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1 Introduction

Let f : 1 CR — R be a convex function defined on an interlalf real numbersa, b € | anda < b. The following double
inequality is well known in the literature as Hadamard'sjuality:

b
f(%’) < leafa f(x)dx < w 1)

Both inequalities hold in the reversed directiorf ifs concave.

The inequalities in1) have become an important cornerstone in mathematicasiaréyd optimization. Many uses of
these inequalities have been discovered in a variety ahgsttMoreover, many inequalities of special means can be
obtained for a particular choice of the functidn Due to the rich geometrical significance of Hermite-Hadama
inequlity, there is growing literature providing its newopfs, extensions, refinements and generalizations, see for
example (b],[9]-[ 13]) and the references therein.

Definition 1. A function f : [a,b] C R — R is said to be convex if whenever x,y € [a,b] and t € [0,1], the following
inequality holds:

f(tx+ (1—t)y) <tf(x)+(1—t)f(y).
We say thatf is concave if  f) is convex. This definition has its origins in Jensen’s ressiubm [8] and has opened up
the most extended, useful and multi-disciplinary domaimethematics, namely, convex analysis. Convex curves and
convex bodies have appeared in mathematical literatuoe sintiquity and there are many important results related to
them.

We recall that the notion of quasiconvex functions geneealthe notion of convex functions.

Definition 2. A function f : [a,b] C R — R is said to be quasiconvex on [a, b] if

ftx+ (1 -t)y) <max{f(x),f(y)},
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for all x,y € [a,b] andt € [0,1].

Clearly, any convex function is quasiconvex. Furthermtrere exist quasiconvex functions which are not convex (see
[7],[14]). For example, consider the following.

Letf :RT - R,
f(x) =Inx, xe R".

This function is quasiconvex. Howevdris not a convex function. For other recent results concertiire n—times
differentiable functions se@[- [4],[6],[9],[11],[15-[17] where further references are given.

In [1], Alomari et. al. proved the following theorems for quasieex functions.

Theorem 1.Let f : | C [0,0) — R be a differentiable mapping on 1° such that f’ € L[a,b], wherea,b € | witha < b. If

|f'| isan quasi-convex on [a, b], then the following inequality holds.
b —
‘f(a)”(b)— 1 /f(x)dx‘gb—Sa[max{ f’(a—;b), ’a)\}+max{ f’(izb)‘,ﬁ’(b)\}] @)

2 b—aJ/a
Theorem 2.Let f : | C [0,0) — R be a differentiable mapping on 1° such that f’ € L[a,b], wherea,b € | witha < b. If
|#/|P/(P=1) js an quasi-convex on [a, b], for p > 1, then the following inequality holds:

- (P-1)/p
f(a)+ f O-a) | (o[ (22" g o
2 b a p+1)1/p 2 ’
p/p ]_) (pfl)/p
+<max{ £/ (a;b) 7‘f/(b)|p/(pl)}) ) (3)

Theorem 3.Let f : 1° C R — R be a differentiable mapping on |° such that f’ € L[a,b], where a,b € I° with a < b. If
|f/|is an quasi-convex on [a, b], for p > 1, then the following inequality holds.

I a+b q i q é

f — | (b)] -4

10 22 o (52 ) o]

The main purpose of the present paper is to prove severalmeyualities for quasiconvex functions that are connected
with the celebrated Hermite-Hadamard integral inequality

)

2 Main results

Lemma 1.Let f : [a,b] — R be n-times differentiable functions. If f(" € L[a,b], then
& "0 (@) + (—1)* M (b) [b—a) a(b—a)Mtt( 1 0 a+b
_qynb=T _ g ((2ED
/a fodt= 5 s ( ) ) O {/O (t—1)"f (t (- )a)dt )

+/ 1-t)" (tizbﬂ )b)dt}

where n natural number, n > 1.
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Proof. The proof is by mathematical induction. Foe= 1, we have to prove the equality

f(a>;f(b>bfa/:fa)dth'd{/:(tl)f <ta—+b+ 1-t)a >dt+/ 1-0)f <a+b+(1t)b)dt}.

