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Abstract: One of the most popular result in Mathematics is the Banach Contraction principle in a complete metric space. Due to
its wide range of applications, many mathematicians generalized the Banach contraction principle in different directions. One of the
generalizations is due to Jachymski [Proc.Am. Math. Soc. 1(136),1359-1373], in which he considered a complete metric space with
a graph structure. Alfraidan [Fixed Point Theory and Applications (2015) 2015:93. doi 10.1186/s13663-015-0341-2] generalized the
work of Jachymski for quasi-contraction mappings in both metric and modular metric spaces with a graph structure. Modular metric
spaces are more general than the usual metric spaces. In thispaper, we extend Alfraidan’s result to a generalized quasi contraction
mappings.
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1 Introduction

The abstract definition of a metric space was introduced by Frechet [13] in 1906, and was seen as a nonlinear version of a

vector space endowed with a norm. Nakano [18], introduced modular function spaces in 1950 and Musielak and Orlicz

[16] redefined the modular function space in such away that, a modular function space is seen as a vector space endowed

with a modular function. It was proved in [15], that this space is a complete normed linear space with normcalled

Luxemburg norm. Therefore, it is natural to consider a nonlinear version of function modular spaces. Thus, the modular

metric spaces considered in [8] are nonlinear versions of modular function spaces and are more general than metric

spaces.

Fixed point theorems for monotone single valued mappings ina metric space endowed with partial orderings are first

considered by Ran and Reurings [20] in 2004, and have been widely investigated. The theorem in [20] is a hybrid of the

two independent fundamental theorems: Banach contractionprinciple [5] and Tarski’s fixed point theorem [22].

A point x∈ X is called a fixed point of a self−mappingT onX if x= T(x), for single valued mappings (andx∈ T(x) for

set-valued mappings). The fixed point set of a mappingT will be denoted byFix(T).

In 1922, Banach [5], proved the existence of a unique fixed point for contraction self-mappings in a complete metric

space. Banach contraction principle [5] is a simple and powerful result with a wide range of applications, including

iterative methods for solving linear and nonlinear differential, integral, and difference equations. Due to its applications

in mathematics and other related disciplines, Banach contraction principle has been generalized and extended in many
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directions. One of the most influenced generalization of Banach’s theorem is traced to Nadler [17]. In 1969, Nadler [17]

extended Banach’s contraction theorem to multivalued contraction mappings. A number of extensions and

generalizations of Nadler’s theorem were obtained by different authors. In 1974,Ciri c̀ [11], extended Nadler’s theorem

to quasi contraction mappings. Independent of Banach’s result, Tarski and Knaster [22] in 1955, proved the existence of

fixed points of single valued self-mappings in partially ordered sets. Ran and Reuring’s [20], proved the existence of

fixed points of single valued mappings in partially ordered metric space. Jachymski [14], investigated a new approach in

metric fixed point theory by replacing an order structure with a graph structure on metric spaces. In this way, the results

proved in ordered metric spaces are generalized (see for detail [14] and the reference therein). Beg et al.[4], extended

Jachymski’s theorem to multivalued mappings. Chifu and Petrusel [7], extended Jachymiski’s theorem to a generalized

contraction mappings and in [6], to Ciric δ−contraction mappings. Chistyakov [10] proved the existence of fixed point

theorems forω−contraction mappings in the setting of modular metric spaces. Abadoo and Khamsi [1] extended

Chistyakov’s fixed point theorem to a multivalued mappings,Cho et al. [23], to quasi contraction mappings and

Rahimpoor et al.[19] to generalizedω−quasi contractions in modular metric spaces. Alfraidan [2] made an extension of

Jachymski’s result to a more general class of spaces, modular metric spaces. In [3], Alfraidan extended theG− ω
contraction mappings he considered in [2] to a more general class of mappings, Ciric−quasi contraction mappings in

modular metric spaces.

It is our purpose in this paper to extend the work of Alfraidan[3] to a more general class ofgeneralized quasi

contractionmappings.

2 Preliminaries

Throughout this paper,Z+ andN will denote the set of positive integers and nonnegative integers, respectively. The

terminology of graph theory instead of partial ordering gives a wider picture and yields interesting generalization ofthe

Banach contraction principle. We give the basic notations in graph theory which will be used throughout (the detail will

be found in [12]). A directed graph(digraph) is a pair:G = (V,E) whereV is a nonempty set called vertices and

E = {(u,v) : u,v∈V} is set of order pairs called edges.

Let (X,d) be a metric space and∆ be the diagonal ofX ×X. Let G be a digraph such that the setV(G) of its vertices

coincide withX and∆ ⊆ E(G). Assume thatG has no parallel Edges. We will suppose thatG can be identified with the

pair (V(G),E(G)). If x andy are vertices ofG, then a path inG from x to y of lengthk ∈ N is a finite sequence{xn}
n=k
n=0

of vertices such thatx0 = x, xk = y and(xi−1,xi) ∈ E(G), for i = 1,2,3, ...,k.

By G−1 we denote the conversion ofG, i.e., the graph obtained fromG by reversing the direction of edges. Thus, we

have E(G−1) = {(y,x)|(x,y) ∈ E(G)}. A digraph is called an oriented graph, if whenever(u,v) ∈ E(G), then

(v,u) /∈ E(G). Let us denote bỹG, the undirected graph obtained fromG by ignoring the direction of edges. Actually it is

more convenient for us to treat̃G as a digraph for which the set of its edges is symmetric. Underthis convention,

E(G̃) = E(G)
⋃

E(G−1). We say thatG is connected if there is a path between any two vertices and wesay it is weakly

connected ifG̃ is connected. IfG is such thatE(G) is symmetric andx is a vertex inG, then the subgraphGx consisting

of all edges and vertices which are contained in some path beginning atx is called the component ofG containingx. In

this caseV(Gx) = [x]G, where[x]G is the equivalence class of the following relationRdefined onV(G) by the rule:yRzif

there is a (directed) path inG from y to z. ClearlyGx is connected.

