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Abstract: The recent work on the solvability of the boundary value pFobfor the nonlinear analogue of the Boussinesq equation
has been further extended to focus on the characteristiteafolution. Since this type of equation does not have a kravalytical
solution for arbitrary boundary conditions, the problens baen solved numerically. The stability of the solution #releffect of the
input function on the stability have been investigated ftomphysics point of view. For the special case of a discaptis function at
the right hand side of the equation, the solution has bedyzetharound the discontinuity points.
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1 Introduction

Boussinesq equation is a type of partial differential eiquethat appears in several problems of fluid dynamics araded!
branches. Some interesting examples for such problemsdacl

(i) Longitudinal waves on elastic rods where the elastic inmads nonlinear and makes a transverse motign [
(i) Plasma waves where the behavior of ions and electrand@scribed by the equations of hydrodynamags [
(iii) Rise of a nuclear explosion cloud in the atmosphé&ie [
(iv) Heat transfer through a porous medium between two walldifferent temperatures with insulated horizontal
boundaries4].

In addition, there is a great number of works dealing withltbendary value problems for the Boussinesq equation to
find the solitary or travelling wave solutions of water wayés,7,8,16,17,18,19,20]. For instance, Wang found the
specific solitary wave solutions for two types of variant Bsinesq equation$]| In addition, Zufiria formed a weakly
nonlinear Hamiltonian model for two dimensional irrotaiéd laterally unbounded waves of finite depth and long
wavelength 7]. Applying several procedures on this Hamiltonian inchglichange of variables and Fourier
transformation, he reached a Boussinesg-type diffeleaqiaation. Seadawy et al. found the solitary wave solutfons
Zufiria’s high-order Boussinesqg equation using a seriesesipn methodd]. They showed that this approach can be
used to find the analytical solitary wave solutions for saelempes of partial differential equation$,[L0,11,12,13 14,

15). Another interesting paper was published by Moutsopoulbe presented an analytical solution for the case of a
sudden change in the depth of the water by matching the Adoadéaomposition method and Tolikas’s polynomial
expression for upstream and downstream regions, respbcfil6,17]. Also, Basha et al. 18] and Rupp et al. 19
improved the work of Brutseard et al. on homogeneous anattal aquifers20], and found the solutions for aquifers
where the slope has an important effect on the flow.
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As for the particular case of strong nonlinearity in the Bonssqg equation, an important example can be given as the
electrical signal propagation on a dispersive transmis8ite which has components exhibiting nonlinear outputs in
response to a linear excitation (e.g. capacitance chaistats of a semiconductor diode as a function of applietiags)

[21].

In the previous work, solvability of initial boundary valygeoblem for a strongly nonlinear Boussinesq equation was
proved P2]. The present work aims to find the corresponding numeriati®n for a specific case of nonlinearity and to
test the stability of that solution.

2 Formulation of the problem

Let Q be the interval (0,1) on theaxis and leQQ be a rectangle defined I§y= Q x (0, T) where &<T <co. f(t,X), Up(X),
u1(x) andq(&) are the given functions whesec Q, t € [0,T] andV& € R. The initial boundary value problem for the
Boussinesq equation:

9%q(u)
ot2

- uXxf utht = f(t,X) (1)
is to find the solution which satisfies the following conditso

U(O,X) = UO(X)v LII(O,X) = Ul(X), X€Q 2

ut,0) =u(t,1)=0, te(0,T). 3)
Let the solution space for this problem be defined by

V ={u(t,x), 0(t,X)€Lo(0,T;WE(Q)),
Ui (t,X) € La(0,T;WE(Q)), Ui € L2(0,T;WE(Q))} @)
where the norm in the spabkis given as:

HUHV = [HUHEOO(O,T;WZZ(Q)) + |‘Ut|‘5w(0;r;w22(g)) + HUHHEZ(O’T;WZZ(Q))]l/Z'

It is obvious that the spadé is a Banach space with respect to the given norm. Now let usrsuine the two theorems

to be used in this work whose proofs were provided#l .|

Theorem 1. If the function ¢¢&) satisfies the following conditions

(&) = do(&) + (&), qo(€) € C*(R), (&) € C¥(R);
BG(&) >0, [qi(é)|<m <1 VEeR (5)

then, the initial boundary value problert)( (2), (3) has a unique solution in the V spac2?].

