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Abstract: This work is shown below, the algebraic sum of the two functions selected from classSof univalent functions which is a
subclass of this classA of functions f (z) satisfy the conditions analiytic in the open unit diskU = {z∈ C : |z|< 1} normalized with
f (0) = 0 and f ′(0) = 1is not univalent.
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1 Introduction

A single-valuable function f is saide to be univalent(or schlicht) in a domainD ⊂ C if it never takes the same value twice;
that is ,if f (z1) 6= f (z2) for all pointsz1 andz2 in D with z16=z2. The functionf is said to be locally univalent at a point
z0 ∈ D if it is univalent in some neighbornhood ofz0. For analytic functionsf , the conditionf ′(z0) 6= 0 is equivlent to
local univalence atz0. An analytic univalent function is called a conformal mapping because of its angle-preserving
property.

We shall be concerned primarily with the classSof functions f analytic and univalent in the unit diskD = {z : |z|< 1},
normalized by the conditionsf (0) = 0 and f ′(0) = 1. Thus eachf ∈ Shas a Taylor series expansion of the form

f (z) = z+a2z2+a3z3+a4z4+ ..., |z|< 1.

In view of the Riemann mapping theorem, most of the geometrictheorems concerning functions of classS are readily
translates to statements about univalent functions in arbitrary simply connectes domains with more than one boundary
point.

Definition 1. The leading example of a function of class S in the Koebe function

k(z) = z(1− z)−2 = z+2z2+3z3+ ...,

the Koebe function maps the disk D onto the entire plane minusthe part of the negative real axis from− 1
4 to infinity.This

is best seen by writing

k(z) =
1
4

(

1+ z
1− z

)2

− 1
4

and observing that the function

w=
1+ z
1− z

maps D conformally onto the right half-plane Re w> 0.
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Examples of functions inS;

(1) f (z) = z the identity mapping,
(2) f (z) = z(1− z)−1 which mapsD conformally onto the half-planeRe w>− 1

2;
(3) f (z) = z(1− z)−1, which maps D onto the entire plane minus the two half-lines1

2 ≤ x< ∞ and−∞ < x≤− 1
2;

(4) f (z) = 1
2 log

[

(1+z)
(1−z)

]

, which mapsD onto the horizontal strip− π
4 < Im w< π

4 ;

(5) f (z) = z− 1
2z2 = 1

2

[

1− (1− z)2
]

, which mapsD onto the interior of cardioid.

Theorem 1.(Rouche’s Theorem) Let f and g be analytic inside and on a rectifiable Jordan Curve C, with|g(z)|< | f (z)|
on C. Then( f +g) have same number of zeros, counted according to multiplicity, inside C.

Proof.∆c arg( f +g) = ∆c argf +∆cg(1+g/ f ) = ∆cargf . If a squence{ fn} of functions analytic in domainD converges
uniformly on each compact subset ofD to a function f , then f is also analytic inD. This is easily proved with aid of
Cauchy integral formula. Hurwitz’s theorem establishes a close connection between the zeros off and the zeros of the
function fn.

Theorem 2.(Hurwitz’s Theorem) Let fn be analytic in a domain D, and suppose fn(z) −→ f (z) as n−→ ∞, uniformaly
on each compact subset of D.Then either f(z) ≡ 0 in D, or every zero of f is a limit-point of a squence of zeroes of the
function fn.

Proof.Supposef (z0) = 0 but f (z) 6= 0. It is enough to show that every neighborhood ofz0 contains a zero of some function
fn. Chooseδ > 0 so small that disk|z− z0|= δ . Let m be the minimum of| f (z)| onC. Then for alln≥ N,

| fn(z)− f (z)|< m≤ | f (z)|

onC. Thus by Rouche’s theorem,fn has the same number of zeroes asf does insideC. In other words,fn(z) must vanish
at least once insideC whenevern≥ N.

A function f analytic in a domainD is said to be univalent there if it does not take the same valuetwice: f (z1) 6= f (z2)
for all pairs of distinct pointsz1 andz2 in D.