Throughout this section,X denotes a metric space(X,d) and byG we mean the graphG with vertex X and edge;

E(G)⊆ X×X.
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Definition 1. A mapping T: X → X is called a G−monotone if T preserves edges of G, i.e.,

∀x,y∈ X((x,y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G)).

Definition 2. A mapping T: X → X is called a Banach G−contraction or simply a G−contraction if T preserves edges

of G, i.e.,

∀x,y∈ X((x,y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G))

and T decreases weight of edges of G in the following way:

there existsα ∈ [0,1)∀x,y∈ X,(x,y) ∈ E(G)⇒ d(T(x),T(y))≤ αd(x,y).

Definition 3. [11] Let C be a nonempty subset of a metric space X. A mapping T: C →C is called quasi contraction if

there exists k< 1 such that for any x,y∈C, we have

d(T(x),T(y))≤ kmax{d(x,y),d(x,T(x)),d(y,T(y)),d(x,T(y)),d(T(x),y)}.

Definition 4. [3] Let C be a nonempty subset of X. A mapping T: C →C is called G−monotone quasi contraction if T

is G−monotone and there exists k< 1 such that for any x,y∈C,(x,y) ∈ E(G), we have

d(T(x),T(y))≤ kmax{d(x,y),d(x,T(x)),d(y,T(y)),d(x,T(y)),d(T(x),y)}.

Definition 5. A modular on a real linear space X is a functionalρ : X → [0,∞], satisfying the conditions:

(i) ρ(0) = 0.

(ii) If x ∈ X andρ(αx) = 0 for α > 0 then x= 0.

(iii) ρ(−x) = ρ(x), for all x ∈ X.

(iv) ρ(αx+βy)≤ ρ(x)+ρ(y) for all α,β ≥ 0 with α +β = 1 and x,y∈ X. If the inequality

(v) ρ(αx+βy)≤ αρ(x)+β ρ(y) holds in(iv), the modularρ is called convex.

Due to the limitation of linear modular spaces with additional algebraic structures to solve certain problems from set

valued analysis, such as supper position operators in [9], the modular theory on an arbitrary set was proposed.

Let X be a nonempty set. Throughout, for a functionω : (0,∞)×X×X → [0,∞], we will write ωλ (x,y) = ω(λ ,x,y) for

all λ > 0 andx,y∈ X, so that

ω = {ωλ}λ>0 with ωλ : X×X → [0,∞].

Definition 6. [8] A functionω : (0,∞)×X×X → [0,∞] is said to be a modular metric on X if it satisfies the following

axioms:

(i) Given x,y∈ X, x= y if and only ifωλ (x,y) = 0, for all λ > 0.

(ii) ωλ (x,y) = ωλ (y,x), for all λ > 0 and x,y∈ X.

(iii) ωλ+µ(x,y)≤ ωλ (x,z)+ωµ(z,y), for all λ ,µ > 0, and x,y,z∈ X. If instead of(i) we have only the condition:

(iv) ωλ (x,x) = 0, for all λ > 0, x∈ X, thenω is said to be pseudomodular (metric) on X.

A modular metricω onX is said to be regular(or strict) if the following weaker version of (i) is satisfied.

x= y i f and only i f ωλ (x,y) = 0, f or someλ > 0.
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ω is said to be convex if for allλ ,µ > 0 andx,y,z∈ X, it satisfies the inequality:

ωλ+µ ≤
λ

λ + µ
ωλ (x,z)+

µ
λ + µ

ωµ(z,y).

Remark.For a pseudomodular metricω on a setX, and anyx,y∈X, the functionλ 7→ ωλ (x,y) is nonincreasing on(0,∞),

and so the limit from the rightωλ+0(x,y) and the limit from the leftωλ−0(x,y) exists in[0,∞] and satisfy the inequalities

ωλ+0(x,y)≤ ωλ (x,y)≤ ωλ−0(x,y).

Let ω be a (pseudo) modular metric on a setX. The binary relation
ω
∼ on X defined forx,y ∈ X by x

ω
∼ y if and only

if lim λ→∞ ωλ (x,y) = 0 is an equivalence relation onX. Let X/
ω
∼ be the quotient set ofX under

ω
∼ . Givenx ∈ X, the

equivalence class ofx in X/
ω
∼ is given by:

Xω(x)≡ x̃= {y∈ X : y
ω
∼ x}.

We are interested in the equivalence classesXω(x) in X/
ω
∼ . According to Chistyakov [8], we fix an elementx0 ∈ X

arbitrarily and define the modular set:

Xω = x̃0 = Xω(x0).

Definition 7. [8] Let ω be a pseudomodular on X. Fix x0 ∈ X. The two sets:

Xω = Xω(x0) = {x∈ X : ωλ (x,x0)→ 0 asλ → ∞}

and

X∗
ω = X∗

ω(x0) = {x∈ X : ∃λ = λ (x)> 0 such thatωλ (x,x0)< ∞},

are said to be Modular spaces.

Here we see thatXω ⊆ X∗
ω and in [8], a counter example was given to show the inclusion is proper.

Example 1.Consider a metric space(X,d) and define a functional

ω : (0,∞)×X×X → [0,∞) by ωλ (x,y) =
d(x,y)

λ
,

thenω is a convex modular onX. For arbitrary fixedx0 ∈ X, we see that limλ→∞ ωλ (x,x0) = 0 for eachx∈ X, showing

thatXω = X.

Theorem 1.[8] If ω is a metric modular on X, then the modular set Xω is a metric space with metric given by

dω(x,y) = in f{λ > 0 : ωλ (x,y) ≤ λ}, f or any x,y∈ Xω .

Remark.Let ω be a convex modular on a setX. Givenx,y∈ X,

(i) ω̂λ (x,y) = λ ωλ (x,y), is a modular metric onX.