Integrating by parts, we have above equality.

Assume thatg) holds for 'n” and let us prove it for h+1”. That is, we have to prove the equality

b 2 @)+ (—)kf® (b) (b—a) ! na (b—a)nt2 [ 1 L (n a+b
/af(t)dt_kzo (ki D) ( 5 ) +(-1) +1m{/0 (t—1)Hig(n+d) (tTHl—t)a)dt

+ /01(17t)“+1f<”+1) (t%b +(17t)b) dt}. ©)

Then, we can write

— (b_a)n+2 /l _ 1\n+1lg(n+1) a+b _ / n+1 (n+1) a+b _
= 2+ 1] O(t 1) — t)a |dt+ f t—- +(1—-t)b)dt

and integrating by parts gives

b—a)™2 a1 pa)|*
':2(n+2(n)+1)!{(t_1)+1 = !

—n;}/:(t—l) f<>(ti2b+(1 t) )dt}

1
+n;1/0 (1—t)”f<>(ti2b+(1 )b)dt}

202(n+ 1)

(b—a)™? {(1__0n+1fm>a@%9+<1wb)l
0 2

_ a\n+1 _a\n+1 1
(1)”*2%f(”>(a)%/0 (tl)”f”(ta—erbJr( t) )dt

(b—a™ w/l g (;ath
o O g [, AU (P52 @ up)dt

Now, using the mathematical induction hypothesis, we get

b n—1 k £ (k) _a\ k1 _a\n+1 _a\n+1
i/ f(t)dt = nzf +k(+i))f (b) (b2a> a2 B (b2

201 (n+1)! 20+ 1(n4 1) b)=1.(7)

Multiplying the both sides ofq) by (—1)", we obtain

b o 1@ (DM () (b-a) Tt b-amt o (b—a™t
/a f(t)dt_k,o (k+1)! ( 2 ) 2n+l(n+1)|f()(a)+(_ Vo ®)

{vwv/ 1)L (t—a—;b-i-( ~t) )dt+vvw/ t)Tf D) (ta—JZFbJr(l—t)b) dt}

) if(k)(a)+(1)kf( K (b) <ba>"“+(1>n+1(b73>”+2{/0 (t — )LD (ta_;b+(1t)a) dt

(k+1)! 2 2n2(n+ 1)!
+/ L) <ta_72Lb_|_(1_t)b> dt.
whereww = %. Thus, the identity§) and the lemma is proved.
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Theorem 4.For n> 1, let f : [a,b] ¢ R — R be n—times differentiablefunctionand 0 < a < b. If f(" ¢ L[a, b] and ’fm)
is quasiconvex on [a, b], then the following inequality holds:
+b
g (8+0
SolING

f<">(b)‘H :

)

'R (@)+ (=1) M (b) (b—a) e

b o\l
/a fa=3 (k+ 1) 2 < (bia)! [max{ 1™ @)

=2 (n+1)

¢ (ath
2

)

+ max{

Proof. From Lemmal, it follows that

dt

+ (=) ® (b) (ba)"“

SRTRU G o (2P g
/a oty T . f (t +( t)a)

(b—a)n+l 1 n
S onn {/o (-1 2

+/0.1(1_t)n f£(n) (tizb-y(l—t)b)’dt}.

Since} £

is quasi-convex ofa, b], we obtain

"M (@) + (1) (b) <ba) e

b o\l
/a fa=3 (k+ 1)! 2 < (t)ia)! {max{ 1 @)

=2 (n+1)

¢ (ath
2

(%20}
f“"(b)‘”.

)

)

+ max{

This completes the proof.

Corollary 1. Let f asin Theorem 4, if in addition

(1) ‘f(m isincreasing, then we have

/.b =1 (g) 4 (— 1)K (b) (b—a) k+1

f(t)dt—kzo T 3 < “’L)M! wa (i;’)‘+‘f<“>(b)u.