Theorem 3.Let fn be analytic and univalent in a domain D, and suppose fn(z)−→ f (z) as n−→ ∞, uniformaly on each
compact subset of D. Then f is either univalent or constant inD.

Proof.Suppose, on the contrary, thatf (z1) = f (z2) = α for some pair of distinct pointz1 andz2 in D.Then if f (z) 6= α,
that forn≥ N the funct,onfn/(z)−α vanishes in prescibed neighborhoods of bothz1 andz2. This violetes the univlence
of fn so f (z)≡ α.

Alternatively; the theorem can be proved by direct appeal toRouche’s theorem. It should be remarked that the limit
function can actually be constant. For example, letfn(z) = z

n.

Theorem 4.(Riemann Maping Theorem) Let D be a simply connected domain which is a proper subset of complex plane.
Let ζ be a given point in D. Then there is a unique function f which maps D conformally onto the unit disk and has the
properties f(ζ ) = 0 and f′(ζ ) > 0.

Proof. The hypothesis thatD not be whole plane is essential because of Liouville’s theorem that every bounded entire
function is constant. The uniqueness assertion is easily established. Indeed ifg is another mapping with the given
properties, the functionh= g◦ f−1 is a conformal mapping of the unit disk onto itself and is therefore linear fractional
mapping of the form displayed. Buth(0) = 0 andh′(0) > 0 ,soh is the identity. Thusf = g and the mapping is unique.
We now turn to the proof of existence. Consider the familyF of all functions f analytic and univalent inD, ith
f (ζ )0, f ′(ζ ) > 0 and| f (z)| < 1 for all z∈ D. This is the family of all normalized conformal mappings ofD into the unit
disk . According to Montel’s theorem,F is a normal family. To see thatF is nonempty, choose a finite pointα /∈ D and
consider the functiong(z) = (z−α)1/2. SinceD is simply connected,g has a single-valued branch.

This functiong is analytic and univalent inD, andg(z1) 6= −g(z2) for all pointsz1 andz2 in D. Thus becauseg assumes
all values in some disk|w−g(ζ )| ≤ ε it must omit the entire disk|w+g(ζ )| ≤ ε. Let ψ be the linear fractional mapping
of the region|w+g(ζ )|> ε onto the unit disk withψ(g(ζ )) = 0 andψ ′(g(ζ )) > 0. Thenψ ◦g∈ F .
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Now let supf∈F f ′(ζ ) = M ≤ ∞, and choose a squence of functionsfn ∈ F for which f ′n(ζ )→ M. SinceF is a normal
family, some subsequence converges uniformly on compact sets to an analytic functionf which is either univalent or
constant. The limit function has propertiesf (ζ ) = 0 and f ′(ζ ) = M > 0. In particular,M < ∞ and f is not constant, so
f ∈ F .

The extremal functionf is actually the required conformal mapping ofD onto the unit disk. If not, thenf omits some
point w∈ D, some branch of

F(z) =

{

f (z)−w
1−wf(z)

}1/2

is analytic and single-valued inD. Furthermore,F is univalent inD and|F(z)|< 1 there. The function

G(z) = e−iθ =
F(z)−F(ζ )
1−F(ζ )F(z)

,

whereeiθ = F ′(ζ )/|F ′(ζ )|, therefore belongs toF . However, a straightforward calculation gives andsoG′(ζ ) > f ′(ζ ).
This contradiction to the extremal property off shows thatf cannot omit any point in the unit disk. The proof is complete.

Theorem 5. (Bieberbach’s Theorem) If f∈ S, then|a2| ≤ 2, with equality if and only if f is a rotation of the Koebe
function.

Proof.A square-root transformation and an inversion applied to f∈ Swill produce a function

g(z) =
{

f (1/z2)
}−1/2

= z− (a2/2)z−1+ ...

of classΣ .

Thus|a2| ≤ 2, by the corollary by the corollary to the area theorem. Equality occurs if and only ifg has the form

g(z) = z−eiθ/z.