(ii) the functionsλ 7→ ωλ (x,y) andλ 7→ ω̂λ (x,y) are nonincreasing on(0,∞).

If ω is convex modular onX then the two modular spaces coincide, i.e.,Xω = X∗
ω , and this common set can be endowed

with the metricd∗
ω given by

d∗
ω(x,y) = in f{λ > 0 : ωλ (x,y)≤ 1} f or any x,y∈ Xω .
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Theorem 2.[8] Let ω be a convex modular on a set X. Then given x,y∈ Xω for the metrics d∗ω and dω , we have

(a) conditions dω < 1 and d∗ω < 1 are equivalent and if at least one of them holds, then

d∗
ω(x,y)≤ dω(x,y) ≤

√
d∗

ω(x,y).

(b) conditions dω ≥ 1 and d∗ω ≥ 1 are equivalent if at least one of them holds, then

√
d∗

ω(x,y)≤ dω(x,y) ≤ d∗
ω(x,y).

Let ω be a modular metric on a linear spaceX and satisfies the following two conditions:

(i) ωλ (µx,0) = ωλ/µ(x,0) for all λ ,µ > 0, andx∈ X.

(ii) ωλ (x+ z,y+ z) = ωλ (x,y) for all x,y,z∈ X, and if we set:

ρ(x) = ω1(x,0) andωλ (x,y) = ω1(
x−y

λ ,0) = ρ( x−y
λ ), for all λ > 0 andx,y∈ X, then

(i) Xρ = Xω is a linear subspace ofX and the functional:

|x|ρ = dω(x,0) x∈ X is an F−norm on Xρ .

(ii) If ω is convex,X∗
ρ = X∗

ω = Xρ is a linear subspace ofX and the functional:

|x|∗ρ = d∗
ω(x,0), x∈ X∗

ω is a norm on Xρ .

Remark.Every metric space(X,d) is a modular metric space. Indeed, if we define a functionalω : (0,∞)×X×X → [0,∞)

by ωλ (x,y) =
d(x,y)

λ , then, we see thatω is a convex modular onX. So,d(x,y) = λ ωλ (x,y) = ω̂λ (x,y) is a modular on

X. On the other hand, a modular metricω on a setX is a metric ifω assumes only finite values and is independent of the

parameterλ .

Definition 8. [1] Let (X,ω) be a modular metric space.

(1) The sequence{xn}n∈N in Xω is said to beω−convergent to x∈ X

if and only if limn→∞ ω1(xn,x) = 0. x will be called theω−limit of {xn}.

(2) The sequence{xn}n∈N in Xω is said to beω−Cauchy if

lim
n,m→∞

ω1(xn,xm) = 0.

(3) A subset M of Xω is said to beω−closed, if theω−limit of ω−convergent sequence of M always belongs to M.

(4) A subset M of Xω is said to beω−complete, if anyω−Cauchy sequence in M isω−convergent sequence and its

ω−limit is in M.

(5) A subset M of Xω is said to beω−bounded if we have

δω (M) = sup{ω1(x,y) : x,y∈ M}< ∞.

(6) A subset M of Xω is said to beω−compact if for any sequence{xn}n∈N in M, there exists a subsequence{xkn}n∈N of

{xn} and x∈ M such thatω1(xkn,x)→ 0 as n→ ∞.

(7) ω is said to satisfy the Fatou property if and only if for any sequence{xn}n∈N in Xω , ω−convergent to x, we have

ω1(x,y)≤ lim inf
n→∞

ω1(xn,y), f or any y∈ Xω .
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In general, if limn→∞ ωλ (xn,x) = 0 for someλ > 0, then we may not have limn→∞ ωλ (xn,x) = 0 for all λ > 0.

Definition 9. [1] Let (X,ω) be a modular metric space.ω is said to satisfy the∆2−condition if and only if

limn→∞ ωλ (xn,x) = 0 for someλ > 0 implies thatlimn→∞ ωλ (xn,x) = 0 for all λ > 0.

Theorem 3.[8] Let ω be a modular on a set X. Given a sequence{xn}n∈N ⊆ Xω and x∈ Xω , we have

dω(xn,x)→ 0 as n→ ∞ i f and only i f ωλ (xn,x)→ 0 as n→ ∞, for all λ > 0.

Corollary 1. Letω be a modular on a set X. Then,ω−convergence and dω−convergence are equivalent if and only if the

modularω satisfies the∆2−condition.

Theorem 4.[8] Let ω be a convex modular on a set X. Given a sequence{xn}n∈N ⊆ X∗
ω and x∈ X∗

ω , we have

d∗
ω(xn,x)→ 0 as n→ ∞ i f and only i f ωλ (xn,x)→ 0 as n→ ∞, for all λ > 0.

Note that, if the modularω is convex, thend∗
ω = dω which implies

limn→∞ d∗
ω(xn,x) = 0 i f and only i f limn→∞ ωλ (xn,x) = 0, ∀λ > 0 and for any sequence{xn}n∈N ⊆ Xω , andx∈ Xω .

Definition 10. Let f : X → (−∞,∞) be a function on a topological space X. Then f is upper semi-continuous at the point

x∈ X if and only if

xn → x⇒ limsup
n→∞

f (xn)≤ f (x).

Let Φ be the class of all functionsϕ : [0,∞)→ [0,∞) such that:

(i) ϕ is nondecreasing and upper semi-continuous.

(ii) ϕ(t) < t, ∀t > 0. In the literature,Φ is called the class of comparison functions. If in additionϕ satisfies the

condition:

(iii) ] ∑∞
n=1φn(t)< ∞, thenΦ is called the class of strong comparison functions .

Lemma 1. [21] If ϕ ∈ Φ, thenϕ(0) = 0, and limn→∞ ϕn(t) = 0 for each t> 0, whereϕn is the n−times composition of

the functionϕ with itself.

As a consequence of property(ii), we can see that the sequence{ϕn(t)} is a nonincreasing sequence, for anyt > 0.

