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Abstract: We present in this paper, Bernstein Piecewise Polynomials Method(BPPM), Integral Mean Value Method(IMVM), Taylor
Series Method(TSM),The Least Square Method(LSM) are used to solve the integral equations of the second kind numerically. We
aim to compare the efficiency of BPPM, IMVM, TSM and LSM in solving the integral equations of the second kind. We solve some
examples to illustrate the applicability and simplicity ofthe methods. The numerical results show that which method ismore efficient
and accurate. As all these 4 methods consider solutions in numerically it is important to know about their rapidity of convergence to
the exact solution.
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1 Introduction

In the survey of solutions of integral equations, a large number of analytical and approximate methods for solving
numerically various classes of integral equations [1, 2] are available. Many different powerful methods have been
proposed to obtain exact and approximate solutions of integral equations. This study is an effort to comparison of
methods for solving linear Fredholm integral equations of the second kind.Since the piecewise polynomials are
differentiable and integrable, the Bernstein polynomials[4, 5] are defined on an interval to form a complete basis over
the finite interval. Moreover, these polynomials are positive and their sum is unity. For these advantages, Bernstein
polynomials have been used to solve second order linear and nonlinear differential equations, which are available in the
literature, e.g. Bhatti and Bracken [7]. Very recently, Mandal and Bhattacharya [6] have attempted to solve integral
equations numerically using Bernstein polynomials, but they obtained the results in terms of finite series solutions.
Mandal and Bhattacharya [6] has described a special approximate method of solution of Fredholm integral equations by
using Bernstein polynomials which suits the integral equations associated with function spaces spanned by polynomials
only. Available methods for solving such equations are various, such as spectral methods [8,9,10,11,12,13,14,15,16,17].
Taylor-series expansion method first presented in [18] for solving Fredholm integral equations of second kind. we give a
short introduction of Bernstein Piecewise Polynomials Method(BPPM), Integral Mean Value Method(IMVM), Taylor
Series Method(TSM),The Least Square Method(LSM) first. Allthe computations are performed using
MATHEMATICA.

In this paper we consider the solutions the integral equations of the second kind by using BPPM, IMVM, TSM and LSM.
The paper is organised as follows. In the next section we illustrate briefly the BPPM, IMVM, TSM and LSM. In section
3, we apply these four methods to three examples to solve the integral equations of the second kind. In section 4, we give
a brief discussion and conclusion.
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2 The theory of methods

2.1 The mean value method

Consider the following Fredholm integral equation of second kind:

ϕ(x) = f (x)+λ
∫ b

a
K(x, t)ϕ(t)dt, x, t ∈ [a,b] (1)

whereλ is a real number, alsof andK are given continuous functions, andu is unknown function to be determined.
Now, we remind integral mean value theorem and apply it directly in this method.

If s(x) is continuous on the closed interval[a,b], then there is a numberc with a a ≤ c ≤ b such that

∫ b

a
s(x)dx = (b− a)s(c) (2)

Now, we illustrate the main idea of our method. By applying the above theorem to Eq.1 we have

ϕ(x) = f (x)+λ (b− a)K(x,c)ϕ(c) (3)

wherec ∈ [a,b] . Now, we must just findc andϕ(c) as unknowns. Substitution ofc into Eq.3 gives the following equation

ϕ(c) = f (c)+λ (b− a)K(c,c)ϕ(c). (4)

For constructing another equation concerningc andϕ(c) we substitute Eq.3 into Eq.1 and obtain

ϕ(x) = f (x)+λ
∫ b

a
K(x, t)( f (t)+λ (b− a)K(t,c)ϕ(c))dt (5)

and by substitutingx = c into Eq.5 we obtain

ϕ(c) = f (c)+λ
∫ b

a
K(c, t)( f (t)+λ (b− a)K(t,c)ϕ(c))dt. (6)

After consecutive substitutions, we obtain proper and enough equations. Now, we solve Eqs.3 and6 simultaneously. For
solving the above system, we can use various methods.

2.2 The Bernstein method

The general form of the Bernstein polynomials [4-7] ofnth degree over the interval[a,b] is defined by

Bi,n(x) =

(

n
i

)

(x−α)i(β − x)n−i

(β −α)n , i = 0,1,2, . . . ,n. (7)

Note that each of thesen+1 polynomials having degreen satisfies the following properties.

