On the algebraic properties of the univalent functions in class S

Ismet Yildiz ${ }^{1}$, Hasan Sahin ${ }^{1}$ and Neslihan Uyanik ${ }^{2}$
${ }^{1}$ Department of Mathematics, Duzce University, Duzce, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Education, Erzurum,Turkey

Received: 15 August 2017, Accepted: 12 September 2017
Published online: 28 September 2017.

Abstract

This work is shown below, the algebraic sum of the two functions selected from class S of univalent functions which is a subclass of this class A of functions $f(z)$ satisfy the conditions analiytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ normalized with $f(0)=0$ and $f \prime(0)=1$ is not univalent.

Keywords: Algebraic sum, analitik functions, univalent functions.

1 Introduction

A single-valuable function f is saide to be univalent(or schlicht) in a domain $D \subset \mathbb{C}$ if it never takes the same value twice; that is , if $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for all points z_{1} and z_{2} in D with $z_{1 \neq z_{2}}$. The function f is said to be locally univalent at a point $z_{0} \in D$ if it is univalent in some neighbornhood of z_{0}. For analytic functions f, the condition $f^{\prime}\left(z_{0}\right) \neq 0$ is equivlent to local univalence at z_{0}. An analytic univalent function is called a conformal mapping because of its angle-preserving property.

We shall be concerned primarily with the class S of functions f analytic and univalent in the unit disk $D=\{z:|z|<1\}$, normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Thus each $f \in S$ has a Taylor series expansion of the form

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\ldots,|z|<1 .
$$

In view of the Riemann mapping theorem, most of the geometric theorems concerning functions of class S are readily translates to statements about univalent functions in arbitrary simply connectes domains with more than one boundary point.

Definition 1. The leading example of a function of class S in the Koebe function

$$
k(z)=z(1-z)^{-2}=z+2 z^{2}+3 z^{3}+\ldots
$$

the Koebe function maps the disk D onto the entire plane minus the part of the negative real axis from $-\frac{1}{4}$ to infinity.This is best seen by writing

$$
k(z)=\frac{1}{4}\left(\frac{1+z}{1-z}\right)^{2}-\frac{1}{4}
$$

and observing that the function

$$
w=\frac{1+z}{1-z}
$$

maps D conformally onto the right half-plane Re $w>0$.

[^0]Examples of functions in S;
(1) $f(z)=z$ the identity mapping,
(2) $f(z)=z(1-z)^{-1}$ which maps D conformally onto the half-plane Re $w>-\frac{1}{2}$;
(3) $f(z)=z(1-z)^{-1}$, which maps D onto the entire plane minus the two half-lines $\frac{1}{2} \leq x<\infty$ and $-\infty<x \leq-\frac{1}{2}$;
(4) $f(z)=\frac{1}{2} \log \left[\frac{(1+z)}{(1-z)}\right]$, which maps D onto the horizontal strip $-\frac{\pi}{4}<\operatorname{Im} w<\frac{\pi}{4}$;
(5) $f(z)=z-\frac{1}{2} z^{2}=\frac{1}{2}\left[1-(1-z)^{2}\right]$, which maps D onto the interior of cardioid.

Theorem 1. (Rouche's Theorem) Let f and g be analytic inside and on a rectifiable Jordan Curve C, with $|g(z)|<|f(z)|$ on C. Then $(f+g)$ have same number of zeros, counted according to multiplicity, inside C.

Proof. $\Delta_{c} \arg (f+g)=\Delta_{c} \arg f+\Delta_{c} g(1+g / f)=\Delta_{c} \arg f$. If a squence $\left\{f_{n}\right\}$ of functions analytic in domain D converges uniformly on each compact subset of D to a function f, then f is also analytic in D. This is easily proved with aid of Cauchy integral formula. Hurwitz's theorem establishes a close connection between the zeros of f and the zeros of the function f_{n}.