3 Generalized quasi contractions in metric spaces with a graph

Next, we give the definition ofG−monotone generalized quasi contraction mappings in the setting of metric spaces.

Definition 11. Let C be a nonempty subset of a metric space X. T : C→C is called:

(1) G−monotone if T is edge preserving. i.e.,(T(x),T(y)) ∈ E(G), whenever(x,y) ∈ E(G), for any x,y∈C.

(2) G−monotone generalized quasi contraction if T is G−monotone and there exists aϕ ∈ Φ such that for any x,y∈C

with (x,y) ∈ E(G), we have

d(T(x),T(y))≤ max{ϕ(d(x,y)),ϕ(d(x,T(x))),ϕ(d(y,T(y))),ϕ(d(x,T(y))),ϕ(d(T(x),y))}.

For x∈C, we define the orbitO(x) = {x,T(x),T2(x), · · · } and its diameter byδ (x) = sup{d(Tn(x),Tm(x)) : n,m∈ N}.

We have the following technical lemma to prove one of our mainresults.

Lemma 2. Let (X,d) be a metric space and G be a reflexive and transitive digraph onX. Let C be a nonempty subset of

X and T: C→C be a G−monotone generalized quasi contraction mapping. Let x∈C be such that(x,T(x)) ∈ E(G) and

δ (x)< ∞, then for any n∈ N, we have

δ (Tn(x))≤ ϕn(δ (x))
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whereϕ ∈ Φ is the comparison function associated with the G−monotone generalized quasi contraction definition of T .

Moreover, we have d(Tn(x),Tn+m(x))≤ ϕn(δ (x)) for each n,m∈ N.

Proof.SinceT is G−monotone and(x,T(x))∈E(G), we have(Tn(x),Tn+1(x))∈E(G) for eachn∈N. By the transitivity

of G, for eachn∈N, we also have

(Tn(x),Tn+m(x)) ∈ E(G) for anym∈ Z
+. (1)

As G is reflexive,(x,x) ∈ E(G) and using theG−monotonicity ofT, we get

(Tn(x),Tn(x)) ∈ E(G) for anyn∈ N (2)

and hence (1) holds true form= 0. Thus, we obtain

(Tn(x),Tn+m(x)) ∈ E(G) for anyn,m∈N. (3)

First, we show that

δ (Tn(x))≤ ϕn(δ (x)) (4)

for eachn∈ N. For n= 0, we haveδ (x) = ϕ0(δ (x)) and equality holds in this case. Forn= 1, from (3) and using the

monotonicity ofϕ , we have

d(T(x),T1+m(x))≤ max{ϕ(d(x,Tm(x))),ϕ(d(x,T(x))),ϕ(d(Tm(x),T1+m(x))),ϕ(d(x,T1+m(x))),ϕ(d(T(x),Tm(x)))}

≤ ϕ(δ (x)), (5)

for eachm∈N. This shows that

δ (T(x))≤ ϕ(δ (x)), (6)

and from (6) and the monotonicity ofϕ , we get

ϕ(δ (T(x)))≤ ϕ2(δ (x)). (7)

In addition, inequalities (6), (7) and the monotonicity ofϕ , give

δ (T2(x)) = δ (T(T(x))) ≤ ϕ(δ (T(x)))≤ ϕ2(δ (x)).

Whence, by induction we conclude that

δ (Tn(x)) = δ (T(Tn−1(x)))≤ ϕ(δ (Tn−1(x)))
... ≤ ϕn(δ (x))

for eachn∈ N. Thus, for eachn∈N,

δ (Tn(x))≤ ϕn(δ (x)). (8)
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On the other hand, by using (3) and the definition ofδ , we obtain

d(Tn(x),Tn+m(x)) = d(Tn(x),Tn(Tm)(x))≤ δ (Tn(x)) (9)

for eachn,m∈ N. From (8) and (9), we conclude thatd(Tn(x),Tn+m(x)) ≤ ϕn(δ (x)) for eachn,m∈ N.

Theorem 5.Let(X,d) be a complete metric space and G be a reflexive, transitive digraph defined on X such that the triple

(X,d,G) has Property(A), for any sequence(xn)n∈N in X, if xn → x and(xn,xn+1) ∈ E(G) for n∈N, then(xn,x) ∈ E(G)

for each n∈ N. Let C be a nonempty closed subset of X and T: C→C be a G−monotone generalized quasi contraction

mapping withϕ ∈ Φ, the associated comparison function. For x∈ C with (x,T(x)) ∈ E(G) andδ (x) < ∞, we have the

following:

(a) There exists p∈ Fix(T) such that{Tn(x)} converges to p. Moreover, we have

(x, p) ∈ E(G) and d(Tn(x), p)≤ ϕn(δ (x)), f or each n∈ N.

(b) If u is any fixed point of T such that(x,u) ∈ E(G), then u= p.

Proof. First we show(a). By Lemma2, we see that{Tn(x)} is a Cauchy sequence inC. SinceX is a complete metric

space andC is closed subset ofX, there existsp∈C such that{Tn(x)} converges top. From (9), we have

d(Tn(x),Tn+m(x))≤ ϕn(δ (x)) (10)

for anyn,m∈ N. Thus, from (10) (by lettingm→ ∞), we get thatd(Tn(x), p) ≤ ϕn(δ (x)), f or n∈ N. Moreover, since

T is G−monotone and(x,T(x)) ∈ E(G), we have(Tn(x),Tn+1(x)) ∈ E(G) for eachn ∈ N and using Property(A),

we conclude that(Tn(x), p) ∈ E(G) for eachn ∈ N. In particular,(x, p) ∈ E(G). It remains to show thatp is a fixed

point of T. From (Tn(x), p) ∈ E(G) the G−monotonicity ofT, we have(Tn+1(x),T(p)) ∈ E(G) for eachn ∈ N. As

(Tn(x),Tn+1(x)) ∈ E(G) andG is transitive, we obtain that

(Tn(x),T(p)) ∈ E(G) for eachn∈ N. (11)