Bi,n(x) = 0, if i < 0 or i > n,
∑n

i=0 Bi,n(x) = 1;
Bi,n(a) = Bi,n(b) = 0, 1≤ i ≤ n−1
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Using MATHEMATICA code, the first 11 Bernstein polynomials of degree ten over the interval[a,b], are given below

B0,10(x) = (b− x)10/(b− a)10

B1,10(x) = 10(b− x)9(x− a)/(b− a)10

B2,10(x) = 45(b− x)8(x− a)2/(b− a)10

B3,10(x) = 120(b− x)7(x− a)3/(b− a)10

B4,10(x) = 210(b− x)6(x− a)4/(b− a)10

B5,10(x) = 252(b− x)5(x− a)5/(b− a)10

B6,10(x) = 210(b− x)4(x− a)6/(b− a)10

B7,10(x) = 120(b− x)3(x− a)7/(b− a)10

B8,10(x) = 45(b− x)2(x− a)8/(b− a)10

B9,10(x) = 10(b− x)(x− a)9/(b− a)10

B10,10(x) = (b− x)10/(b− a)10

Consider a general linear Fredholm integral equation of second kind is given by7.

Now we use the technique of Galerkin method [Lewis, 3] to find an approximate solutionϕ(x) of 1. For this, we assume
that

ϕ(x) =
n

∑
i=0

aiBi,n(x) (8)

whereBi,n(x) are Bernstein polynomials (basis) of degreei defined in eqn.7, and ai are unknown parameters, to be
determined. Substituting8 into 1, we obtain

n

∑
i=0

aiBi,n(x)−λ
∫ b

a

[

K(x, t)
n

∑
i=0

aiBi,n(t)

]

dt = f (x)

or
n

∑
i=0

ai

[

Bi,n(x)−λ
∫ b

a
K(x, t)Bi,n(t)dt

]

= f (x). (9)

Then the Galerkin equations [Lewis, 3] are obtained by multiplying both sides of8 by multiplying both sides of9 by
B j,n(x) and then integrating with respect tox from a to b, we have

n

∑
i=0

ai

[

∫ b

a

[

Bi,n(x)−λ
∫ b

a
K(x, t)Bi,n(t)dt

]

B j,n(x)dx

]

=

∫ b

a
B j,n(x) f (x)dx, j = 0,1, . . . ..,n.

Since in each equation, there are three integrals, the innerintegrand of the left side is a function ofx andt and is integrated
with respect tot from a to b. As a result the outer integrand becomes a function ofx only and integration with respect
to x yields a constant. Thus for eachj = 0,1,2, . . . .,n we have a linear equation withn+1 unknownsai, i = 0,1, . . . ..,n.
Finally 10 represents the system ofn+1 linear equations inn+1 unknowns, are given by

n

∑
i=0

aiCi, j = Fj, j = 0,1, . . . ,n (10)

where,

Ci, j =

∫ b

a

[

Bi,n(x)−λ
∫ b

a
K(x, t)Bi,n(t)dt

]

B j,n(x)dx. (11)

Fj =

∫ b

a
B j,n(x) f (x)dx. (12)

Now the unknown parametersai are determined by solving the system of equations (10-12), and substituting these values
of parameters in8, we get the approximate solutionϕ(x) of the integral equation of second type.
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2.3 The least square method

We observe that the Bernstein procedure of the determination of the coefficientsai, i = 0,1,2, . . . ,n gives rise to
computational difficulties because of the fact that a large number of integrals need to be evaluated which involve the
Bernstein polynomials, even by selectingn to be as small asn = 4. We have avoided these difficulties by recasting the
expression8 as

ϕ(x) = a0+ a1x+ a1x2+ · · ·+ anxn (13)

where, ifa = 0,b = 1, we get

a0 = c0

a1 =−nc0+ nc1

a1 =
n(n−1)

2 )(c0+ c2)− n(n−1)c1
...

an = (−1)n c0+(−1)n−1 nc1+(−1)n−2 n(n−1)
2 c2+ ...+(−1)ncn−1+ cn.

(14)

We now make the following observations. If an approximate solution of the Eq.1(for λ = 1) is expressed in the form of
a polynomial, as given by

ϕ(x) =
n

∑
i=0

aix
i (15)

whereai(i = 0,1,2, . . . ,N) are unknown constants to be determined then it amounts to determining the valuesϕ(x) at
N + 1 points in its domain of definition. This forces us to approximate the integral term of the integral equation by a
suitable quadrature formula requiring the knowledge of these(N +1) value ofϕ .

But, if the integral in the above Eq.1 is replaced by a quadrature formula (see Fox and Goodwin [19]), we get

ϕ(x)−
N

∑
k=0

wkϕ(tk)K(x, tk) = f (x), a < x < b (16)

wherewk are the weights andtk ’s are appropriately chosen interpolation points.

The Eq. 16 represents an over-determined system of linear algebraic equations for the determination of(N + 1)
unknownsϕ(tk)(k = 0, . . . .,N).

