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Abstract: In this paper, shifted Chebyshev polynomials of the thinddkimethod is presented to solve numerically the Fredholm,
Volterra-Hammerstein integral equations. The proposethateconverts the equation system of linear or non-linegetakic equations,
which can be solved. Some numerical examples are includddrtmnstrate the validity and applicability of the proposschnique.

All computations are done using Mathematica 7.

Keywords: Fredholm-Hammerstein integral equations, Volterra irdegquation, shifted Chebyshev polynomials of the thinadki
method.

1 Introduction

Integral equations have proved itself as one of the mostitapbbranches of mathematics. Integral equations arefone o
the most useful mathematical tools in both pure and appliathematics. The theory of integral equations has close
contacts with many different areas of mathematics. Foréarasng these are differential equations and operatoryheor
Many problems in the fields of ordinary and partial diffeiah¢quations can be recast as integral equations ([1][48],
[18]). Integral equations arise naturally in physics, cigtry, biology, engineering and many physical phenomehp ([
[5])- The principle investigators of the theory of integegjuations are Vito Volterra (1860-1940) and Ivar Fredholm
(1866-1927), together with David Hilbert (1862-1943) arftidhd Schmidt (1876-1959). There are several methods for
approximating the solution of linear and non-linear intégquations ([10]-[14]).

In [6] the author using Legendre pseudo-spectral methogpooximate and exact solutions of the fractional-ordeagel
differential equations. In [7] the author using Legendreymo-spectral method for solving the fractional diffusion
equation. In [9] the author using implementation of the afienal matrix of fractional derivative for solving nonéiar
multi-order fractional differential equations. In [16] ehauthor using homotopy analysis method for solving the
bi-harmonic equation.

The Chebyshev polynomials are mostly used to solve probtémiiéferential equations or integral equations. Chebyshe
polynomials are used to introduce an efficient medicatiohahotopy perturbation method [8]. Also, the polynomial
approximation is used to solve high-order linear Fredhaitegro-differential equations with constant coefficieht ]
and others ([15], [17]).
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We consider the Hammerstein integral equations in the f¢iTis

1 't
X(t) = f(t) + A1 /O ku(t, 9F (x(3) ds-+ dz /O ko(t,S)G(X(S)) ds L)

wheref (t),ki(t,s) andky(t,s) are given functiong, < 0,s< 1 andA1, A, are arbitrary constant.

2 Some Properties of Chebyshev Polynomials of the Third Kind

2.1 Chebyshev Polynomials of the Third Kind

The Chebyshev polynomial4(x) of the third kind are orthogonal polynomials of degrea x defined orf—1,1] [2, 20].

cos(n+1/2)©
h=——
cos5

wherex = cos®© and® < [0, r1]. The polynomiald/y(x) are orthogonal ofi-1, 1] with respect to the inner product:

1 , forn=
(Vn(X),Vin(X)) = /71,/ 1i§vn(x)vm(x)dx: {; f(())rr:7é nr’: 2

where, / iii is weight function corresponding ¥ (x). The polynomial¥,,(x) may be generated by using the recurrence

relations

Vin1(X) = 2Vn(X) = Vn-1(X),
Vo(x) =1, Vi(x) =2x—1,n=1,2,---

The analytical form of the Chebyshev polynomials of thediind V,(x) of degreen are given by

(254

@n+1)r(2n—k+1)

Vin(X) = kZO (fl)k(Z)nfkl_(k_i_ 1 (2n—2k+2)

(x+1)"* nez", ©)

. 1
Where[Z”T“] denotes the integer part g%)

2.2 The shifted Chebyshev polynomials of the third kind

In order to use the these polynomials on the inte[@4l], we define the so called shifted Chebyshev polynomials of the
third kind by the introducing the change of variabléx) = 2x— 1 [20]. The shifted Chebyshev polynomials of the third
kind are define a¥,’(x) = Vn(2x—1).

These polynomials are orthogonal on the support intgfval as the following inner product

T
' =, forn=
N 09 Vin09) = / l1 %Vn* (X)Vim () dx = { Z forn=m "
- - 0, forn#m
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where 1—XX is the weight function corresponding¥j (x) and normalized by the requirement tNgt(1) = 1.

