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Abstract: In the present study, a numerical method, perturbation-iteration algorithm (shortly PIA), has been employed to give
approximate solutions of some nonlinear Fredholm and Volterra type fractional-integro differential equations (FIDEs). Comparing
with the exact solution, the PIA produces reliable and accurate results for FIDEs.
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1 Introduction

Scientists has been interested in fractional order calculus as long as it has been in classical integer order analysis.

However, for many years it could not find practical applications in physical sciences. Recently, fractional calculus has

been used in applied mathematics, viscoelasticity [41], control [34], electrochemistry [31], electromagnetic [14].

Developments in symbolic computation capabilities is one of the driving forces behind this rise. Different

multidisciplinary problems can be handled with fractionalderivatives and integrals.

[25] and [33] are studies that describe the fundamentals of fractional calculus give some applications. Existence and

uniqueness of the solutions are also studied in [40,38].

Similar to the studies in physical sciences, fractional order integro differential equations (FIDEs) also gave scientists the

opportunity of describing and modeling many important and useful physical problems.

In this manner, a remarkable effort has been expended to propose numerical methods for solving FIDEs, in recent years.

Fractional variational iteration method [19,20], homotopy analysis method [23,7], finite element method [11,12],

fractional differential transform method [29,3,10] and Adams-Bashforth-Moulton Method [4,5] are among these

methods.

The aim of this study was to construct and test an algorithm using PIA to obtain approximate solutions of some nonlinear

fractional order Fredholm and Volterra type integro-differential equation. In the present study we also give the

convergence analysis of the method for the first time. This method can be applied to a wide range of problems without

requiring any special assumptions and restrictions.
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A few fractional derivative definitions of an arbitrary order exists in the literature. Two most used of them are the

Riemann-Liouville and Caputo fractional derivatives. Thetwo definitions are quite similar but have different order of

evaluation of derivation.

Due to the appropriateness of the initial conditions, fractional definition of Caputo is often used in recent years.

2 Basic definitions

Definition 1. A real function f(t), t > 0 is said to be in the space Cµ , (µ > 0) if there exists a real number p(> µ), such

that f(t) = t p f1(t) where f1 ∈C[0,∞), and it is said to be in the space Cm
µ if f (m) ∈Cµ ,m∈ ℵ [24].

Definition 2. The Riemann-Liouville fractional integral operator(Jα) of orderα ≥ 0, of a function f∈ Cµ , µ ≥ −1 is

defined as [25].

Jα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ, α, t > 0, (1)

and J0 f (t) = f (t), whereΓ is the well-known gamma function. For f∈Cµ , µ ≥−1, α,β ≥ 0 andλ >−1, the following

properties hold.

(i) JαJβ f (t) = Jα+β f (t),

(ii) JαJβ f (t) = Jβ Jα f (t),

(iii) Jα tλ = Γ (λ+1)
Γ (λ+1+α)

tλ+α .

Definition 3. The Caputo fractional derivative of f of orderα, f ∈Cm
−1, m∈ ℵ∪{0}, is defined as [33].

Dα f (t) = Jm−α f (m)(t) =
1

Γ (m−α)

∫ t

0
(t − τ)m−α−1 f (m)(τ)dτ, α, t > 0, (2)

where m−1< α < m with the following properties;

(i) Dα (a f(t)+bg(t)) = aDα f (t)+bDαg(t), a,b∈ ℜ,

(ii) DαJα f (t) = f (t),

(iii) JαDα f (t) = f (t)−∑k−1
j=0 f ( j)(0) t j

j ! , t > 0.

After this introductory section, section 3 is reserved to a brief review of the Perturbation-Iteration Algorithm PIA, in

section 4 convergence analysis of the present method is given, in section 5 some examples are illustrated to show the

simplicity and effectiveness of the algorithm. Finally thepaper ends with a conclusion in section 6.