Theorem 2. (Hurwitz's Theorem) Let f_{n} be analytic in a domain D, and suppose $f_{n}(z) \longrightarrow f(z)$ as $n \longrightarrow \infty$, uniformaly on each compact subset of D.Then either $f(z) \equiv 0$ in D, or every zero of f is a limit-point of a squence of zeroes of the function f_{n}.

Proof. Suppose $f\left(z_{0}\right)=0$ but $f(z) \neq 0$. It is enough to show that every neighborhood of z_{0} contains a zero of some function f_{n}. Choose $\delta>0$ so small that disk $\left|z-z_{0}\right|=\delta$. Let m be the minimum of $|f(z)|$ on C. Then for all $n \geq N$,

$$
\left|f_{n}(z)-f(z)\right|<m \leq|f(z)|
$$

on C. Thus by Rouche's theorem, f_{n} has the same number of zeroes as f does inside C. In other words, $f_{n}(z)$ must vanish at least once inside C whenever $n \geq N$.

A function f analytic in a domain D is said to be univalent there if it does not take the same value twice: $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for all pairs of distinct points z_{1} and z_{2} in D.

Theorem 3. Let f_{n} be analytic and univalent in a domain D, and suppose $f_{n}(z) \longrightarrow f(z)$ as $n \longrightarrow \infty$, uniformaly on each compact subset of D. Then f is either univalent or constant in D.

Proof. Suppose, on the contrary, that $f\left(z_{1}\right)=f\left(z_{2}\right)=\alpha$ for some pair of distinct point z_{1} and z_{2} in D.Then if $f(z) \neq \alpha$, that for $n \geq N$ the funct,on $f_{n} /(z)-\alpha$ vanishes in prescibed neighborhoods of both z_{1} and z_{2}. This violetes the univlence of f_{n} so $f(z) \equiv \alpha$.

Alternatively; the theorem can be proved by direct appeal to Rouche's theorem. It should be remarked that the limit function can actually be constant. For example, let $f_{n}(z)=\frac{z}{n}$.

Theorem 4. (Riemann Maping Theorem) Let D be a simply connected domain which is a proper subset of complex plane. Let ζ be a given point in D. Then there is a unique functionf which maps D conformally onto the unit disk and has the properties $f(\zeta)=0$ and $f^{\prime}(\zeta)>0$.

Proof. The hypothesis that D not be whole plane is essential because of Liouville's theorem that every bounded entire function is constant. The uniqueness assertion is easily established. Indeed if g is another mapping with the given properties, the function $h=g \circ f^{-1}$ is a conformal mapping of the unit disk onto itself and is therefore linear fractional mapping of the form displayed. But $h(0)=0$ and $h \prime(0)>0$,so h is the identity. Thus $f=g$ and the mapping is unique. We now turn to the proof of existence. Consider the family \mathscr{F} of all functions f analytic and univalent in D, ith $f(\zeta) 0, f \prime(\zeta)>0$ and $|f(z)|<1$ for all $z \in D$. This is the family of all normalized conformal mappings of D into the unit disk. According to Montel's theorem, \mathscr{F} is a normal family. To see that \mathscr{F} is nonempty, choose a finite point $\alpha \notin D$ and consider the function $g(z)=(z-\alpha)^{1 / 2}$. Since D is simply connected, g has a single-valued branch.

This functiong is analytic and univalent in D, and $g\left(z_{1}\right) \neq-g\left(z_{2}\right)$ for all points z_{1} and z_{2} in D. Thus because g assumes all values in some disk $|w-g(\zeta)| \leq \varepsilon$ it must omit the entire disk $|w+g(\zeta)| \leq \varepsilon$. Let ψ be the linear fractional mapping of the region $|w+g(\zeta)|>\varepsilon$ onto the unit disk with $\psi(g(\zeta))=0$ and $\psi^{\prime}(g(\zeta))>0$. Then $\psi \circ g \in \mathscr{F}$.