Theorem 2. If the function &) satisfies both the conditions given i®)(and the conditions @) € C3(R),

go(0) = q1(0) = 0; then for any function ft,x) € L»(Q) and w(x), u1(X) € WZZ(Q)DV?/%(Q), there exists at least one
solution, in the space V, for the initial boundary value deob @), (2), (3) [22].
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q(&) and the functionsip(x), us(x), f(t,x) must be chosen in accordance with Theorem 1 and Theorem 2xBoiple,
if q(&) = &3 —e¢*, Eq. (1) becomes

02(u3 . efuz)

o2 — Uxx — Uxxtt = f(t,X) (6)

The open form of Eq.G) can be written as

d%u

o ou
0x2

ot

au
ot

2 2 4
)274exp*”2u2(%)2+2exp*”2ug papdy_ _ou

—u? 2 v
+2exp ! (=-)7 + 6u( e 2 320t f(t,x). (7)

Now, let us consider the initial boundary conditions conigatwith (2) and @)
UO(X) = U]_(X) = Oa U(t,O) - U(t, 1) =0 (8)

Then, Eq. 7) is a strongly nonlinear nonhomogeneous partial difféatatjuation that does not have an analytical solution
satisfying the conditionsgj. Nonetheless, the solution can be obtained numericalhgus suitable computer software.
In this work, NDSolve command of Mathematica is used with BepSize of 0.2 and PrecisionGoal of 3 for all of the
solved equations in order that the comparison of the rebeltgliable.

3 Results and discussion

3.1 Physical interpretation of the problem

Provided that sufficient information about a dynamical egsis known at an arbitrary time, the unique future of that
system can be determined using its characteristic diffedeaquation P3]. In other words, the initial boundary value
problem for a differential equation describing a physigatem must have a unique solution.

A Boussinesg-type equation is a kind of partial differelrgiguation which can be obtained from the Hamiltonian of the
system as provided in Zufiria’s worl(]. From the mathematical point of view, it is possible to derthe Hamiltonian of
that system starting from the Boussinesq equation by asevanocessing. Also, from the physical point of view, that
Hamiltonian can be reached from the solution of the probléherefore, Boussinesg equation and its corresponding
Hamiltonian system are closely related and can be trangfdrfinrom one to another. The crucial restrictions for such a
Hamiltonian to be the Hamiltonian of a physical system ags the problem must have a solution and this solution must
be unique.

We assume that the Hamiltonian of an arbitrary dynamicaesydeads to the nonlinear analogue of the Boussinesq
equation given in Eq.7). Although the specification of the Hamiltonian is beyon& tscope of this paper, this
assumption is physically reasonable since the initial lamy value problem for Eq.7§ has a unique solutior2p].
Then, the solution(t,x) of Eq. (7) becomes the behavior of that arbitrary system as a funofitmet and horizontal
distancex (Fig.s (L-a,-d) and 2-a,-d)). In this respect, the nonhomogeneity tdrth x) will be regarded as an excitation
source disturbing the equilibrium of the system (e.g. exdkforce in a harmonic oscillator, applied voltage in an
electrical circuit, earthquake creating a tsunami, etc.).

3.2 Stability of the solution

While the solution of an initial boundary value problem lats predict the behavior of the constituent(s) of a physical
system at a later time, it does not alone show whether themsyist sustainable. In order to see the sustainability of the
system, the solution must be tested in terms of stabilityer@egal description of which was given by Lyapun@d][as

the tendency of the system to reestablish its equilibriiatest
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Fig. 1: (Color online) Numerical solution of the nonlinear Bougsiqg equation with the honhomogeneous term (a)
f(t,x) = x> +t? and (d) f(t,x) = x- exp(—t). (b) and (e) are the second derivativesud, x) with respect to time. (c)
and (f) are the first derivatives @Pul(t, x)/dt? with respect tau(t,x) whose negative values correspond to the stability
condition.

More specifically, for the case of solitary and travellingwaolutions of the initial boundary value problems, sigbil
condition was usually analyzed via energy considerati@b2p,27,28,9]. According to Benjamin25], solitary waves
of constant momentum must be local energy minimizers fduilita Similarly, Bona et al. 6] summed the invariants of
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Fig. 2: (Color online) Numerical solution of the nonlinear Bougsig equation with the nonhomogeneous term (a)
f(t,x) = x-Sign{t — 1) and (d) f(t,x) = x- Sin(0.1t). (b) and (e) are the second derivativesugf, x) with respect to

time. (c) and (f) are the first derivatives 8fu(t,x)/dt? with respect tai(t,x) whose negative values correspond to the
stability condition.

motion as a function of wave speedi.e. d(c)) and concluded that(c) must be a strictly convex function afaround
the equilibrium for a stable solution. Bona stated that lisatusion was equivalent to that of Shat&®][where the
energy must have a local minimum for the stability conditideing this argument as a starting point, Liu proved that the
solitary wave solution was unstabledfc) is a concave function of [27]. In addition, Grillakis et al. 28] studied the
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stability of solitary waves for symmetric systems and useddonditionE” (¢)>0, whereE is the energy ang is the
solitary wave solution. Seadawy et a@] ffound the travelling wave solutions for small amplitudewss in shallow
waters supposing=x — kt wherey is the position in the direction of propagation anis the propagation speed of the
wave. Defining the Hamiltonian system for the momentunv athey expressed the sufficient condition for stability as
dv/dk>01[9,10,11,12,13].