3 Analysis of the PIA

Differential equations are naturally used to describe problems in engineering and other applied sciences. Searching

approximate solutions for complicated equations has always attracted attention. Many different methods and frameworks

exist for this purpose and perturbation techniques [30,22,37] are among them. These techniques can be used to find

approximate solutions for both ordinary and partial differential equations.

Requirement of a small parameter in the equation that is sometimes artificially inserted is a major limitation of

perturbation techniques that renders them valid only in a limited range. Therefore, to overcome the disadvantages come

with the perturbation techniques, several methods have been proposed by authors [15,26,27,28,8,18,39,13,21,16].
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Parallel to these attempts, a perturbation-iteration method has been proposed by Aksoy, Pakdemirli and their co-workers

[1,32,2] previously. In the new technique, an iterative algorithm is constructed on the perturbation expansion. The

present method has been tested on Bratu-type differential equations [1] and first order differential equations [32] with

success. Then the algorithms were applied to nonlinear heatequations also [2]. The solutions of the Volterra and

Fredholm type integral equations [9], first-order differential equations and systems [35] and solutions of ordinary

frational differental equations [36] have been presented by the developed method, finally.

This new algorithm have not been used for any fractional integro differential equations yet. To obtain the approximate

solutions of FIDEs, the most basic perturbation-iterationalgorithm PIA(1,1) is employed by taking one correction term

in the perturbation expansion and correction terms of only first derivatives in the Taylor series expansion. [1,32,2].

Take the fractional-integro differential equation.

F

(

u(α),u,
∫ t

0
g(t,s,u(s))ds,ε

)

= 0, (3)

whereu= u(t) andε is a small parameter. The perturbation expansions with onlyone correction term is

un+1 = un+ ε(uc)n,

u′n+1 = u′n+ ε
(

u′c
)

n. (4)

Replacing Eq.(8) into Eq.(7) and writing in the Taylor series expansion for only first order derivatives gives

F

(

u(α)
n ,un,

∫ t

0
g(t,s,un(s))ds,0

)

+Fu

(

u(α)
n ,un,

∫ t

0
g(t,s,un(s))ds,0

)

ε(uc)n

+Fu(α)

(

u(α)
n ,un,

∫ t

0
g(t,s,un(s))ds,0

)

ε
(

u(α)
c

)

n
+F∫ u

(

u(α)
n ,un,

∫ t

0
g(t,s,un(s))ds,0

)

ε
∫

(uc)n (5)

+Fε

(

u(α)
n ,un,

∫ t

0
g(t,s,un(s))ds,0

)

ε = 0

or
(

u(α)
c

)

n

∂F

∂u(α)
+(uc)n

∂F
∂u

+

(

∫

(uc)n

)

∂F
∂ (
∫

u)
+

∂F
∂ε

+
F
ε
= 0. (6)

Here(.)′ represents the derivative according to the independent variable and

Fε =
∂F
∂ε

, Fu =
∂F
∂u

, Fu′ =
∂F
∂u′

, . . . (7)

The derivatives in the expansion are evaluated atε = 0. Beginning with an initial functionu0(t), first (uc)0(t) is calculated

by the help of(21) and then substituted into Eq.(8) to calculateu1(t). Iteration procedure is continued using(21) and(8)

until obtaining a reasonable solution.

4 Convergence analysis of the PIA

In this section we give a convergence analysis of the method.

Theorem 1.PIA(1,1) converges for Eq.(3) when‖uk+1−uk‖ ≤ ε ′
andε ′

→ 0.
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Proof.The general iteration formula ofPIA(m,n) is converted toPIA(1,1) in recursive relation (21) by substitutingm= 1

andn= 1 that can be stated as follows:

u
′

k(t)+
Fuk

F
u
′
k

uk(t) =−
Fε +

F
ε

F
u
′
k

. (8)

By changingk to k+1 in Eq.(22) to obtain a relation with respect tou
′

k+1(t) anduk(t) and imposing norm 2 on both sides

of equations, we have:
∥

∥

∥u
′

k

∥

∥

∥≤

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

Fuk

F
u
′
k

∥

∥

∥

∥

∥

.‖uk‖ , (9)