Now let $\sup _{f \in \mathscr{F}} f^{\prime}(\zeta)=M \leq \infty$, and choose a squence of functions $f_{n} \in \mathscr{F}$ for which $f \prime_{n}(\zeta) \rightarrow M$. Since \mathscr{F} is a normal family, some subsequence converges uniformly on compact sets to an analytic function f which is either univalent or constant. The limit function has properties $f(\zeta)=0$ and $f \prime(\zeta)=M>0$. In particular, $M<\infty$ and f is not constant, so $f \in \mathscr{F}$.

The extremal function f is actually the required conformal mapping of D onto the unit disk. If not, then f omits some point $w \in D$, some branch of

$$
F(z)=\left\{\frac{f(z)-w}{1-\bar{w} f(z)}\right\}^{1 / 2}
$$

is analytic and single-valued in D. Furthermore, F is univalent in D and $|F(z)|<1$ there. The function

$$
G(z)=e^{-i \theta}=\frac{F(z)-F(\zeta)}{1-\overline{F(\zeta)} F(z)}
$$

where $e^{i \theta}=F^{\prime}(\zeta) /\left|F^{\prime}(\zeta)\right|$, therefore belongs to \mathscr{F}. However, a straightforward calculation gives and $\operatorname{soG}(\zeta)>f^{\prime}(\zeta)$. This contradiction to the extremal property of f shows that f cannot omit any point in the unit disk. The proof is complete.

Theorem 5. (Bieberbach's Theorem) If $f \in S$, then $\left|a_{2}\right| \leq 2$, with equality if and only if f is a rotation of the Koebe function.

Proof. A square-root transformation and an inversion applied to $\mathrm{f} \in S$ will produce a function

$$
g(z)=\left\{f\left(1 / z^{2}\right)\right\}^{-1 / 2}=z-\left(a_{2} / 2\right) z^{-1}+\ldots
$$

of class Σ.
Thus $\left|a_{2}\right| \leq 2$, by the corollary by the corollary to the area theorem. Equality occurs if and only if g has the form

$$
g(z)=z-e^{i \theta} / z
$$

A simple calculation shows that this is equivalent to

$$
f(\zeta)=\zeta\left(1-e^{i \theta} \zeta\right)^{-2}=e^{-i \theta} k\left(e^{i \theta} \zeta\right)
$$

a rotation of Koebe function.
As a first application of Bieberbach's theorem, we shall now prove a famous covering theorem due to Koebe. Each function $f \in S$ is an open mapping with $f(0)=0$, so its range contains some disk centered at the origin.

Theorem 6. For each $f \in S$,

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 r^{2}}{1-r^{2}}\right| \leq \frac{4 r}{1-r^{2}}, \quad|z|=r<1 \tag{1}
\end{equation*}
$$

Proof. Given $f \in S$, fix $\zeta \in D$ and perform a disk automorphism to construct

$$
\begin{equation*}
F(z)=\frac{f\left(\frac{z+\zeta}{1+\bar{\zeta} z}\right)-f(\zeta)}{\left(1-|\zeta|^{2}\right) f^{\prime}(\zeta)}=z+A_{2}(\zeta) z^{2}+\ldots \tag{2}
\end{equation*}
$$

Then $F \in S$ and a calculation gives

$$
A_{2}(\zeta)=\frac{1}{2}\left\{\left(1-|\zeta|^{2}\right) \frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}-2 \bar{\zeta}\right\}
$$

But Bieberbach'stheorem, $\left|A_{2}(\zeta)\right| \leq 2$. Simplifying this inequality and replacing ζ by z, we obtain the inequality (1). A suitable rotation of the Koebe function shows that the estimate is sharp for each $z \in D$.

