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Abstract: In the present study, a numerical method, perturbaticatiten algorithm (shortly PIA), has been employed to give
approximate solutions of some nonlinear Fredholm and Malteype fractional-integro differential equations (FI§EComparing
with the exact solution, the PIA produces reliable and aateuresults for FIDEs.
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1 Introduction

Scientists has been interested in fractional order cadcabilong as it has been in classical integer order analysis.
However, for many years it could not find practical applicas in physical sciences. Recently, fractional calculus ha
been used in applied mathematics, viscoelastidity, [control [34], electrochemistry31], electromagneticl4].

Developments in symbolic computation capabilities is orfetlee driving forces behind this rise. Different
multidisciplinary problems can be handled with fractiodativatives and integrals.

[29 and [33] are studies that describe the fundamentals of fractioaliutus give some applications. Existence and
uniqueness of the solutions are also studied\®3g].

Similar to the studies in physical sciences, fractionakoidtegro differential equations (FIDES) also gave sé#sithe
opportunity of describing and modeling many important asefful physical problems.

In this manner, a remarkable effort has been expended t@peapumerical methods for solving FIDEs, in recent years.
Fractional variational iteration method 9,20], homotopy analysis metho®3,7], finite element methodif1,12],
fractional differential transform method29,3,10] and Adams-Bashforth-Moulton Method},p] are among these
methods.

The aim of this study was to construct and test an algorithnguglA to obtain approximate solutions of some nonlinear
fractional order Fredholm and \olterra type integro-diffietial equation. In the present study we also give the
convergence analysis of the method for the first time. Thithotcan be applied to a wide range of problems without
requiring any special assumptions and restrictions.

© 2017 BISKA Bilisim Technology * Corresponding author e-maihsenol@nevsehir.edu.tr


 http://dx.doi.org/10.20852/ntmsci.2017.190

119 BIS KK A M. Senoland H.D. Kasmaei: On the numerical solution of mdr fractional-integro differential equations

A few fractional derivative definitions of an arbitrary ordexists in the literature. Two most used of them are the
Riemann-Liouville and Caputo fractional derivatives. Tian® definitions are quite similar but have different order of
evaluation of derivation.

Due to the appropriateness of the initial conditions, foae! definition of Caputo is often used in recent years.

2 Basic definitions

Definition 1. A real function {t), t > Ois said to be in the space,C(u > 0) if there exists a real number(p ), such
that f(t) =tPfy(t) where § € C[0,), and it is said to be in the spaceaf f(™ € C,,me O [24].

Definition 2. The Riemann-Liouville fractional integral operat@i®) of ordera > 0, of a function fe Cy, u > —1is
defined as25].

J"f(t)%./{:(tr)“lf(r)dr, a,t>0, L)

and Pf(t) = f(t), wherel is the well-known gamma function. ForfCy, 4 > —1, a,8 > 0andA > —1, the following
properties hold.

(i) JOJBf(t) =J9B (1),
(i) JPIBf(t) =IPI (1),
(iii) It = %t”".

Definition 3. The Caputo fractional derivative of f of order, f € C™;, me 0 U {0}, is defined as33].

DIf(t) =JI™ M (t) = 1 )/t(tr)m"lfm(r)dr, a,t >0, (2)

rm—a)Jo
where m- 1 < a < m with the following properties;

(i) D7 (af(t)+bg(t)) =aD?f(t)+bD(t), a,be O,
(i) DIJE(t) = f(t), _
(iii) 37D (t) = f(t) -} T (0)%, t>0.

After this introductory section, section 3 is reserved torieftreview of the Perturbation-Iteration Algorithm PlAy i
section 4 convergence analysis of the present method is givesection 5 some examples are illustrated to show the
simplicity and effectiveness of the algorithm. Finally hegper ends with a conclusion in section 6.

3 Analysis of the PIA

Differential equations are naturally used to describe |gmis in engineering and other applied sciences. Searching
approximate solutions for complicated equations has avadtyacted attention. Many different methods and framksvor
exist for this purpose and perturbation techniqu#é342,37] are among them. These techniques can be used to find
approximate solutions for both ordinary and partial defaial equations.

Requirement of a small parameter in the equation that is Soreg artificially inserted is a major limitation of
perturbation techniques that renders them valid only imétéid range. Therefore, to overcome the disadvantages come
with the perturbation techniques, several methods have pieposed by authord },26,27,28,8,18,39,13,21,16].
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Parallel to these attempts, a perturbation-iteration otbtias been proposed by Aksoy, Pakdemirli and their co-wsrke
[1,322] previously. In the new technique, an iterative algorithenconstructed on the perturbation expansion. The
present method has been tested on Bratu-type differemfisdt®ons ] and first order differential equation82] with
success. Then the algorithms were applied to nonlinear égaations also?]. The solutions of the \Volterra and
Fredholm type integral equation8]] first-order differential equations and systen®$][and solutions of ordinary
frational differental equation8p] have been presented by the developed method, finally.

This new algorithm have not been used for any fractionabirtelifferential equations yet. To obtain the approximate
solutions of FIDEs, the most basic perturbation-iteratitgorithm PIA(1,1) is employed by taking one correctionmer

in the perturbation expansion and correction terms of ordy fierivatives in the Taylor series expansidn3p, 2].

