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Abstract: The recent work on the solvability of the boundary value problem for the nonlinear analogue of the Boussinesq equation
has been further extended to focus on the characteristics ofthe solution. Since this type of equation does not have a known analytical
solution for arbitrary boundary conditions, the problem has been solved numerically. The stability of the solution andthe effect of the
input function on the stability have been investigated fromthe physics point of view. For the special case of a discontinuous function at
the right hand side of the equation, the solution has been analyzed around the discontinuity points.
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1 Introduction

Boussinesq equation is a type of partial differential equation that appears in several problems of fluid dynamics and related
branches. Some interesting examples for such problems include

(i) Longitudinal waves on elastic rods where the elastic medium is nonlinear and makes a transverse motion [1],
(ii) Plasma waves where the behavior of ions and electrons are described by the equations of hydrodynamics [2],

(iii) Rise of a nuclear explosion cloud in the atmosphere [3],
(iv) Heat transfer through a porous medium between two wallsof different temperatures with insulated horizontal

boundaries [4].

In addition, there is a great number of works dealing with theboundary value problems for the Boussinesq equation to
find the solitary or travelling wave solutions of water waves[5,6,7,8,16,17,18,19,20]. For instance, Wang found the
specific solitary wave solutions for two types of variant Boussinesq equations [6]. In addition, Zufiria formed a weakly
nonlinear Hamiltonian model for two dimensional irrotational laterally unbounded waves of finite depth and long
wavelength [7]. Applying several procedures on this Hamiltonian including change of variables and Fourier
transformation, he reached a Boussinesq-type differential equation. Seadawy et al. found the solitary wave solutionsfor
Zufiria’s high-order Boussinesq equation using a series expansion method [8]. They showed that this approach can be
used to find the analytical solitary wave solutions for several types of partial differential equations [9,10,11,12,13,14,
15]. Another interesting paper was published by Moutsopouloswho presented an analytical solution for the case of a
sudden change in the depth of the water by matching the Adomian decomposition method and Tolikas’s polynomial
expression for upstream and downstream regions, respectively [16,17]. Also, Basha et al. [18] and Rupp et al. [19]
improved the work of Brutseard et al. on homogeneous and horizontal aquifers [20], and found the solutions for aquifers
where the slope has an important effect on the flow.
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As for the particular case of strong nonlinearity in the Boussinesq equation, an important example can be given as the
electrical signal propagation on a dispersive transmission line which has components exhibiting nonlinear outputs in
response to a linear excitation (e.g. capacitance characteristics of a semiconductor diode as a function of applied voltage)
[21].

In the previous work, solvability of initial boundary valueproblem for a strongly nonlinear Boussinesq equation was
proved [22]. The present work aims to find the corresponding numerical solution for a specific case of nonlinearity and to
test the stability of that solution.

2 Formulation of the problem

Let Ω be the interval (0,1) on thex axis and letQ be a rectangle defined byQ= Ω × (0,T) where 0<T<∞. f (t,x), u0(x),
u1(x) andq(ξ ) are the given functions wherex ∈ Ω , t ∈ [0,T] and∀ξ ∈ R. The initial boundary value problem for the
Boussinesq equation:

∂ 2q(u)
∂ t2 −uxx−uxxtt = f (t,x) (1)

is to find the solution which satisfies the following conditions:

u(0,x) = u0(x), ut(0,x) = u1(x), x∈ Ω (2)

u(t,0) = u(t,1) = 0, t ∈ (0,T). (3)

Let the solution space for this problem be defined by

V = {υ(t,x), υ(t,x) ∈ L∞(0,T;W2
2 (Ω)),

υt(t,x) ∈ L∞(0,T;W2
2 (Ω)), υtt ∈ L2(0,T;W2

2 (Ω))} (4)

where the norm in the spaceV is given as:

‖υ‖V = [‖υ‖2
L∞(0,T;W2

2 (Ω))
+ ‖υt‖

2
L∞(0,T;W2

2 (Ω))
+ ‖υtt‖

2
L2(0,T;W2

2 (Ω))
]1/2.

It is obvious that the spaceV is a Banach space with respect to the given norm. Now let us summarize the two theorems
to be used in this work whose proofs were provided in [22].

Theorem 1. If the function q(ξ ) satisfies the following conditions

q(ξ ) = q0(ξ )+q1(ξ ), q0(ξ ) ∈C2(R), q1(ξ ) ∈C2(R);

q′0(ξ )≥ 0, |q′1(ξ )| ≤ q1 < 1, ∀ξ ∈ R; (5)

then, the initial boundary value problem (1), (2), (3) has a unique solution in the V space [22].