Theorem 7. (Main Theorem) $f(z)=\frac{1}{2}\left[z(1-z)^{-2}+z(1+z)^{-2}\right]$ is the average of two functions in S but is not univalent

Proof. If

$$
g(z)=z(1-z)^{-2} \text { and } h(z)=z(1+z)^{-2}
$$

lets form the following sum

$$
f(z)=\frac{1}{2}[g(z)+h(z)]
$$

Firstly $g(z)=\frac{z}{(1-z)^{-2}} \in$ using Koebe function

$$
\begin{equation*}
z+\sum_{n=2}^{\infty} n z^{n}=z+2 z^{2}+3 z^{3}+4 z^{4}+\ldots \tag{3}
\end{equation*}
$$

$g(0)=0, g \prime(0)=1$ and $g(z) \in A$.
Let's see if $\mathrm{g}(\mathrm{z})$ function is univalent. If $z_{1} \neq z_{2}$ then, $g\left(z_{1}\right)-g\left(z_{2}\right) \neq 0$ in the event of $\mathrm{g}(\mathrm{z})$ function is univalent. If $z_{1}-z_{2} \neq 0$ then,

$$
\begin{aligned}
g\left(z_{1}\right)-g\left(z_{2}\right) & =z_{1}+\sum_{n=2}^{\infty} n z_{1}^{n}-z_{2}-\sum_{n=2}^{\infty} n z_{2}^{n} \\
& =z_{1}-z_{2}+\sum_{n=2}^{\infty} n z_{1}^{n}-\sum_{n=2}^{\infty} n z_{1}^{n} \\
& =z_{1}-z_{2}+2 z_{1}^{2}+3 z_{1}^{3}+4 z_{1}^{4}+\ldots-2 z_{2}^{2}+3 z_{1}^{3}-4 z_{2}^{4}-\ldots \\
& =z_{1}-z_{2}+2 z_{1}^{2}-2 z_{2}^{2}+3 z_{1}^{3}-3 z_{2}^{3}+4 z_{1}^{4}-4 z_{2}^{4}+\ldots \\
& =z_{1}-z_{2}+2\left(z_{1}^{2}-z_{2}^{2}\right)+3\left(z_{1}^{3}-z_{2}^{3}\right)+\ldots \\
& =z_{1}-z_{2}+2\left(z_{1}-z_{2}\right)\left(z_{1}+z_{2}\right)+3\left(z_{1}-z_{2}\right)\left(z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right)+\ldots \\
& =\left(z_{1}-z_{2}\right)\left[1+2\left(z_{1}+z_{2}\right)+3\left(z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right)+\ldots\right] \neq 0 .
\end{aligned}
$$

So $g(z)$ function is univalent. Now let's find out where the image of the function g turns.

$$
\begin{aligned}
& w=g(z)=\frac{z}{(1-z)^{-2}}=\frac{z}{z^{2}-2 z+1} \Longrightarrow w z^{2}-2 w z+w=z \\
& w z^{2}-2 w z+w-z=0 \\
& w z^{2}-(2 w+1) z+w=0
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
& z_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2 a}=\frac{2 w+1 \pm \sqrt{4 w+1}}{2 w} \\
& \quad \sqrt{4 w+1} \rightarrow \sqrt{4(u+i v)+1}=\sqrt{4 u+4 i v+1} \\
& \\
& 4 u+4 i v+1 \geq 0 \\
& \\
& \quad u+i v+\frac{1}{4} \geq 0
\end{aligned}
$$

Then

$$
u+\frac{1}{4} \geq 0 \Longrightarrow u \geq-\frac{1}{4}
$$

Thus, $g(z)$ function in unit disk is maps to $\operatorname{Re} u \geq-\frac{1}{4}$ and $h(z)=\frac{z}{(1+z)^{-2}}$ using Binom expansion

$$
\begin{align*}
\frac{1}{(1+z)^{-2}} & =1^{-2}+\frac{(-2) 1^{-3} z}{1!}+\frac{(-2)(-3) 1^{-4} z^{2}}{2!}+\frac{(-2)(-3)(-4) 1^{-5} z^{3}}{3!}+\frac{(-2)(-3)(-4)(-5) 1^{-6} z^{4}}{4!} \\
& =1-2 z+3 z^{2}-4 z^{3}+5 z^{4}+\ldots \\
z \frac{1}{(1+z)^{-2}} & =z\left(1-2 z+3 z^{2}-4 z^{3}+5 z^{4}+\ldots\right)=z-2 z^{2}+3 z^{3}-4 z^{4}+5 z^{5}+\ldots=z+\sum_{n=2}^{\infty}(-1)^{n-1} n z^{n}, \tag{4}
\end{align*}
$$