A simple calculation shows that this is equivalent to

f (ζ ) = ζ (1−eiθ ζ )−2 = e−iθ k(eiθ ζ ),

a rotation of Koebe function.

As a first application of Bieberbach’s theorem, we shall now prove a famous covering theorem due to Koebe. Each
function f ∈ S is an open mapping withf (0) = 0, so its range contains some disk centered at the origin.

Theorem 6.For each f∈ S,

∣

∣

∣

∣

z f′′(z)
f ′(z)

− 2r2

1− r2

∣

∣

∣

∣

≤ 4r
1− r2 , |z|= r < 1. (1)

Proof.Given f ∈ S, fix ζ ∈ D and perform a disk automorphism to construct

F(z) =
f
(

z+ζ
1+ζz

)

− f (ζ )

(1−|ζ |2) f ′(ζ )
= z+A2(ζ )z2+ ... (2)

ThenF ∈ Sand a calculation gives

A2(ζ ) =
1
2

{

(1−|ζ |2) f ′′(ζ )
f ′(ζ )

−2ζ
}

.

But Bieberbach’stheorem,|A2(ζ )| ≤ 2. Simplifying this inequality and replacingζ by z, we obtain the inequality (1). A
suitable rotation of the Koebe function shows that the estimate is sharp for eachz∈ D.
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Theorem 7.(Main Theorem) f(z) = 1
2

[

z(1− z)−2+ z(1+ z)−2
]

is the average of two functions in S but is not univalent

Proof. If
g(z) = z(1− z)−2 andh(z) = z(1+ z)−2

lets form the following sum

f (z) =
1
2
[g(z)+h(z)] .

Firstly g(z) = z
(1−z)−2 ∈ using Koebe function

z+
∞

∑
n=2

nzn = z+2z2+3z3+4z4+ ... (3)

g(0) = 0 , g′(0) = 1 and g(z) ∈ A.

Let’s see if g(z) function is univalent. Ifz1 6= z2 then,g(z1)− g(z2) 6= 0 in the event of g(z) function is univalent. If
z1− z2 6= 0 then,

g(z1)−g(z2) = z1+
∞

∑
n=2

nzn
1− z2−

∞

∑
n=2

nzn
2

= z1− z2

∞
+∑
n=2

nzn
1

∞
−∑

n=2
nzn

1

= z1− z2+2z2
1+3z3

1+4z4
1+ ...−2z2

2+3z3
1−4z4

2− ...

= z1− z2+2z2
1−2z2

2+3z3
1−3z3

2+4z4
1−4z4

2+ ...

= z1− z2+2(z2
1− z2

2)+3(z3
1− z3

2)+ ...

= z1− z2+2(z1− z2)(z1+ z2)+3(z1− z2)(z
2
1+ z1z2+ z2

2)+ ...

= (z1− z2)
[

1+2(z1+ z2)+3(z2
1+ z1z2+ z2

2)+ ...
]

6= 0.

Sog(z) function is univalent. Now let’s find out where the image of the functiong turns.

w= g(z) =
z

(1− z)−2 =
z

z2−2z+1
=⇒ wz2−2wz+w= z,

wz2−2wz+w− z= 0

wz2− (2w+1)z+w= 0.

Therefore, we obtain

z1,2 =
−b±

√
∆

2a
=

2w+1±
√

4w+1
2w√

4w+1→
√

4(u+ iv)+1=
√

4u+4iv+1

4u+4iv+1≥ 0

u+ iv+
1
4
≥ 0.

Then

u+
1
4
≥ 0=⇒ u≥−1

4
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Thus,g(z) function in unit disk is maps to Reu≥− 1
4 andh(z) = z

(1+z)−2 using Binom expansion

1

(1+ z)−2 = 1−2+
(−2)1−3z

1!
+

(−2)(−3)1−4z2

2!
+

(−2)(−3)(−4)1−5z3

3!
+

(−2)(−3)(−4)(−5)1−6z4

4!