= 20 (ny 1)

2) ‘ (M| is decreasing, then we have

[ty U@V (552) 1

& (k+1)! 2 < (bL)nH! Uf“‘) (a)‘ + ’f“‘) (izb) H .

=2 (n+ 1)

Remark. Under conditions of Theored if we choose n = 1; then we obtain inequali).(

g
Theorem 5.Let f : [a,b] € R — R be n—times differentiable and 0 < a < b. If (" ¢ L[a,b] and ‘f“‘) is quasi convex

on [a, b], then the following inequality holds.
(b-a™l/ 1 \» o @ | (2D [T}
< oI (np+1> (max{’f (a)’ o f 5 9)

/: f(t)dt — nf (@) + (1)t (b) (b_ a) K+l
(e ) o)

Zo (k+1)! 2

whereq > 1.
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Proof. From Lemmal and the Holder integral inequality, we obtain
(b_a)n+l 1 _\np Tl; 1
< T /0 (1—t)"at /0
1 Tl; 1 a+b a %
—t)"P (&% _
+(/0(1 t) dt) (/0 f (t ! t)b)’ dt) }

q
is quasiconvex ofa, b], for g > 1, then

£ (t%bﬂl—t)a)

4\
dt)

b "M@+ ()W (b) (b—a)
/alf(t)dt kZo (k+ 1)1 ( 2 )

Since‘ £(n)

Tl

b @)+ (~DF 0 (b) (ba)
/elf(t)dt kgo ki1 ( 2 )

[(max{’f(n) (a)’q7’f(n) (%b) ‘q})%

- (bia)njtl 1
= 2~Int \np+1
1

+ (a0 (fﬂ‘;b)]q,yﬂm(b)\q}ﬂ

which completes the proof.
Corollary 2. Let f asin Theorem 5, if in addition

q
(1) ’fm) isincreasing, then we have

b 7n—1f(k)(a)+(,1)kf(k) (b) (b—a k1
/af(t)dt 2. k1 1) ( 2 )

@ |1

1
(bfa)”“ 1 P (n) a+b (n)
= 2n+1n np+1 f 2 +’f (b)’ ’

a. .
is decreasing, then we have

3 ) O () o ()]

Remark. Under conditions of Theore# if we choose n = 1; then we obtain inequalig).(

q
Theorem 6.For n> 1, let f : [a,b] ¢ R — R be n—times differentiable and 0 < a < b. If f( ¢ L[a,b] and ‘f(m is
quasiconvex on [a, b], for g > 1, then the following inequality holds.

/:f(t)dt_:Z:f<k><a>(+k<+—;>!kf<k> (b) (b;a)k“ _% (max{ [t @[", |1 (252) q})é

q

)

- (max{ f( (a_;b) f(”)(b)‘q})j :
Proof. From Lemmal and using the well known power-mean integral inequalityhaee
/abf(t)dt_::f(k)(a) —(i_k(;i))!kf(k) (b) (b;a)m ) %{/5(1_0” ¢ (tizbﬂl_t)a)
+/01(1_t)n £(m) (\Nt—l—(l—t)b)‘dt} < (t’z%il):rl{(/ol(l_t)ndt)lé (/01(1_t)n

+ (./0'1(1—'[)ndt) 1-3 (/0‘1(14)” £ (tizbﬂl—t)b) th)é}

dt

£ (wt+(1—t)a)\qo|t)é
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q
Wheret%b. Since’ f(W| " is quasiconvex of, bl, for g > 1, then we obtain

[ FI (00t (oo o (252) )

+ (max{ £ (izb) q,’fm)(b)’q}) %] :

Remark. Under conditions of Theore®) if we choose n = 1; then we obtain inequality.(

which completes the proof.

3 Conclusions

In this study, we presented some generalized Hermite tyggpialities for the mappings whose derivatives are quaggon
functions are established. A further study could be assegghed versions of these inequalities.
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