$h(0)=0, h^{\prime}(0)=1$, and $h(z) \in A$. Let's see if $h(z)$ function is univalent.
If $z_{1} \neq z_{2}$ then $h\left(z_{1}\right)-h\left(z_{2}\right) \neq 0$ in the event of $h(z)$ function is univalent.
if $z_{1}-z_{2} \neq 0$ then

$$
\begin{aligned}
h\left(z_{1}\right)-h\left(z_{2}\right) & =z+\sum_{n=2}^{\infty}(-1)^{n-1} n z^{n}-z-\sum_{n=2}^{\infty}(-1)^{n-1} n z^{n} \\
& =z_{1}-2 z_{1}^{2}+3 z_{1}^{3}-4 z_{1}^{4}+5 z_{1}^{5}+\ldots-z_{2}+2 z_{2}^{2}-3 z_{2}^{3}+4 z_{2}^{4}-5 z_{2}^{5}+\ldots \\
& =z_{1}-z_{2}-2 z_{1}^{2}+2 z_{2}^{2}+3 z_{1}^{3}+3 z_{2}^{3}-4 z_{1}^{4}+4 z_{2}^{4} \cdots \\
& =z_{1}-z_{2}-2\left(z_{1}^{2}-z_{2}^{2}\right)-3\left(z_{1}^{3}+z_{2}^{3}\right)-4(\ldots) \\
& =\left(z_{1}-z_{2}\right)\left[1-2\left(z_{1}^{2}-z_{2}^{2}\right)-3\left(z_{1}^{2} \ldots\right] \neq 0 .\right.
\end{aligned}
$$

So $h(z)$ function is univalent.
Now let's find out where the image of the function h turns.

$$
\begin{aligned}
& w=h(z)=\frac{z}{(1+z)^{-2}}=\frac{z}{z^{2}+2 z+1} \Longrightarrow w z^{2}+2 w z+w=z \\
& w z^{2}+(2 w-1) z+w=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
& z_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2 a}=\frac{-2 w+1 \pm \sqrt{-4 w+1}}{2 w} \Longrightarrow \sqrt{-4 w+1}=\sqrt{-4 u-4 i v+1} \Longrightarrow-4 u-4 i v+1 \geq 0 \\
& =-u-v+\frac{1}{4} \geq 0
\end{aligned}
$$

we look reel part $\Longrightarrow u \leq \frac{1}{4}$, Thus, $\mathrm{h}(\mathrm{z})$ function in unit disk is maps to $\operatorname{Re} u \leq \frac{1}{4}$.
We proved that $g(z)$ and $h(z) \in A$ and function g, h is univalent then $g(z), h(z) \in S$.
Now we replace (3) and (4) in $f(z)$ function

$$
f(z)=\frac{1}{2}[g(z)+h(z)]=\frac{1}{2}\left(2 z+6 z^{3}+10 z^{5}+\ldots\right)=z+3 z^{3}+5 z^{5}+\ldots
$$

Corollary. $f(z)$ is odd fonksiyon.
Now, let us take this statement

$$
\begin{aligned}
& f(-z)=-z-3 z^{3}-5 z^{5}+\ldots \Longrightarrow-f(-z)=z+3 z^{3}+5 z^{5}+\ldots \\
& f(z)=z+3 z^{3}+5 z^{5}+\ldots
\end{aligned}
$$

