Eq.(14) and Eq .(15) wefind the approximate valuesuapx in table (1) form= 3 and

m= 5.

Example 2.Consider the following linear fractional delay differential equation ;

Dαu(x) =
3
4

u(x)+u(
x
2
)− x2+2,0≤ x≤ 1,1< α ≤ 2

with the boundary conditions:

u(0) = 0,u(1) = 1 (16)

The exact solution of this problem isu(x) = x2. We implement the suggested method withm= 3 andα = 1.5,1.75,2 as

follows ,

u3(t) =
3

∑
i=0

ciT
∗
i (x)

c© 2018 BISKA Bilisim Technology
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Table 1: Comparison of exact and approximate values atm= 3 andm= 5 with α = 1.5

x uext Error=|uext−uapx| at m= 3 Error=|uext−uapx| at m= 5
0.0000 0.0000 6.9389e−18 6.9389e−18

0.1000 0.0010 5.7600e−5 5.7600e−5

0.2000 0.0080 7.6800e−5 7.6800e−5

0.3000 0.0270 6.7200e−5 6.7200e−5

0.4000 0.0640 3.8400e−5 3.8400e−5

0.5000 0.1250 0.0000e−0 0.0000e−0

0.6000 0.2160 3.8400e−5 3.8400e−5

0.7000 0.3430 6.7200e−5 6.7200e−5

0.8000 0.5120 7.6800e−5 7.6800e−5

0.9000 0.7290 5.7600e−5 5.7600e−5

1.0000 1.0000 0.0000e−0 0.0000e−0

Fig. 1: Result of example 1 by present method takingm= 3,m= 5 andα = 1.5.

Using Eq.(10) we have
3

∑
i=2

i

∑
k=2

ciΩ
(α)
i,k xk−α

p =
3
4

3

∑
i=0

ciT
∗
i (xp)+

3

∑
i=0

ciT
∗
i (

xp

2
)+ x2

p+2 (17)

With p= 0,1 wherexp are the roots of shifted Chebyshev polynomialT∗
2 (x) and their values are

x0 = 0.8536,x1 = 0.1464

By using Eq.(4) and Eq.(2) we have,

c0− c1+ c2− c3 = 0 (18)
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c0+ c1+ c2+ c3 = 1 (19)

Solving the Eq.(14) together with the Eq.(15) and Eq.(16) wefind the approximate valuesuapx for different values ofα
in table (2) form= 3 with comparison of the estimated values calculated in [24]by ADM.

Table 2: Comparison of exact and approximate values atα = 1.5, 1.75, 2 andm= 3 with Ref [24]

x Exact Ref[24]α = 1.5 oursα = 1.5 Ref[24]α = 1.75 oursα = 1.75 Ref[24]α = 2 oursα = 2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014
0.1000 0.0100 0.0480 -0.03460 0.0220 -0.0095 0.0100 0.0129
0.2000 0.0400 0.1370 -0.0247 0.0750 0.0102 0.0400 0.0444
0.3000 0.0900 0.2550 0.0241 0.1530 0.0572 0.0900 0.0957
0.4000 0.1600 0.3980 0.1064 0.2540 0.1297 0.1600 0.1667
0.5000 0.2500 0.5640 0.2168 0.3770 0.2260 0.2500 0.2572
0.6000 0.3600 0.7530 0.3499 0.5210 0.3442 0.3600 0.3672
0.7000 0.4900 0.9630 0.5001 0.6870 0.4825 0.4900 0.4964
0.8000 0.6400 1.1950 0.6622 0.8730 0.6391 0.6400 0.6448
0.9000 0.8100 1.1448 0.8306 1.0800 0.8122 0.8090 0.8123
1.0000 1.0000 1.7230 1.0000 1.3070 1.0000 0.9990 0.9986

Fig. 2: Result of example 2 by present method takingm= 3 andα = 1.5,1.75,2.
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6 Conclusion and remarks

In this paper, we successfully applied Chebyshev collocation method to solve the delay differential equations of fractional

order. For fractional differential,we use Caputo’s fractional derivatives. The properties of Chebyshev polynomialsare

utilized to reduce DFDEs into easily solvable linear or nonlinear algebraic equations. Two numerically solved examples

show the present method is well organized.The calculated approximate values are in excellent agreement with the exact

solutions and hence this approach can solve the problem efficiently. In our suggested method, the calculated estimate

values is much more accurate than the values calculated by (ADM) in [24]. One can easily see the difference in both

methods with the help of the graph of approximate values at different values ofα. This shows that our suggested method

is more effective, valid and applicable.
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