Thus, using (11) and the hypothesis thatT is aG−monotone generalized quasi contraction, we have a comparison function

ϕ satisfying

d(Tn(x),T(p))≤ max{ϕ(d(Tn−1(x), p)),ϕ(d(Tn−1(x),Tn(x))),ϕ(d(Tn−1(x),T(p))),ϕ(d(Tn(x), p)),ϕ(d(p,T(p)))}

(12)

for eachn ∈ Z
+. Letting n → ∞ in (12) and using the upper semi-continuity ofϕ , we getd(p,T(p)) ≤ ϕ(d(p,T(p))

which implies thatd(p,T(p)) = 0 and hencep = T(p). Next we show(b). Let u∈ C be any fixed point ofT such that

(x,u) ∈ E(G). Then for eachn∈ N, asT is G−monotone, we have(Tn(x),u) ∈ E(G). Therefore,

d(Tn(x),u)≤ {ϕ(d(Tn−1(x),u)),ϕ(d(Tn−1(x),Tn(x))),ϕ(d(Tn−1(x),u)),ϕ(d(Tn(x),u))} for each n∈ Z
+. (13)

If

max{ϕ(d(Tn−1(x),u)),ϕ(d(Tn−1(x),Tn(x))),ϕ(d(Tn(x),u))}= ϕ(d(Tn(x),u)) (14)

for somen∈ Z
+, then from (13), we have

d(Tn(x),u)) ≤ ϕ(d(Tn(x),u)).
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Thus, by property(ii) of ϕ , we get

d(Tn(x),u) = 0 which impliesTn(x) = u.

Hence,

Tn+m(x) = Tm(Tn(x)) = Tm(u) = u for eachm∈N,

which shows that the sequenceTn(x)→ u asn→ ∞. By the uniqueness of the limit we conclude thatu= p. Otherwise,

max{ϕ(d(Tn−1(x),u)),ϕ(d(Tn−1(x),Tn(x))),ϕ(d(Tn(x),u))} 6= ϕ(d(Tn(x),u)), for all n∈ Z
+.

Again, from (13) we must have

d(Tn(x),u)≤ max{ϕ(d(Tn−1(x),u)),ϕ(d(Tn−1(x),Tn(x)))} ≤ ϕ(d(Tn−1(x),u))+ϕ(d(Tn−1(x),Tn(x))) (15)

for all n∈ Z
+.

If we take limit superior of (15), and use the upper-semi continuity ofϕ , we obtain

d(p,u)≤ limsup
n→∞

ϕ(d(Tn−1(x),u))+ limsup
n→∞

ϕ(d(Tn(x),Tn−1(x)))≤ ϕ(d(p,u)).

Which gives that

d(p,u)≤ ϕ(d(p,u)). (16)

Using property(ii) of ϕ and (16), we conclude that

d(u, p) = 0 and henceu= p.

Remark.If we takeϕ(t) = kt, wherek∈ [0,1), then Theorem5 is reduced to the result of Alfuraidan [[3], Theorem 3.1].

From Remark30, we observe that the class ofG−monotone generalized quasi contraction mappings containsthe class of

G− monotone quasi contraction mappings. The following example illustrates that the inclusion is proper.

Example 2. Let X = R with metric d, the usual absolute value metric, i.e.,d(x,y) = |x− y|. We see that(X,d) is a

complete metric space. LetC= [0,∞)⊂ R which is closed. Define a map

T : C→C by T(x) =
x

1+ x
.

Consider a graphG onX with E(G) = X×X, thenG is connected, reflexive and transitive digraph. We are goingto show

thatT is aG−monotone generalized quasi contraction mapping, but not aG−monotone quasi contraction mapping. Now,

consider a function

ϕ : [0,∞)→ [0,∞) given byϕ(t) =
t

1+ t
.

c© 2017 BISKA Bilisim Technology

www.ntmsci.com/jacm


29 T. W. Hunde, M. G. Sangago and H. Zegeye: On Monotone Generalized Quasi contraction mappings...

We observe thatϕ is a comparison function. Letx,y ∈ C. Without loss of generality we assume thatx < y (as d is

symmetric, the same result follows forx> y). Then we have

d(T(x),T(y)) =
y− x

(1+ x)(1+ y)
=

y− x
1+ x+ y+ xy

≤
y− x

1+ y+ x
≤

y− x
1+ y− x

= ϕ(y− x) = ϕ(d(x,y))≤ ϕ(M(x,y)),

where,

M(x,y) = max{d(x,y),d(x,T(x)),d(y,T(y)),d(x,T(y)),d(T(x),y)}.

Therefore,

d(T(x),T(y))≤ ϕ(M(x,y)), (17)

which shows thatT is aG−monotone generalized quasi contraction mapping. Next we show thatT is not aG−monotone

quasi contraction mapping. Indeed,

d(x,T(x)) = x−
x

1+ x
=

x2

1+ x
, (18)

d(y,T(y)) = y−
y

1+ y
=

y2

1+ y
, (19)

d(x,T(y)) = |x−
y

1+ y
|=

|x− y+ xy|
1+ y

≤
y− x+ xy

1+ y
≤

y− x+ xy
1+ x

, (20)

and

d(T(x),y) = |y−
x

1+ x
|=

y− x+ xy
1+ x

. (21)

Now, we claim that

M(x,y) =
y− x+ yx

1+ x
. (22)

Using the fact that the function

f (x) =
x

1+ x

is strictly increasing function and the assumption thatx< y, we have

x2

1+ x
= x

x
1+ x

≤ x
y

1+ y
≤

y2

1+ y
. (23)

In addition, ify− x> 0, then we have

y− x+ yx− yx+ y2+ y2x> yx− yx+ y2+ y2x,
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which implies that

(y− x)(1+ y)+ yx(1+ y)≥ y2(1+ x),

and hence

y− x+ yx
1+ x

≥
y2

1+ y
. (24)