So $-f(-z)=f(z)$.
If we take the derivatives of $f(z)$, then $f \prime(z)=1+9 z^{2}+25 z^{4}+\ldots, f(0)=0$ and $f \prime(0)=1$. This means that $f(z)$ is an analytic function and $f(z) \in A$. We try to prove function $f(z)$ is an univalent function,

$$
f(z)=z+3 z^{3}+5 z^{5}+\ldots=z+\sum_{n=2}^{\infty}(2 n+1) z^{(2 n+1)}
$$

If $z_{1}-z_{2} \neq 0$ then $f\left(z_{1}\right)-f\left(z_{2}\right) \neq 0$ in the event of $f(z)$ function is univalent.
If $z_{1}-z_{2} \neq 0$ then

$$
\begin{aligned}
f\left(z_{1}\right)-f\left(z_{2}\right) & =z_{1}+\sum_{n=2}^{\infty}(2 n+1) z_{1}^{(2 n+1)}-z_{2}-\sum_{n=2}^{\infty}(2 n+1) z_{2}^{(2 n+1)} \\
& =z_{1}-z_{2}+\sum_{n=2}^{\infty}(2 n+1) z_{1}^{(2 n+1)}-\sum_{n=2}^{\infty}(2 n+1) z_{2}^{(2 n+1)} \\
& =z_{1}-z_{2}+3 z_{1}^{3}+5 z_{1}^{5}+\ldots-3 z_{2}^{3}-5 z_{2}^{5}-\ldots \\
& =z_{1}-z_{2}+3 z_{1}^{3}-3 z_{2}^{3}+5 z_{1}^{5}-5 z_{2}^{5}+\ldots \\
& =z_{1}-z_{2}+3\left(z_{1}^{3}-z_{2}^{3}\right)+5\left(z_{1}^{5}-z_{2}^{5}\right)+\ldots \\
& =\left(z_{1}-z_{2}\right)\left[1+3\left(z_{1}^{3}+z_{1} z_{2}+z_{2}^{2}\right)+5\left[\left(z_{1}-z_{2}\right)^{4}-5 z_{1} z_{2}\left(z_{1}+z_{2}\right)-10 z_{1} z_{2} \ldots\right]\right]+\ldots
\end{aligned}
$$

$\left(z_{1}-z_{2}\right) \neq 0$ and the equation $\left[1+3\left(z_{1}^{3}+z_{1} z_{2}+z_{2}^{2}\right)+5\left[\left(z_{1}-z_{2}\right)^{4}-5 z_{1} z_{2}\left(z_{1}+z_{2}\right)-10 z_{1} z_{2} \ldots\right]\right]+\ldots$ may not always be zero. This is not always the case $f\left(z_{1}\right)-f\left(z_{2}\right) \neq 0$. So $f(z)$ is not univalent function. This completes the proof.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Koichi Sakaguchi,On a Certain Univalent Mapping,Journal of Mathematical Society of Japan ,1959, Vol.11 No.1.
[2] M. Nunokawa, M. Aydo gan , K. Kuroki , I. Yildiz , S.Owa, n the order of close-to-convexity of convex functions of order alpha, Journal of Inequalities and Applications 2012, 2012:245 doi:10.1186/1029-242X- 2012-245.
[3] M. Nunokawa, M. Aydo gan, K. Kuroki, I. Yildiz, S.Owa, Some properties concerning close-to-convexity of certain analytic functions, Journal of Inequalities and Applications 2012, 2012:2.
[4] Nikola Tuneski, Some Results on Starlike and Convex Functions,Applicable analysis and Discrete Mathematics,2007,293-298.
[5] Peter L. Duren,Univalent Functions,Springer-Verlag New York, 1983.
[6] Shigeyoshi Owa,The order of ,close-to-Convexity for Certain Univalent Functions,Journal of Mathematical Analysis and Applications1989,138,393-396.
[7] T. Hayami , H.Shiraishi , S.Owa, I. Yildiz , Notes on Nunokawa Lemmas,International Journal of Applied Mathematics 2012, 429-441.
[8] Vanessa Bertoni,Dimitri K. Dimitrov,Generating Starlike and Convex Univalent Functions,Mathematica Balkanica New Series Vol.19,2005,Fasc.3-4.

[^0]: * Corresponding author e-mail: hasansahin13@gmail.com