Theorem 2. If the function q(ξ ) satisfies both the conditions given in (5) and the conditions q(ξ ) ∈ C3(R),

q0(0) = q1(0) = 0; then for any function f(t,x) ∈ L2(Q) and u0(x), u1(x) ∈ W2
2 (Ω)

⋂ o
W1

2(Ω), there exists at least one
solution, in the space V, for the initial boundary value problem (1), (2), (3) [22].
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q(ξ ) and the functionsu0(x), u1(x), f (t,x) must be chosen in accordance with Theorem 1 and Theorem 2. Forexample,
if q(ξ ) = ξ 3−e−ξ 2

, Eq. (1) becomes

∂ 2(u3−e−u2
)

∂ t2 −uxx−uxxtt = f (t,x) (6)

The open form of Eq. (6) can be written as

−
∂ 2u
∂x2 +2exp−u2

(
∂u
∂ t

)2+6u(
∂u
∂ t

)2−4exp−u2
u2(

∂u
∂ t

)2+2exp−u2
u

∂ 2u
∂ t2 +3u2∂ 2u

∂ t2 −
∂ 4u

∂x2∂ t2 = f (t,x). (7)

Now, let us consider the initial boundary conditions compatible with (2) and (3)

u0(x) = u1(x) = 0, u(t,0) = u(t,1) = 0 (8)

Then, Eq. (7) is a strongly nonlinear nonhomogeneouspartial differential equation that does not have an analytical solution
satisfying the conditions (8). Nonetheless, the solution can be obtained numerically using a suitable computer software.
In this work, NDSolve command of Mathematica is used with MaxStepSize of 0.2 and PrecisionGoal of 3 for all of the
solved equations in order that the comparison of the resultsbe reliable.

3 Results and discussion

3.1 Physical interpretation of the problem

Provided that sufficient information about a dynamical system is known at an arbitrary time, the unique future of that
system can be determined using its characteristic differential equation [23]. In other words, the initial boundary value
problem for a differential equation describing a physical system must have a unique solution.

A Boussinesq-type equation is a kind of partial differential equation which can be obtained from the Hamiltonian of the
system as provided in Zufiria’s work [7]. From the mathematical point of view, it is possible to derive the Hamiltonian of
that system starting from the Boussinesq equation by a reverse processing. Also, from the physical point of view, that
Hamiltonian can be reached from the solution of the problem.Therefore, Boussinesq equation and its corresponding
Hamiltonian system are closely related and can be transformed from one to another. The crucial restrictions for such a
Hamiltonian to be the Hamiltonian of a physical system are that the problem must have a solution and this solution must
be unique.

We assume that the Hamiltonian of an arbitrary dynamical system leads to the nonlinear analogue of the Boussinesq
equation given in Eq. (7). Although the specification of the Hamiltonian is beyond the scope of this paper, this
assumption is physically reasonable since the initial boundary value problem for Eq. (7) has a unique solution [22].
Then, the solutionu(t,x) of Eq. (7) becomes the behavior of that arbitrary system as a functionof time t and horizontal
distancex (Fig.s (1-a,-d) and (2-a,-d)). In this respect, the nonhomogeneity termf (t,x) will be regarded as an excitation
source disturbing the equilibrium of the system (e.g. external force in a harmonic oscillator, applied voltage in an
electrical circuit, earthquake creating a tsunami, etc.).

3.2 Stability of the solution

While the solution of an initial boundary value problem letsus predict the behavior of the constituent(s) of a physical
system at a later time, it does not alone show whether the system is sustainable. In order to see the sustainability of the
system, the solution must be tested in terms of stability, a general description of which was given by Lyapunov [24] as
the tendency of the system to reestablish its equilibrium state.
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Fig. 1: (Color online) Numerical solution of the nonlinear Boussinesq equation with the nonhomogeneous term (a)
f (t,x) = x2 + t2 and (d) f (t,x) = x · exp(−t). (b) and (e) are the second derivatives ofu(t,x) with respect to time. (c)
and (f) are the first derivatives of∂ 2u(t,x)/∂ t2 with respect tou(t,x) whose negative values correspond to the stability
condition.

More specifically, for the case of solitary and travelling wave solutions of the initial boundary value problems, stability
condition was usually analyzed via energy considerations [25,26,27,28,9]. According to Benjamin [25], solitary waves
of constant momentum must be local energy minimizers for stability. Similarly, Bona et al. [26] summed the invariants of
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Fig. 2: (Color online) Numerical solution of the nonlinear Boussinesq equation with the nonhomogeneous term (a)
f (t,x) = x ·Sign(t − 1) and (d) f (t,x) = x ·Sin(0.1t). (b) and (e) are the second derivatives ofu(t,x) with respect to
time. (c) and (f) are the first derivatives of∂ 2u(t,x)/∂ t2 with respect tou(t,x) whose negative values correspond to the
stability condition.

motion as a function of wave speedc (i.e. d(c)) and concluded thatd(c) must be a strictly convex function ofc around
the equilibrium for a stable solution. Bona stated that his conclusion was equivalent to that of Shatah [29] where the
energy must have a local minimum for the stability condition. Using this argument as a starting point, Liu proved that the
solitary wave solution was unstable ifd(c) is a concave function ofc [27]. In addition, Grillakis et al. [28] studied the
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stability of solitary waves for symmetric systems and used the conditionE′′(φ)≥0, whereE is the energy andφ is the
solitary wave solution. Seadawy et al. [9] found the travelling wave solutions for small amplitude waves in shallow
waters supposingζ=χ − kt whereχ is the position in the direction of propagation andk is the propagation speed of the
wave. Defining the Hamiltonian system for the momentum asν, they expressed the sufficient condition for stability as
∂ν/∂k>0 [9,10,11,12,13].