∥

∥

∥u
′

k+1

∥

∥

∥≤

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

Fuk+1

F
u
′
k+1

∥

∥

∥

∥

∥

∥

.‖uk+1‖ . (10)

Now, we need to obtain‖uk+1−uk‖ from
∥

∥

∥u
′

k+1−u
′

k

∥

∥

∥. By rewriting inequalities with respect to‖uk‖ and‖uk+1‖ and by

using the magnitude rules in calculus, we get:

‖uk+1−uk‖ ≥ ‖uk+1‖−‖uk‖=

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.





∥

∥

∥u
′

k+1

∥

∥

∥−

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥



−

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.

(

∥

∥

∥u
′

k

∥

∥

∥−

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

)

. (11)

So we need to obtain bound for‖uk+1−uk‖. As a result, we can find out that{un} is a Cauchy sequence in Banach space,

then it is convergent. It holds due to this fact thatf ∈Cm[a,b] and f m ∈Cm
µ according to main definition of Banach space

in real and functional analysis. All elements of‖uk+1−uk‖ in right hand side of inequality are known except
∥

∥

∥u
′

k

∥

∥

∥ and
∥

∥

∥u
′

k+1

∥

∥

∥.

‖uk+1−uk‖ ≥

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.
∥

∥

∥
u
′

k+1

∥

∥

∥
−

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

.

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.
∥

∥

∥
u
′

k

∥

∥

∥
+

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

.

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

. (12)

SinceF
u
′
k+1

, Fuk+1 , Fuk andF
u
′
k
∈Cm

µ , µ ≥−1, then they are bounded and we have:

∥

∥

∥

∥

∥

F
u
′
k+1

Fuk+1

∥

∥

∥

∥

∥

≤ M1 ,

∥

∥

∥

∥

∥

F
u
′
k

Fuk

∥

∥

∥

∥

∥

≤ M2, (13)

∥

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k+1

∥

∥

∥

∥

∥

∥

≤ M
′

1 ,

∥

∥

∥

∥

∥

Fε +
F
ε

F
u
′
k

∥

∥

∥

∥

∥

≤ M
′

2. (14)

Therefore, we obtain

‖uk+1−uk‖ ≥ M1

∥

∥

∥u
′

k+1

∥

∥

∥−M1.M
′

1−M2.
∥

∥

∥u
′

k

∥

∥

∥+M2.M
′

2. (15)

Now we consider.

u
′

k = L [uk] (16)

u
′

k+1 = L [uk+1] ,

whereL is a linear operator that is defined asL = d
d() []. Since any linear operator is bounded in theory of operatorsfrom

pure mathematics, then, we can define

∥

∥

∥u
′

k

∥

∥

∥= ‖L [uk]‖ ≤ N1

∥

∥

∥u
′

k+1

∥

∥

∥= ‖L [uk+1]‖ ≤ N2. (17)
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Therefore, we get

‖uk+1−uk‖ ≥ M1.N2−M1.M
′

1−M2.N1+M2.M
′

2 = M1

(

N2−M
′

1

)

+M2

(

M
′

2−N1

)

. (18)

If ‖uk+1−uk‖→ 0 then, we have

lim
ε ′→0

(

M1

(

N2−M
′

1

)

+M2

(

M
′

2−N1

))

= 0. (19)

If M1

(

N2−M
′

1

)

= 0 thenM1 = 0 or and ifM2

(

M
′

2−N1

)

= 0 thenM2 = 0 or M
′

2 = N1. The proof is complete. The

proof can be done in similar manner forPIA(1,2), PIA(2,2) and so on. Therefore, we can find such these conditions for

PIA(1,2), PIA(2,2) states and so on. In fact, we have found the condition of stop process for PIA method by all involved

expressions in the iteration algorithm. Therefore, all thegoverning conditions needs to be imposed on PIA method to

become convergent just in a few of computational iterations.