The polynomiald/;;(x) may be generated by using the recurrence relations

n-1(0) = 2(2x= 1)Vy () = Vq_1(%),
Vi) =1, Vi (x) =4x—3,n=121,2,---

The analytical form of the shifted Chebyshev polynomialthefthird kindv; (x) of degreen in x given by:

Vi(x) = k;(1)k(2)2nZKIE(Z::;)IC((ZZ:_;:_:;) (x)l'lfk7 nezt, (5)

In the special method, the square integrable funation in [0, 1], is represented by an infinite expansion of the shifted
Chebyshev polynomials of the third kind as following:

900 = 3 BV’ (). ©)

whereb; is a chosen sequence of prescribed basis function. One theequls some how to estimate as many as possible
of the coefficientdy, thus approximating(x) by a finite sum ofm+ 1)—terms such as:

m
gm(X) = > biVi*(x), (7)
"= 2
where the coefficients;, i =0,1,--- are given by

1
o= [ oG T k) ®)

where the coefficients;, i =0,1,--- are given by

1
=2 [ 900w () 1 o ©

3 Procedure Solution Using the Proposed Numerical Method

We consider the Fredholm-Volterra integral equation (I)e Tunctionx(t) may be expanded by infinite series of the
shifted Chebyshev polynomials of the third kind as followg]f

0

KO = 3 (1), (10)

wherec, = (X(t),V;(t)). If we consider truncation series in Eq.(10), we obtain

X(t) ~ i)cnv; (t)

=TV (),

(11)
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such that andV*(t) are matrices given by
c= [CO,C]-"" aCN]v V*(t> = [\/g(t),Vf(t), 7VN*(t)]T (12)

Then, we substitute the approximation Eqg.(11) into Equy®) get

N 1 t
zocnv;(t) = f(t)+As / ky(t,S)F (cTV*(s)) ds+ Az / ka(t,8)G(cTV*(s)) ds. (13)
= 0 0

Now, to use the shifted Chebyshev polynomials of the thindikivhich is a matrix method based on the shifted Chebyshev
polynomials points depended by

2. :
ti=-1+g5i. =012 .N. (14)
We collocate Eq.(13) with the points Eq.(14) to obtain
N

> caVi(t) = f(tj)+/\1/01 ke(t;, SF (CTV*(9)) ds+ )\Z/Otj kelt;, $)G(cTV* (s)) ds. (15)

The integral term in Eq.(15) can be found using compositgeizaidal integration technique as.

1 h m-1
[ alty 9F (V7 (9) ds= 3 | Q1(S0) + Qa(Sw+2 5 Qu(S0)| (16)
. K=1
whereQ; (S) =k (tj,s)F (cTV*(s)), h= % for an arbitrary integem, S =ih,i=0,1,--- ;mand
E Ty hj = Lo o
| ket 96TV (9) ds= L | 22(S) + 2a(Sn) +2 § 2:(50)]. an
K=1

t. —
where Q,(S) = ka(tj,9)G(cTV*(9)), hj = —r:] for an arbitrary integem, § =ih, i =0,1,--- ,m. Eq.(15) givegN + 1)
system of linear or non-linear algebraic equations, whanh lze solved focy, k=0,1,--- ,N. So the unknown function
X(t) can be found.

4 Numerical Implementation

In this section to a chive the validity, the accuracy and beotetical discussion of the proposed method we give some
computational results of numerical examples.

Example 1. Consider Eq.(1) with the following functions and coeffidiefl7]
ft)=t3—(6—2e)d, A1=1 A=0

ki(t,s) = €S, ko(t,s) =0, F(x(s)) = x(s), G(x(s)) =0

Eq.(1) takes the form
1
x(t) =t3— (6—2e) + / elsx(s) ds (18)
0

(© 2017 BISKA Bilisim Technology
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We apply the suggested method wiNh= 4 and approximate the solutiot) as follows

4

xn(t) = GV (t). (19)
2,
By the same procedure in the previous section and using Bgu@ have
4 h m-1
3 aVi(t) — 3 | Q%) + Qs +2 5 (s = 1(t). ]=01.234 (20)
i= K=1
where
4

Q9= y Qv

. 1 . .
and the nodes, 1 =s+h,i=0,1,--- ' m s =0 andh = s Eq.(20) represents linear systemNf 1 algebraic
equations in the coefficients.

By solving it using the conjugate gradient method, we obtain
Co = 0.70894¢; = 0.251995¢, = 0.0371Qc3 = 0.00195¢4 = —4.0319x 10712

Therefore, the approximate solution is given by

4
Xa(t) = Zoci\/i*(t) = 0.70894/; (t) + 0.251995/; (t) + 0.03710/5 (t) + 0.00195/; (t) — 4.0319x 10 14/ (t)
n=

The exact solution of this example xét) = t3. The behavior of the approximate solution using the progasethod

1.0+
0.8+
L — Approximat Solution
0.6 -
0.4 ; — Exact Solution
0.2+
— . ey
0.2 0.4 0.6 0.8 1.0

Fig. 1. The behavior of the exact solution and the approximate isol@tN = 4.

with N = 4 and the exact solution in figure 1.
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From this figure 1, its is clear that the proposed method cacobsidered as an efficient methods to solve the linear
integral equation.