On the other hand

d(x,T(y))≤
y− x+ yx

1+ y
≤

y− x+ yx
1+ x

. (25)

Again, as−x2 ≤ 0, we have

y− x+ yx− x2 ≤ y− x+ xy,

which implies that

(y− x)(1+ x)≤ y− x+ yx

and hence

y− x≤
y− x+ yx

1+ x
. (26)

From (20)-(26), we conclude that

M(x,y) =
y− x+ yx

1+ x
= d(x,Ty). (27)

Now, if there is a constant numberk∈ [0,1) such that for eachx,y∈C

d(T(x),T(y)) =
y− x

(1+ x)(1+ y)
≤ kM(x,y) = k

(y− x+ yx)
1+ x

(28)

then we must have

1
1+ y

≤ k(1+
yx

y− x
). (29)

Letting y→ 0 (and hencex→ 0) in (29), we get 1≤ k, which is a contradiction. Hence,T is not aG− monotone quasi

contraction mapping. Actually,T has a unique fixed point and for eachx∈C,

Tn(x) =
x

1+nx
≤

x
nx

=
1
n
→ 0

asn→ ∞. Here 0 is a unique fixed pint ofT, where theG−monotone quasi contraction mapping could not be applied to

guarantee the existence of such fixed points.
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4 Generalized quasi contractions in modular metric spaces with a graph

Next, we are going to discuss the validity of the previous results in the setting of modular metric spaces.

Definition 12. Let (X,ω) be a modular metric space and G be a reflexive, transitive digraph defined on X. Let C be

a nonempty subset of X. A mapping T: C → C is said to be: G−monotone generalizedω−quasi contraction if T is

G−monotone and there existsϕ ∈ Φ such that for any x,y∈C, and(x,y) ∈ E(G), we have

ω1(T(x),T(y))≤ max{ϕ(ω1(x,y)),ϕ(ω1(x,T(x))),ϕ(ω1(y,T(y))),ϕ(ω1(x,T(y))),ϕ(ω1(T(x),y))}

Let C be a nonempty subset ofX and letT : C → C be any self mapping. For anyx ∈ C we define, the orbitO(x) =

{x,T(x),T2(x), . . .} and its diameter by

δω (x) = sup{ω1(T
n(x),Tm(x)) : n,m∈ N}.

Throughout, we assume thatω is regular and satisfy the Fatou property.

Lemma 3.Let (X,ω) be a modular metric space and G be a reflexive and transitive digraph on X . Let C be a nonempty

subset of X and T: C→C be a G−monotone generalizedω−quasi contraction mapping. For x∈C with(x,T(x)) ∈ E(G)

andδω(x)< ∞, we haveδω (Tn(x))≤ ϕn(δω (x)) for each n∈ N, whereϕ is the comparison function associated with the

G−monotone generalizedω−quasi contraction definition of T. Moreover, we have

ω1(T
n(x),Tn+m(x))≤ ϕn(δω(x)) for any n,m∈ N.

Proof.SinceT is G−monotone and(x,T(x)) ∈ E(G), we have

(Tn(x),Tn+1(x)) ∈ E(G) for anyn∈N.

By the transitivity of the graphG, for eachn∈ N, we have

(Tn(x),Tn+m(x)) ∈ E(G) for anym∈ Z
+. (30)

Again asG is reflexive,(x,x) ∈ E(G) and using the monotonocity ofG, we obtain

(Tn(x),Tn(x)) ∈ E(G) for eachn∈ N. (31)

Thus, from (30) and (31), we infer that

(Tn(x),Tn+m(x)) ∈ E(G) for eachn,m∈ N. (32)

SinceT is aG−monotone generalizedω−quasi contraction, and using (32), there is a comparison functionϕ ∈ Φ such

that

ω1(T
n(x),Tn+m(x)) ≤ max{ϕ(ω1(T

n−1(x),Tn+m−1(x))),ϕ(ω1(T
n−1(x),Tn(x))),

ϕ(ω1(T
n+m−1(x),Tn+m(x))),ϕ(ω1(T

n−1(x),Tn+m(x))),

ϕ(ω1(T
n(x),Tn+m−1(x)))} (33)
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for anyn∈ Z
+ and anym∈ N. We need to show that

δω(T
n(x))≤ ϕn(δω (x)) for eachn∈ N. (34)

To see this, ifn= 0, the result is obvious; in this case equality holds. Now, if wetaken= 1, in (33), we get

ω1(T(x),T
1+m(x))≤ max{ϕ(ω1(x,T

m(x))),ϕ(ω1(x,T(x))),ϕ(ω1(T
m(x),T1+m(x))),

ϕ(ω1(x,T
1+m(x))),ϕ(ω1(T(x),T

m(x)))}

≤ ϕ(δω (x)) (35)

for anym∈ N. Thus

ω1(T(x),T
1+m(x))≤ ϕ(δω(x)) (36)

for eachm∈N.

By the definition ofδ and (36), we obtain

δω (T(x))≤ ϕ(δω(x)). (37)

Using the monotonicity ofϕ and (37), we obtain

ϕ(δω (T(x)))≤ ϕ2(δω (x)). (38)

Using (37) and (38), we get

δω(T
2(x)) = δω (T(T(x)) ≤ ϕ(δω(T(x))) ≤ ϕ2(δω (x)). (39)

Repeated use of the monotonicity ofϕ and (37), gives

δω(T
n(x)) = δω (T(T

n−1(x)))≤ ϕ(δω (T
n−1(x)))

...≤ ϕn(δω(x)). (40)

On the other hand, from (33) and using the definition ofδω , we obtain

ω1(T
n(x),Tn+m(x)) = ω1(T

n(x),Tm(Tn(x))) ≤ δω(T
n(x)) (41)

for eachn,m∈ N. Hence, from (40) and (41), we get that

ω1(T
n(x),Tn+m(x))≤ ϕn(δω(x))

for eachn,m∈ N.