= 1−2z+3z2−4z3+5z4+ ...

z
1

(1+ z)−2 = z(1−2z+3z2−4z3+5z4+ ...) = z−2z2+3z3−4z4+5z5+ ...= z+
∞

∑
n=2

(−1)n−1nzn, (4)

h(0) = 0 , h′(0) = 1, andh(z) ∈ A. Let’s see ifh(z) function is univalent.

If z1 6= z2 thenh(z1)−h(z2) 6= 0 in the event ofh(z) function is univalent.

if z1− z2 6= 0 then

h(z1)−h(z2) = z+
∞

∑
n=2

(−1)n−1nzn− z−
∞

∑
n=2

(−1)n−1nzn

= z1−2z2
1+3z3

1−4z4
1+5z5

1+ ...− z2+2z2
2−3z3

2+4z4
2−5z5

2+ ...

= z1− z2−2z2
1+2z2

2+3z3
1+3z3

2−4z4
1+4z4

2...

= z1− z2−2(z2
1− z2

2)−3(z3
1+ z3

2)−4(...)

= (z1− z2)
[

1−2(z2
1− z2

2)−3(z2
1...

]

6= 0.

Soh(z) function is univalent.

Now let’s find out where the image of the functionh turns.

w= h(z) =
z

(1+ z)−2 =
z

z2+2z+1
=⇒ wz2+2wz+w= z

wz2+(2w−1)z+w= 0.

Thus

z1,2 =
−b±

√
∆

2a
=

−2w+1±
√
−4w+1

2w
=⇒

√
−4w+1=

√
−4u−4iv+1=⇒−4u−4iv+1≥ 0

=−u− v+
1
4
≥ 0,

we look reel part=⇒ u≤ 1
4, Thus, h(z) function in unit disk is maps to Reu≤ 1

4.

We proved thatg(z) andh(z) ∈ A and functiong, h is univalent theng(z),h(z) ∈ S.

Now we replace (3) and (4) inf (z) function

f (z) =
1
2
[g(z)+h(z)] =

1
2

(

2z+6z3+10z5+ ...
)

= z+3z3+5z5+ ...

Corollary. f (z) is odd fonksiyon.

Now, let us take this statement

f (−z) =−z−3z3−5z5+ ...=⇒− f (−z) = z+3z3+5z5+ ...

f (z) = z+3z3+5z5+ ...
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So− f (−z) = f (z) .

If we take the derivatives off (z), then f ′(z) = 1+9z2+25z4+ ..., f (0) = 0 and f ′(0) = 1. This means thatf (z) is an
analytic function andf (z) ∈ A. We try to prove functionf (z) is an univalent function,

f (z) = z+3z3+5z5+ ...= z+
∞

∑
n=2

(2n+1)z(2n+1).

If z1− z2 6= 0 then f (z1)− f (z2) 6= 0 in the event off (z) function is univalent.

If z1− z2 6= 0 then

f (z1)− f (z2) = z1+
∞

∑
n=2

(2n+1)z(2n+1)
1 − z2−

∞

∑
n=2

(2n+1)z(2n+1)
2

= z1− z2+
∞

∑
n=2

(2n+1)z(2n+1)
1 −

∞

∑
n=2

(2n+1)z(2n+1)
2

= z1− z2+3z3
1+5z5

1+ ...−3z3
2−5z5

2− ...

= z1− z2+3z3
1−3z3

2+5z5
1−5z5

2+ ...

= z1− z2+3(z3
1− z3

2)+5(z5
1− z5

2)+ ...

= (z1− z2)
[

1+3(z3
1+ z1z2+ z2

2)+5
[

(z1− z2)
4−5z1z2 (z1+ z2)−10z1z2...

]]

+ ...

(z1−z2) 6= 0 and the equation
[

1+3(z3
1+ z1z2+ z2

2)+5
[

(z1− z2)
4−5z1z2 (z1+ z2)−10z1z2...

]]

+ ... may not always be

zero. This is not always the casef (z1)− f (z2) 6= 0. So f (z) is not univalent function. This completes the proof.
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