Example 2. Consider the following integral equation [17]
t
X(t) = 2td — & + 1—/ (s+1)e® ds, (21)
0
wheref(t) = 2t — € + 1, ki(t,s) = 0, ko(t,8) = s+t,A1 = 0, A, = —1 F(x(s)) = 0 andG(x(s)) = 5. We apply the
suggested method with = 4 and approximate the solutiot) as follows
4
x(t) = GV (t) (22)
5
By the same procedure in the previous section and using Bqye have

m—1

Q) +Q(sm)+2 Y Qs | = f(t)).]=01234 (23)
k=1

%ciw (t)+5

. t;
where the nodes;; =s +h,i=0,1,---,m, s =0 andh; = #1

Q(s) = (s+1))eX0%¥®

Eq.(23) presents non-linear systemMNof- 1 algebraic equation in the coefficiers By solving it by using the Newton
iteration method with suitable initial solution. We obtain

Co=0.87499¢; = 0.125,c, = —2.349x 1078 c3 = 2.736x 10 %, ¢4 = 6.610x 10 1°.

Therefore, the approximate solution as follows
4
X4(t) = Z)ci\/i*(t) = 0.87499/; (t) + 0.125V; (t) — 2.349x 10785 (1) + 2.736x 107N} (t) 4+ 6.610x 1014 (t)

n=

The exact solution of this examplex&) = t. The behavior of the approximate solution using the progosethod with
N = 4 and the exact solution are present in in figure 2. From thigdi@, its is clear that the proposed method can be
considered as an efficient methods to solve the non-linézgral equation.

Example 3. Consider the following integral equation [17]
1
X(t) =te+1— / (s+1)e® ds,
Jo
The exact solution of this problemxgt) =t.

We apply the suggested method with= 4 and approximate the solutiot) as in Eq.(24) and the same procedure in
the previous section and using Eq.(15), we have

3

5 oV )+

m-1

Q(s0) +Q(sm)+2 ) Q(s)
k=1

=f({t), j=0,1,23 (24)

(© 2017 BISKA Bilisim Technology
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1.0~

[ — Approximat Solution
0.8+

L —_— Exact Solution
0.6 -
0.4+
0.2+

L 1 L L L 1 L L L 1 L L L 1 L L L 1
0.2 0.4 0.6 0.8 1.0

Fig. 2: The behavior of the exact solution and the approximate isol@tN = 4.

. 1
where the nodes+l:s+h,|:0,1,---,m,sozoandh:aand

Q(s) = (s+tj )eZ?:ochi*(S)

Eq.(25) presents non-linear system of algebraic. By sghitily using the well known Newton iteration method with
suitable initial solution. we obtain

Co=0.875c, = 0.125,cp = —2.4120x 10 16 c3 = 7.167x 10 17, cs = 3.527x 10~ 1".

Therefore, the approximate solution of this example carobed using Eq.(24) as follows

4
x(t) = 20civi*(t) = 0.875V§ (t) +0.125V; (t) — 2.4120% 10 185 (1) 4+ 7.167x 10 1 WV4(t) + 3.527x 10 14, (1)
n=

(25)

The exact solution of this examplex&) =t. The behavior of the approximate solution using the propoasethod with
N = 4 and the exact solution are present in in figure 3. From thigdi@, its is clear that the proposed method can be
considered as an efficient methods to solve the non-linéagrial equation.

Example 4. Consider the following integral equation [17]

=552 [t dst [(s- s ds (26)

The exact solution of this problemigt) = t. We apply the suggested method wiNh= 4 and approximate the solution

X(t) as follows
4

()= 3 v (0 (27)

(© 2017 BISKA Bilisim Technology
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1.0~

: — Approximat Solution
0.8+

[ |— Exact Solution
0.6 -
04+
0.2+~

L 1 1 L L 1 1 L L 1 1 L L 1 1 L L 1
0.2 0.4 0.6 0.8 1.0

Fig. 3: The behavior of the exact solution and the approximate igolatN = 4.