The main idea behind the stability analyses including but not limited to the works mentioned above may be summarized
as follows: the potential energy of the system must be originated from a restoring force or visa versa, such that the
resultant force acting on the constituent(s) of the system must tend to retain the equilibrium state in case of any deviation
from it. More simply, the forceF and the displacementφ vectors are in opposite directions in a stable system. This
statement can be written as [30]:

∂F
∂φ

< 0 (9)

Considering the general relation between force and accelerationF∝∂ 2φ/∂ t2, inequality (9) can be adapted to our problem
and the stability condition can be given as the following

∂
∂u

∂ 2u
∂ t2 < 0. (10)

3.3 Numerical analysis

The initial boundary value problem (7), (8) has been solved numerically by Mathematica (Fig.s (1-a, -d) and (2-a, -d)).
After the calculation of∂ 2u/∂ t2 (Fig.s (1-b, -e) and (2-b, -e)), these data have been exported as XLS files to be used in
Matlab for further processing. Then, all data have been rearranged to get the proper matrix forms ofu and∂ 2u/∂ t2 for
the t andx intervals of interest. Bothu and∂ 2u/∂ t2 have been numerically differentiated for eacht andx, whose ratio
gives out the derivative seen in inequality (10). Negative values of this function indicates a stable solution implying the
existence of arestoring f orcewhen the system is deviated from equilibrium.

In order to see the response of the system to different inputs, four types off (t,x) ∈ L2(Q) have been chosen (Table1).
Given the boundary conditions (8), the solution is almost symmetric in reference to the midlinex= 0.5 as seen in Fig.s
(1-a,-d) and (2-a,-d). Hence,x dependence off (t,x) seems to have a minor effect onu(t,x). On the other hand,t
dependence off (t,x) determines the eventual behavior of the solution. This has aparticular importance in our case since
the problem at hand does not have an analytical solution.

Table 1: List of input functionsf (t,x) used in this work and the corresponding stability conditions of the solutions.

f (t,x) Stability
x2+ t2 stable
x ·exp(−t) stable
x ·Sign(t −1) stable except for a local instability
x ·Sin(0.1t) alternating stability condition

Looking at the (c) and (f) of both Fig.s (1) and (2), it is mostly common (except for Fig. (2-c)) thatu(t,x) has a strong
instability at the beginning of themotion. This could be understood considering the initial conditions (8). At t=0, the
motionstarts from equilibrium and rest. Therefore at the very firstmoment, the initiation of motion from a stationary
state results in a large derivative ofu(t,x) with respect to time. Instead, one should focus on the behavior of the system
away from origin for the evaluation of stability, as is done in the following analysis.

When f (t,x) ∝ t2 and f (t,x) ∝ exp(−t) (Fig.s (1-c) and (1-f), respectively), the solution is stable. As for
f (t,x) ∝ Sign(t − 1), the input function is discontinuous att=1 where its direction is reversed. Although this
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discontinuity does not have a discernable effect on the solution (Fig. (2-a)), it is clearly more effective when the second
derivative of the solution with respect to time (Fig. (2-b)) and especially the change in this second derivative with respect
to u(t,x) (Fig. (2-b)) are considered. It is obvious that the solution experiences a serious deterioration of stability around
the point of discontinuity att=1 (Fig. (2-c)). Nevertheless, this deterioration fades out with timeand the solution
eventually becomes stable. For the case of a periodic input function f (t,x) ∝ Sin(0.1t), a statement on whether the
solution is stable or not cannot be reached. The solution is sometimes stable and sometimes unstable indicated by the
vertical axis of Fig. (2-f) being sometimes negative and sometimes positive, respectively. This behavior resembles that of
a harmonic oscillator driven by a force with frequency different from the resonance frequency of the system. In that case,
the force and the displacement vectors are sometimes in the opposite direction and sometimes in the same direction,
corresponding to stable and unstable solutions, respectively. The results of the stability analysis for each input function
are summarized in Table1.

4 Conclusion

An initial boundary value problem for the nonlinear analogue of the Boussinesq equation, whose solvability was shown
in the previous work, has been solved numerically for different input functions. The Boussinesq equation at hand can be
possibly derived from the Hamiltonian of a dynamical system. Keeping that Hamiltonian undefined in the present work,
the solution of the problem has been assigned to the behaviorof an arbitrary physical system. The stability of the solution
has been analyzed for four different input functions by testing whether there existed arestoring f orcein the system. When
the input function is discontinuous, the solution is unstable around the point of discontinuity. Also, an alternating stability
condition has been observed for a sinusoidal input function. Except for these two cases, the solution can be concluded to
be stable within the frame of our analysis.
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