Lemma 4.Let (X,ω) be a modular metric space and let C be a nonemptyω−complete subset of X. Let T : C →C be a

G−monotone generalizedω−quasi contraction mapping and x∈C be such thatδω(x)< ∞. Then {Tn(x)} ω−converges

to a point u∈C. Moreover, one has

ω1(T
n(x),u)≤ ϕn(δω(x))
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for all n ∈ N.

Proof. By Lemma3, {Tn(x)} is ω−Cauchy sequence inC. SinceC is ω−complete, then there existsu ∈ C such that

{Tn(x)} ω−converges tou. Again, from (40), we have

ω1(T
n(x),Tn+m(x))≤ ϕn(δω(x)) (42)

for n,m∈N. As ω satisfies the Fatou property, lettingm→ ∞ in (42) to obtain

ω1(T
n(x),u)≤ ϕn(δω (x), for eachn∈ N. (43)

Theorem 6.Let (X,ω) be a modular metric space and let G be a reflexive transitive digraph defined on X such that the

triple (X,ω ,G) have Property (B):

for any sequence{xn}n∈N in X, if xn
ω
→ x and(xn,xn+1) ∈ E(G) for n∈N, then(xn,x) ∈ E(G) for each n∈N. Let C be a

nonemptyω−complete subset of X and T: C→C be a G−monotone generalizedω−quasi contraction mapping with the

associated comparison functionϕ ∈ Φ, the strong comparison function. For x∈C with (x,Tx) ∈ E(G) andδω (x) < ∞,

we have the following:

(a) The sequence{Tn(x)} ω−converges to some point u in C.

Moreover, we have(x,u) ∈ E(G) andω1(Tn(x),u)≤ ϕn(δω (x))

for each n∈ N. If in addition,ω1(u,T(u))< ∞ andω1(x,T(u))< ∞,

then u is a fixed point of T.

(b) If u∗ is any fixed point of T in C such that(x,u∗) ∈ E(G) and

ω1(Tn(x),u∗)< ∞ for any n∈N, then u= u∗.

Proof.First we prove (a). By Lemma4, the sequence{Tn(x)} is ω−Cauchy inC. SinceC is ω−complete, there is au∈C

such thatTn(x)
ω

−→ u asn→ ∞. From (40), we have

ω1(T
n(x),Tn+m(x))≤ ϕn(δω(x)) (44)

for eachm∈ N, and by assumptionω satisfies the Fatou property, we get (by lettingm→ ∞) in (44)

ω1(T
n(x),u)≤ lim inf

m→∞
ω1(T

n(x),Tn+m(x)) ≤ ϕn(δω (x)) for anyn∈ N.

From property(B), we have(Tn(x),u) ∈ E(G), for n∈ N. In particular(x,u) ∈ E(G). SinceT is G−monotone, we have

(T(x),T(u)) ∈ E(G) and hence

ω1(T(x),T(u))≤ max{ϕ(ω1(x,u)),ϕ(ω1(x,T(x))),ϕ(ω1(u,T(u)),ϕ(ω1(x,T(u)),ϕ(ω1(T(x),u))}. (45)

Sinceω satisfies the Fatou property, and using Lemma6, we have

ω1(x,u)≤ lim inf
m→∞

ω1(x,T
m(x)) ≤ δω(x),ω1(x,T(x))≤ δω(x),

and

ω1(T(x),u)≤ lim inf
m→∞

ω1(T(x),T
m(x))≤ δω (T(x))≤ ϕ(δω(x)).

Substituting these values in (45), we obtain

ω1(T(x),T(u))≤ max{ϕ(δω(x)),ϕ(ω1(u,T(u))),ϕ(ω1(x,T(u))),ϕ2(δω (x))}. (46)
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SinceT is aG−monotone and(Tn(x),u) ∈ E(G), for eachn∈ N, we have that

(Tn+1(x),T(u)) ∈ E(G). (47)

As (x,T(x)) ∈ E(G) andT is aG−monotone, we also have

(Tn(x),Tn+1(x)) ∈ E(G)

for eachn∈ N, and using the transitivity property ofG, we get

(Tn(x),T(u)) ∈ E(G).

Now, we assume that

ω1(T
n(x),T(u))≤ max{ϕn(δω (x)),ϕ(ω1(u,(T(u)))),ϕ2(ω1(u,T(u))),

· · · ,ϕn(ω1(u,T(u))),ϕn(ω1(x,T(u)),ϕn+1(δω(x))}. (48)

Then, for eachn∈ N, we have

ω1(T
n+1(x),T(u)) = ω1(T

n(T(x),T(u))

≤ max{ϕn(δω(T(x))),ϕ(ω1(u,T(u))),ϕ2(ω1(u,(T(u)))),

· · · ,ϕn(ω1(u,T(u))),ϕn(ω1(T(x),T(u)),

ϕn+1(δω(T(x)))}. (49)

From (46) and the monotonicity ofϕ , we get

ϕn(ω1(T(x),T(u)))≤ max{ϕn+1(δω (x)),ϕn+1(ω1(u,T(u)),ϕn+1(ω1(x,T(u))),ϕn+2(δω(x))}. (50)

Combining (50) and (49), we obtain

ω1(T
n+1(x),T(u))≤ max{ϕn+1(δω (x)),ϕn+2(δω (x)),ϕ(ω1(u,T(u))),ϕ2(ω1(u,(T(u)))),

· · · ,ϕn(ω1(u,T(u))),ϕn+1(ω1(x,T(u))}.

Hence, by induction we conclude that

ω1(T
n(x),T(u))≤ max{ϕn(δω(x)),ϕn+1(δω(x)),ϕ(ω1(u,T(u))),ϕ2(ω1(u,T(u))),

· · · ,ϕn(ω1(u,T(u))),ϕn(ω1(x,T(u))}

for eachn∈ N. Sinceϕn(t) is a nonincreasing sequence for anyt > 0 andω1(u,T(u))< ∞, we have that

ϕn(ω1(u,T(u)))≤ ϕ(ω1(u,T(u))) (51)
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for eachn∈ Z
+.