The main idea behind the stability analyses including baifinated to the works mentioned above may be summarized
as follows: the potential energy of the system must be caigith from a restoring force or visa versa, such that the
resultant force acting on the constituent(s) of the systerstitend to retain the equilibrium state in case of any dmrat

from it. More simply, the forcd= and the displacemen vectors are in opposite directions in a stable system. This

statement can be written &&(:
oF

de
Considering the general relation between force and aat@aF 92 ¢/dt?, inequality @) can be adapted to our problem
and the stability condition can be given as the following

<0 )

d d%u

3.3 Numerical analysis

The initial boundary value problenT), (8) has been solved numerically by Mathematica (Fig-8,(-d) and 2-a, -d)).
After the calculation 0B?u/at? (Fig.s (I-b, -€) and 2-b, -e)), these data have been exported as XLS files to be msed i
Matlab for further processing. Then, all data have beenaeged to get the proper matrix formswand du/dt? for
thet andx intervals of interest. Botll andd2u/dt? have been numerically differentiated for eaciindx, whose ratio
gives out the derivative seen in inequalify0f. Negative values of this function indicates a stable sotuimplying the
existence of aestoring forcewhen the system is deviated from equilibrium.

In order to see the response of the system to different infous types off (t,x) € L»(Q) have been chosen (Tahlg
Given the boundary condition8)( the solution is almost symmetric in reference to the migli = 0.5 as seen in Fig.s
(1-a,-d) and 2-a,-d). Hencex dependence of (t,x) seems to have a minor effect aift,x). On the other hand,
dependence of (t,x) determines the eventual behavior of the solution. This gerticular importance in our case since
the problem at hand does not have an analytical solution.

Table 1: List of input functionsf (t,x) used in this work and the corresponding stability condgiofithe solutions.

1) Stability
X° +t2 stable
X-exp(—t) stable

x-Signit —1) stable except for a local instability
x- Sin(0.1t) alternating stability condition

Looking at the (c) and (f) of both Fig.4) and @), it is mostly common (except for Fig2{c)) thatu(t,x) has a strong
instability at the beginning of thenotion This could be understood considering the initial condi@s). At t=0, the
motionstarts from equilibrium and rest. Therefore at the very finsiment, the initiation of motion from a stationary
state results in a large derivative afft, x) with respect to time. Instead, one should focus on the beha¥ithe system
away from origin for the evaluation of stability, as is dondhe following analysis.

When f(t,x) O t? and f(t,x) O exp(—t) (Fig.s (@-c) and (-f), respectively), the solution is stable. As for
f(t,x) O Sign(t — 1), the input function is discontinuous at1 where its direction is reversed. Although this
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discontinuity does not have a discernable effect on thetisolFig. (2-a)), it is clearly more effective when the second
derivative of the solution with respect to time (Fig-If)) and especially the change in this second derivativie réispect

to u(t,x) (Fig. (2-b)) are considered. It is obvious that the solution expess a serious deterioration of stability around
the point of discontinuity at=1 (Fig. 2-c)). Nevertheless, this deterioration fades out with tiam the solution
eventually becomes stable. For the case of a periodic inmdtibn f(t,x) O Sin(0.1t), a statement on whether the
solution is stable or not cannot be reached. The solutionrizetimes stable and sometimes unstable indicated by the
vertical axis of Fig. 2-f) being sometimes negative and sometimes positive, otisply. This behavior resembles that of

a harmonic oscillator driven by a force with frequency diéfiet from the resonance frequency of the system. In that case
the force and the displacement vectors are sometimes inppeside direction and sometimes in the same direction,
corresponding to stable and unstable solutions, resgdgetiVhe results of the stability analysis for each inputdtion

are summarized in Table

4 Conclusion

An initial boundary value problem for the nonlinear analegi the Boussinesq equation, whose solvability was shown
in the previous work, has been solved numerically for défgrinput functions. The Boussinesq equation at hand can be
possibly derived from the Hamiltonian of a dynamical syst&eeping that Hamiltonian undefined in the present work,
the solution of the problem has been assigned to the behaivéor arbitrary physical system. The stability of the salnti

has been analyzed for four different input functions byingstvhether there existedrastoring forcan the system. When

the input function is discontinuous, the solution is unkaound the point of discontinuity. Also, an alternatitegoslity
condition has been observed for a sinusoidal input funciioeept for these two cases, the solution can be concluded to
be stable within the frame of our analysis.
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