By the same procedure in the previous section and using Bqye have

4 h _ _ m-1 _ hi _ _ m-—1 _ )
> GV (1) | Q1)+ Quldm) 12 3 0u(8)| - | Q2l) + Qala) 2T 2a(80| = (), j=012.34
i= k=1 k=1

(28)

_ _ . _ 1 tj

wheres 1 =§+h,s11=5+h;,i=0,12,--- ms=5=0h= e hj = n_Jw andQ;(s) = (s+tj)zi“zoci\/i*(s), Q(s) =

(ti—s) Zi4:o GV (s). EQ.(29) presents linear systéin- 1 algebraic equations. By solving it using Newton iteratisethod,
we obtain

Co = 0.875011c; = 0.125 ¢, = 6.30883x 108 c5 = 8.3096x 10 % ¢, = 8.4650x 10 1%,

Therefore, the approximate solution as follows

4
Xa(t) = Zoci\/i*(t) = 0.875018/ (t) 4 0.125V; () + 6.30883x 1078V, (t) +8.3096x 1071V (1) +8.4650x 10~ 1/ (t)

n=
The behavior of the approximate solution using the proposethod withN = 4 and the exact solution are present in in
figure 4. From this figure 4, its is clear that the proposed prettan be considered as an efficient methods to solve the
linear Hammerstein integral equations.

Example 5. Consider the following integral equation [19]

1
x(t) = &= [[e(g)et > ds (29)

0
wheref (t) = 1 andky(t,s) = 0, ki(t,s) = e"29 A1 = —1, A, = 0F (x(s)) = x3(s), G(X(s)) = 0. It is and easy to verify
that the exact solution of this problemxét) = €. We apply the suggested method with= 4 and approximate the
solutionx(t) as follows

alt) = 3 oV (1) (30)

(© 2017 BISKA Bilisim Technology
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1.0

[ | — Approximat Solution
0.8 -

| e Exact Solution
0.6 -
0.4+
0.2 -

L 1 L L L | L L L | L L L | L L L L
0.2 0.4 0.6 0.8 1.0

Fig. 4: The behavior of the exact solution and the approximate isol@tN = 4.

By the same procedure in the previous section and using Bgwe have

4 m-1
Z)ci\/i*(tj)ng Q(s0)+Q(sm)+2 Y Q(s)| =f(t)), j=01,234 (31)
i= k=1

1

where the nodes, 1 =s+h,i=0,1,--- ,m sg=0andh= =

Q(s) = e“JZS’(icjvi*(s))s

Eq.(32) presents non-linear systemNbf- 1 algebraic equation in the coefficierds By solving it by using the Newton
iteration method with suitable initial solution, we obtain

Co =2.4169Qc; = 0.283323¢, = 0.0173170c3 = 0.0007112644c, = 0.0000216190

Therefore, the approximate solution as follows

4
Xa(t) = Zoci\/i*(t = 2.41690/; (t) + 0.283323/; () + 0.017317W; (t) + 0.000711264¥ (t) + 0.0000216190; (t)

n=

The behavior of the approximate solution using the proposetthod withN = 4 and the exact solution are present in in
figure 5. From this figure 5, its is clear that the proposed oekttan be considered as an efficient method.

5 Conclusion

In this paper, we approximate method for the solution ofdin@nd non-linear Fredholm and Volterra integral equations
in the most general form has been proposed and investigated presented method which is based on the shifted
Chebyshev polynomials of the third kind is proposed. A corigoa of the exact solution reveals that the presented
method is very effective and convenient. The numericallteshow that the accuracy improves with increasing N, hence
for better results, using number N is recommended. Alsanfiloe obtained approximate solution, we can conclude that

(© 2017 BISKA Bilisim Technology
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251 — Approximat Solution
F — Exact Solution
2.0
1.5+
| L L L | L L L | L L L | L L L |

0.2 0.4 0.6 0.8 1.0

Fig. 5: The behavior of the exact solution and the approximate igolatN = 4.

Table 1: Comparison between Exact solution and approximate solatnol error for Example 5

x | Exact solution| Approximate soiution Error

0 1 1 0
0.1 1.10517 1.10517 1.75803x 106
0.2 1.2142 1.2142 3.32845x 10~
0.3 1.34986 1.34986 1.07348x 106
0.4 1.49182 1.49182 4.06538x 10~/
0.5 1.69872 1.69872 6.91612x 108
0.6 1.82212 1.82212 4.96547x 107
0.7 2.01375 2.01375 1.29584x 106
0.8 2.22554 2.22554 6.06484x 10~/
0.9 2.45966 2.45966 1.63799x 106

1 2.71828 2.71828 7.40761x 107

the proposed method gives the solution in an excellent aggaewith the exact solution. All computations are done
using Mathematica 7 programs.
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