Thus, from (49) and (51), we have

ω1(T
n(x),T(u))≤ max{ϕn(δω (x)),ϕn+1(δω(x)),ϕ(ω1(u,T(u))),ϕn(ω1(x,T(u))}

≤ ϕn(δω(x))+ϕn+1(δω (x))+ϕn(ω1(x,T(u))+ϕ(ω1(u,T(u))). (52)

Thus, taking limit superior of (52), gives

limsup
n→∞

ω1(T
n(x),T(u))≤ limsup

n→∞
(ϕn(δω(x))+ϕn+1(δω(x))+ϕn(ω1(x,T(u))+ϕ(ω1(u,T(u)))

≤ limsup
n→∞

(ϕn(δω(x))+ limsup
n→∞

(ϕn+1(δω (x))+ limsup
n→∞

ϕn(ω1(x,T(u)))+ϕ(ω1(u,T(u))

= ϕ(ω1(u,T(u)).

Whence, using the Fatou property, we obtain

ω1(u,T(u))≤ lim inf
n→∞

ω1(T
n(x),T(u))≤ limsup

n→∞
ω1(T

n(x),T(u))≤ ϕ(ω1(u,T(u)).

Sinceω1(u,T(u))< ∞, and using property(ii) of ϕ , we must haveω1(u,T(u)) = 0. Sinceω is regular, we conclude that

u= T(u). Next we prove (b). Letu∗ be any fixed point ofT. Suppose that(x,u∗) ∈ E(G), andω1(Tn(x),u∗)< ∞ for any

n∈ N. By induction, and using theG−monotonicty ofT, we have

(Tn(x),u∗) ∈ E(G) for eachn∈ N.

By hypothesis, there is aϕ ∈ Φ, strong comparison function, such that

ω1(T
n(x),u∗)≤ max{ϕ(ω1(T

n−1(x),u∗)),ϕ(ω1(T
n−1(x),Tn(x))),ϕ(ω1(T

n(x),u∗))}

for eachn∈ Z
+. If

max{ϕ(ω1(T
n−1(x),u∗),ϕ(ω1(T

n−1(x),Tn(x))),ϕ(ω1(T
n(x),u∗))} = ϕ(ω1(T

n(x),u∗))

for somen∈ Z
+, then

ω1(T
n(x),u∗)≤ ϕ(ω1(T

n(x),u∗)).

Using property ofϕ , once again, we get

ω1(T
n(x),u∗) = 0.

Thus, asω is regular, we haveTn(x) = u∗ which implies thatTn(x)
ω

−→ u∗ asn→ ∞. Thus,

ω2(u,u
∗)≤ ω1(u,T

n(x))+ω1(T
n(x),u∗)

ω
−→ 0
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asn→ ∞ and the regularity of ofω providesu= u∗.

Now, suppose that

max{ϕ(ω1(T
n−1(x),u∗),ϕ(ω1(T

n−1(x),Tn(x)),ϕ(ω1(T
n(x),u))} 6= ϕ(ω1(T

n(x),u)),

for eachn∈ Z
+. Then,

ω1(T
n(x),u∗)≤ max{ϕ(ω1(T

n−1(x),u∗)),ϕ(ω1(T
n−1(x),Tn(x)))}

≤ max{ϕ(ω1(T
n−1(x),u∗)),ϕn(δω (x))} (53)

≤ max{ω1(T
n−1(x),u∗)),ϕn(δω (x))}

≤ ω1(T
n−1(x),u∗))+ϕn(δω (x))

for eachn∈ Z
+. Similarly, we have

ω1(T
n−1(x),u∗)≤ ω1(T

n−2(x),u∗))+ϕn−1(δω (x)).

Following the same procedure, we obtain

ω1(T
n(x),u∗)≤

n

∑
j=2

ϕ j(δω(x))+ω1(T(x),u
∗).

and

ω1(T(x),u
∗)≤ max{ϕ(ω1(x,u

∗)),ϕ(ω1(x,T(x)))}

≤ max{ω1(x,u
∗)),ϕ(ω1(δω (x)))}

≤ ω1(x,u
∗))+ϕ(ω1(δω)).

So, we obtain

ω1(T
n(x),u∗)≤

n

∑
j=1

ϕ j(δω (x))+ω1(x,u
∗). (54)

Thus,

limsup
n→∞

ω1(T
n(x),u∗)≤

∞

∑
j=1

ϕ j(δω(x))+ω1(x,u
∗)< ∞

asϕ was assumed to be a strong comparison function.

Now, if we set

γ(u∗) := limsup
n→∞

ω1(T
n(x),u∗),

then we haveγ(u∗)< ∞. Then, from (53), we get

ω1(T
n(x),u∗)≤ max{ϕn(δω (x)),ϕ(ω1(T

n−1(x),u∗))} (55)
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and taking limit superior asn → ∞ in (55), we obtain, γ(u∗) ≤ ϕ(γ(u∗)) which implies thatγ(u∗) = 0. i.e.,

limsupn→∞ ω1(Tn(x),u∗) = 0. Therefore, applying Fatou property once again, we get

ω1(u,u
∗)≤ lim inf

n→∞
ω1(T

n(x),u∗)≤ limsup
n→∞

ω1(T
n(x),u∗) = 0,

and hence sinceω is regular, we obtainu= u∗.

Remark.If we assume that(u,u∗) ∈ E(G) for any fixed pointu∗ in C andω1(u,u∗) < ∞, then(T(u),T(u∗)) ∈ E(G) and

ω1(u,u∗) = ω1(T(u),T(u∗))≤ ϕ(ω1(u,u∗)). This clearly shows thatu= u∗.

Remark.If we takeϕ(t) = kt, wherek∈ [0,1), then Theorem6 is reduced to the result of Alfuraidan [[3],Theorem 4.1]
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