5 Applications

Example 1.Consider the following nonlinear fractional Fredholm integro-differential equation [17].

dαu(t)
dtα

−

∫ 1

0
tsu2(s)ds= 1−

t
4
, t > 0, 0≤ t < 1, 0< α ≤ 1, (20)

with the initial conditionu(0) = 0 and the known exact solution forα = 1 is

u(t) = t. (21)

Before iteration process rewriting Eq.(23) with adding and subtractingu′(t) to the equation gives

ε
dαu(t)

dtα
−u

′
(t)+ εu

′
(t)− ε

∫ 1

0
ts(u(s))2ds−1+

t
4
= 0. (22)

In this case for

F
(

u
′
,u,ε

)

=
1

Γ (1−α)
ε
∫ t

0

u′(s)

(t − s)α ds−u
′

n(t)+ εu
′

n(t)− ε
∫ 1

0
ts(un(s))

2ds−1+
t
4
, (23)

and the iteration formula

u
′
(t)+

Fu

Fu′
u(t) =−

Fε +
F
ε

Fu′
(24)

the terms that will be replaced in, are

F = u
′

n(t)−1+
t
4
,

Fu = 0,

Fu′ = 1,

Fε =−u
′

n(t)+
1

Γ (1−α)

∫ t

0

u′(s)

(t − s)α ds−
∫ 1

0
ts(u(s))2ds. (25)
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After substitution the differential equation for this problem, Eq.(21) becomes

∫ t
0 (−s+ t)−αun

′
(s)ds

Γ (1−α)
+
(

u′c(t)
)

n =

∫ 1

0
st(un(s))

2ds+
4− t+4(−1+ ε)u′n (t)

4ε
. (26)

Appropriate to the initial conditions, chosenu0(t) = 0 and, solving Eq.(29) for n= 0 gives

(uc(t))0 = t −
t2

8
+C1. (27)

This expression written in

u1 = u0+ ε(uc(t))0. (28)

gives

u1(x, t) = u0 (x, t)+ ε(t −
t2

8
+C1) (29)

or

u1 (x, t) = ε(t −
t2

8
+C1). (30)

Solving this equation for

u1 (0) = 0, (31)

we obtain

C1 = 0. (32)

For this value andε = 1 reorganizingu1(t)

u1 (t) = t −
t2

8
, (33)

gives the first iteration result. If the iteration procedureis continued in a similar way, we obtain the following iterations.

u2(t) = 2t−
571t2

3840
+

t2−α(t +4(−3+α))

4Γ (4−α)
, (34)

u3(t) = 3t+
29844889t2

176947200
−

t3−2α (t +8(−2+α))

4Γ (5−2α)

+
t2 (3379230+8t−α (1051t+5760(−3+α)) (−7+α)(−6+α)(−5+α))

15360(−7+α)(−6+α)(−5+α)Γ (4−α)
(35)

−
2240277α +(450151−28436α)α2

15360(−7+α)(−6+α)(−5+α)Γ (4−α)
−

t2 (−4+α)(−1159+2α (529+16(−10+α)α))

64(−7+2α)Γ (5−α)2
.

The other iterations contain large inputs and are not given.A computational software program could help to calculate

the other iterations up to any order. In Table 1. some of the PIA iteration results are compared with the exact solutions.

The results express that the present method gives highly approximate solutions. Also in Figure 1. the obtained results are

illustrated graphically.

Example 2.Consider the following nonlinear Volterra type fractionalintegro-differential equation [6].

dαu(t)
dtα

−

∫ t

0
e−su2(s)ds= 1, t > 0, 0≤ t < 1, 0< α ≤ 1, (36)
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Table 1: Numerical results of Example 1. foru5 values for different values ofα.