So, if from theoretical considerations it is already known that the given integral Eq.1 possesses a unique solution, then
varieties of methods can be used to cast the over-determinedsystem of Eq.16 into a system of(N +1) equations and the
method of least-squares provides the most appropriate procedure to handle the situation completely.

Note that one can obtain exactly(N +1) equations for the(N + 1) unknownsϕ0,ϕ1, . . . ,ϕN from the over-determined
system of Eq.16by selecting(N +1) interpolating pointsx = tk,k = 0,1,2, . . . ,N,(0< x < 1).

Substituting the approximate solution15 into the integral Eq.1 we obtain the relation

n

∑
i=0

aiΨi(x) = f (x),a < x < b (17)

giving rise to an over-determined system of linear algebraic equations for the determination of the unknown constants
ai(i = 0,1,2, . . . ,N) where,

Ψi(x) = xi +

∫ β

α
K(x, t)t idt, i = 0,1,2, . . . ,N. (18)
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On using the least-squares method, we obtain the normal equations,

N

∑
i=0

aici, j = b j, j = 1,2, . . . ,N +1 (19)

ci, j =

∫ b

a
Ψi−1(x)Ψj−1(x)dx, i = 1,2, . . . ,N +1, j = 1,2, . . . ,N +1 (20)

and,

b j =
∫ b

a
f (x)Ψj−1(x)dx, j = 1,2, . . . ,N +1. (21)

The solution of the system of Eq.19along with the relation15, finally determines an approximate solutionϕ(x).

2.4 The Taylor Method

Let us take the equation1. We assume thatϕ(x) a solution as

ϕ(x) =
∞

∑
n=0

1
n!

ϕ(n)(c)(x− c)n (22)

If we takenth derivative of1 we obtain that

ϕ(n)(x) = f (n)(x)+λ
∫ b

a

∂ (n)K(x, t)
∂xn ϕ(t)dt. (23)

Substitutingx = c in 23.

ϕ(n)(c) = f (n)(c)+λ
∫ b

a

∂ (n)K(x, t)
∂xn ϕ(t)dt. (24)

Eq.22 into Eq.24.

ϕ(n)(c) = f (n)(c)+λ
∫ b

a

∂ (n)K(x, t)
∂xn

∞

∑
m=0

1
m!

ϕ(m)(c)(x− c)mdt. (25)

If the equation is edited,

Dnm =
1

m!

∫ b

a

∂ (n)K(x, t)
∂xn (t − c)mdt. (26)

We substitute Eq.26 in to Eq.25

ϕ(n)(c) = f (n)(c)+λ
∞

∑
m=0

D(m)
nm ϕ(c) (27)

and

λ
∞

∑
m=0

D(m)
nm ϕ(c)−ϕ(n)(c) =− f (n)(c) (28)

the matrix equation is obtained,Dϕ = F From hereD = λ [Dnm] , n,m = 0,1,2, . . . . . . .,N. ,if D 6= 0 than28can be written
in the form of equation
ϕ = D−1F . If we solve this system than the Taylor solution22 is obtained.

3 Numerical Applications

In this section we consider examples that show the efficiencyof IMVM,BPPM,LSM and BPPM for solving fredholm
integral equation of second type. We illustrate the above procedures through the following examples.
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Example 1.

ϕ(x) = x+
∫ 1

0
(xt − x2)ϕ(t)dt.

The exact solution of integral equation is obtained as follows

ϕexact(x) =
96
73

x−
36
73

x2.

The approximate solutions of the integral equation are obtained using Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square Method(LSM), Taylor Series Method(TSM) respectively.

ϕIMV M(x) = 1.397922046675241x−0.6308106266346826x2,

ϕBPPM(x) = 1.3150684931506849x−0.4931506849315068x2,

ϕLSM(x) = 0.6575342465753424x+0.4931506849315068x2,

ϕT SM(x) = 1.397922046675241x−0.6308106266346826x2.

The exact and the approximate solutions at various points ofthe domain are shown in Table 1.

Table 1

x 0 0.1 0.2 0.3 0.4
exact 0.126575 0.243288 0.350137 0.447123 0.534247
meanvalue 0.133484 0.2543524 0.362604 0.458239 0.541258
bernstein 0.126575 0.243288 0.350137 0.447123 0.534247
leastsquare 0.0706849 0.151233 0.241644 0.341918 0.452055
taylor 0.126575 0.243288 0.350137 0.447123 0.534247

x 0.5 0.6 0.7 0.8
exact 0.534247 0.611507 0.678904 0.736438
meanvalue 0.541258 0.611661 0.669448 0.714619
Bernstein 0.534247 0.611507 0.678904 0.736438
leastsquare 0.452055 0.572055 0.701918 0.841644
Taylor 0.534247 0.611507 0.678904 0.736438

x 0.9 1
exact 0.78411 0.821918
meanvalue 0.747173 0.767111
Bernstein 0.78411 0.821918
leastsquare 0.991233 1.15068
Taylor 0.78411 0.821918

.