α = 0.25 α = 0.50 α = 0.75 α = 1.0
t PIA PIA PIA PIA Exact Solution Absolute Error

0.0 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000
0.1 0.40400 0.31001 0.19212 0.099981 0.100000 1.872712E-6
0.2 0.70027 0.51165 0.32983 0.199992 0.200000 7.490848E-6
0.3 0.92857 0.66680 0.45097 0.299983 0.300000 1.685440E-5
0.4 1.10862 0.79495 0.56312 0.399970 0.400000 2.996339E-5
0.5 1.25343 0.90616 0.66959 0.499953 0.500000 4.681780E-5
0.6 1.37247 1.00645 0.77217 0.599932 0.600000 6.741763E-5
0.7 1.47293 1.09971 0.87196 0.699908 0.700000 9.176289E-5
0.8 1.56044 1.18858 0.969682 0.799880 0.800000 1.198535E-4
0.9 1.63945 1.27490 1.06583 0.899848 0.900000 1.516896E-4
1.0 1.71351 1.35996 1.16078 0.999812 1.000000 1.872712E-4

Fig. 1: Comparison of the PIA solutionu5(t) and exact solution for Example 1. whenα = 1

with the initial conditionu(0) = 1 and the known exact solution forα = 1 is

u(t) = et . (37)

By applying similar procedures as in the first example, we obtain the following iteration results.

u1 (t) = 1+ t+
t2

2
−

t3

6
+

t4

24
−

t5

120
, (38)

u2 (t) = 1+2t+ t2+ t4
12−

t5
30−

t7
420+

t8
1344−

t9
576+

67t10

86400−
217t11

950400+
581t12

11404800−
101t13

13478400+
t14

1209600−
t15

18144000

+
t2−α(t4+t3(α−6)+t2(α−6)(α−5)+(t−1)((α−6)(α−5)(α−4)−(α−3)))

Γ (7−α) , (39)

and so on. The third iteration result(u3) is calculated in this manner. In Table 2. some of the PIA iteration results are

compared with the results from Laplace variational iteration method, and exact solutions. The results express that the

present method gives highly approximate solutions. Also , in Figure 2. the obtained results are illustrated graphically.

6 Conclusion

In this study, Perturbation-Iteration Algorithm was introduced for some Fredholm and Volterra type fractional-integro

differential equations and the convergence analysis of themethod is given for the first time. The application and results
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Table 2: Numerical results of Example 2. foru3 values for different values ofα.

α = 0.25 α = 0.50 α = 0.75 α = 1.0
t PIA PIA PIA LVIM PIA Exact Absolute Error LVIM Absolute Error PIA

0.0 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 0.000000 0.000000
0.1 1.28212 1.24644 1.18464 1.11051 1.10517 1.10517 7.51413E-6 1.73951E-9
0.2 1.55024 1.46729 1.35031 1.22151 1.22140 1.22140 1.07525E-4 1.35655E-7
0.3 2.81414 1.68260 1.51800 1.35034 1.34986 1.34986 4.81654E-4 1.84719E-6
0.4 2.07933 1.90032 1.69403 1.49315 1.49181 1.49182 1.32812E-3 1.22371E-5
0.5 2.35017 2.12576 1.88236 1.65149 1.64867 1.64872 2.77549E-3 5.44797E-5
0.6 2.63047 2.36307 2.08602 1.82691 1.82193 1.82212 4.79581E-3. 1.88391E-4
0.7 2.92353 2.61564 2.30752 2.02086 2.01321 2.01375 7.11310E-3 5.46883E-4
0.8 3.23214 2.88627 2.54898 2.23464 2.22414 2.22554 9.10286E-3 1.39627E-3
0.9 3.55846 3.17710 2.81216 2.46928 2.45637 2.45960 9.67744E-3 3.23130E-3
1.0 3.90380 3.48951 3.09828 2.72543 2.71136 2.71828 7.15178E-3 6.00691E-3

Fig. 2: Comparison of the PIA solutionu3(t) and exact solution for Example 2. whenα = 1

show that the method is very simple and reliable perturbation-iteration technique and producing highly approximate

results. We expect that the present method can be used to calculate the approximate solutions of other types of fractional

differential equations.
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