Example 2.

ϕ(x) = e−x +

∫ 1

0
ex+tϕ(t)dt.
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The exact solution of integral equation is obtained as follows

ϕexact(x) = e−x +
2ex

3− e2 .

The approximate solutions of the integral equation are obtained using Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square Method(LSM), Taylor Series Method(TSM) respectively.

ϕIMV M(x) = e−x −0.455678ex,

ϕBPPM(x) = 0.5443631075322628−1.4560665935277939x+0.27051618695259094x2−0.22946402430534363x3,

ϕLSM(x) = 0.75298−1.13347x+0.10864x2,

ϕT SM(x) = 0.4813656746174906−1.5186343253825094x+0.2406828373087453x2.

The exact and the approximate solutions at various points ofthe domain are shown in Table 2.

Table 2

x 0 0.1 0.2 0.3 0.4
exact 0.544321 0.401234 0.262163 0.125716 -0.0094729
meanvalue 0.544332 0.401235 0.262164 0.125717 -0.0094716
Bernstein 0.544363 0.401232 0.262135 0.125694 -0.0094666
leastsquare 0.75298 0.640719 0.530632 0.422717 0.3169743
Taylor 0.481366 0.331909 0.187266 0.047436 -0.0875788

x 0.5 0.6 0.7 0.8
exact -0.144757 -0.281489 -0.421039 -0.564803
meanvalue -0.144755 -0.281488 -0.421038 -0.564801
Bernstein -0.144724 -0.281455 -0.421037 -0.564845
leastsquare 0.213405 0.112008 0.012784 -0.084266
Taylor -0.217781 -0.343169 -0.463744 -0.579505

x 0.9 1
exact -0.714219 -0.870784
meanvalue -0.714217 -0.870782
Bernstein -0.714258 -0.870651
leastsquare -0.179145 -0.27185
Taylor -0.690452 -0.796586

.

Example 3.

ϕ(x) = cosx+
∫ π

0
sin(x− t)g(t)dt.

The exact solution of integral equation is obtained as follows

gexact(x) =
2(2cosx+π sinx)

4+π2 .
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The approximate solutions of the integral equation are obtained using Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square Method(LSM), Taylor Series Method(TSM) respectively.

ϕIMV M(x) = cosx−0.9528905138210743sin(1.87896539+ x),

ϕBPPM(x) = 0.2630471333126811+0.6192370186520357x−0.3865370100549862x2+0.04185410139410817x3,

ϕLSM(x) = 0.37717147291814945−0.82073705756559x+0.18930504421154654x2,

ϕT SM(x) = 0.2980567356721341+0.3121242837135104x−0.14902836783606704x2.

The exact and the approximate solutions at various points ofthe domain are shown in Table 3.

Table 3

x 0 0.1 0.2 0.3 0.4
exact 0.2884 0.332186 0.372652 0.409396 0.442048
meanvalue 0.0919997 0.120394 0.147586 0.173304 0.197289
Bernstein 0.263047 0.321147 0.371768 0.41516 0.451575
leastsquare 0.377171 0.297037 0.220689 0.148127 0.0793508
Taylor 0.298067 0.327779 0.35452 0.378281 0.39062

x 0.5 0.6 0.7 0.8
exact 0.470284 0.493821 0.512906 0.525906
meanvalue 0.219303 0.239127 0.256561 0.271431
Bernstein 0.481263 0.504477 0.521466 0.532482
leastsquare 0.0143609 -0.0468429 -0.104261 -0.157892
Taylor 0.416862 0.431681 0.44352 0.452378

x 0.9 1
exact 0.534134 0.537025
meanvalue 0.283589 0.292914
Bernstein 0.537777 0.537601
leastsquare -0.207738 -0.253797
Taylor 0.458296 0.461153

.

4 Conclusion

The integral equations are solved numerically. We have obtained the approximate solution of the unknown function by
Bernstein Piecewise Polynomials Method(BPPM), Integral Mean Value Method(IMVM), Taylor Series Method
(TSM)and Least Square Method(LSM). We have verified the derived formulas with the appropriate numerical examples.
Several illustrative examples are examined in detail.

Least squares method approximates to the exact solution only at a specific point on the defined interval. The more we go
farther the higher the error becomes. Bernstein solution gives us a good approximation for kernels formed by elementary
functions. Taylor solution is better for elementary and trigonometric functions but deviates from the exact solution for
exponential and logarithmic kernels. Mean value method approximates the exact solution for only the exponential
functions.

The success of numerical methods used for solving Fredholm integral equation depends on the type of kernel function.
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