Take the fractional-integro differential equation.

t
(4 [atsus)dse) ~o ®
0
whereu = u(t) ande is a small parameter. The perturbation expansions with @méycorrection term is

Unt1=Un+ S(Uc)na

Uny1 = Un+€(Ug) .. (4)
Replacing Eq8) into Eq(7) and writing in the Taylor series expansion for only first arderivatives gives
t t
F (Ut [[9(t5un(5)ds0) + i (U7 n, [ at.5 us) d50) e,
@, [ (@) @, [

+ Fy@ | Un ,un,/o g(t,s,un(s))ds 0 s(uC )nJrFf” Un ,un,/o g(t,s,un(s))dsO s/(uc)n (5)

t
+Fe (u,({’),un,/ a(t,s, un(s))dso) £=0

0

or

()) _9F oF ' OF OF F
(Uc )ndu(a) +(u0)n%+ (/ (uc)n) m_f_E +o=o -

Here(.)' represents the derivative according to the independeiathlarand

oF oF oF
%a FU:%7 FU’:_ (7)

& du,a

The derivatives in the expansion are evaluated-a0. Beginning with an initial functiomip(t), first (uc),(t) is calculated
by the help of(21) and then substituted into K@) to calculateu; (t). lteration procedure is continued usif®) and(8)
until obtaining a reasonable solution.

4 Convergence analysis of the PIA

In this section we give a convergence analysis of the method.

Theorem 1.PIA(1,1) converges for E43) when||ug,1 — Uy|| < € ande’ — 0.
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Proof. The general iteration formula &1A(m, n) is converted td®1A(1, 1) in recursive relationZ1) by substitutingn=1
andn = 1 that can be stated as follows:

! Fuk FS +%
u(t) + Euk(t) = (8)
Uy Uy

By changingto k+ 1 in Eq.@2) to obtain a relation with respect u/gﬂ(t) andu(t) and imposing norm 2 on both sides
of equations, we have:

F
! £+E Fuk
Ul < —|.
o] = | === |+ ([ - el ©)
Uk Uk
/ F5+§ Fuk+1
}Uk+1H§ = g Nl Ukgal] - (10)
Uer1 U1

Now, we need to obtaifjux,1 — uy|| from Hu’k+1 - u;(H By rewriting inequalities with respect tax|| and||uk;1|| and by
using the magnitude rules in calculus, we get:

F., F F. F
u / Fe+ = u / Fe+ =

ks =l > ueeal] = udl = |22 { b | = || =5 | = || =2 .(\uk == ) (11)
Het1 U{(Jrl tk U;(

So we need to obtain bound g, 1 — uk||. As a result, we can find out théti, } is a Cauchy sequence in Banach space,
then it is convergent. It holds due to this fact tfiat C"[a,b] andf™ CL” according to main definition of Banach space

in real and functional analysis. All elements [ofi. 1 — Ug|| in right hand side of inequality are known excerf(H and

|t
F, F, F F, F, F
/ Fe+ = / F+Z
o =t = | 222 | = 22| 2| = |2 |+ (22| (12)
Uk+1 FUk+1 Fu[(+ s FUk FUk Fu;(
SinceFu/k+1 » Fug, 1 » Fu andFuL € ClT, u > —1, then they are bounded and we have:
F/ F/
<My, || =% < Mg, (13)
Uk Uk
Fe+ £ o ||Fe+E :
AL ng,‘ Elell <M, (14)
“L+1 UL
Therefore, we obtain
kst — U]l > My HU"“H ~ M.Mj — M. HukH + My M, (15)
Now we consider.
U = L [ui (16)

!
U1 = L [Ukpa],

whereL is a linear operator that is definedlas= di() [. Since any linear operator is bounded in theory of operdtors
pure mathematics, then, we can define

k| = L = N k]| = 1 [l < N an
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Therefore, we get
Uit — Ukl > M1.N — M1.Mj — Ma.Ng + Ma. My = My (Nz - M/l) M (M/2 - Nl) : (18)
If ||ug+1 — uk|| — O then, we have

lim (Ml (Ng Ml) + M, (M2 Nl)) -0 (19)
If My (Nz— M’l) = 0 thenM; = 0 or and ifM, (M/2 — Nl) — 0 thenM, = 0 or M, = Ny. The proof is complete. The
proof can be done in similar manner fBfA(1,2), PIA(2,2) and so on. Therefore, we can find such these conditions for
PIA(1,2), PIA(2,2) states and so on. In fact, we have found the condition of stopgss for PIA method by all involved
expressions in the iteration algorithm. Therefore, all glogerning conditions needs to be imposed on PIA method to
become convergentjust in a few of computational iterations

5 Applications

Example 1.Consider the following nonlinear fractional Fredholm ore-differential equationl[7].

du(t)
dt?

1 t
f/tsuz(s)ds:lfz, t>0, 0<t<1, O<a<l, (20)
0
with the initial conditionu(0) = 0 and the known exact solution far= 1 is
u(t) =t. (21)

Before iteration process rewriting Eg3) with adding and subtractingj(t) to the equation gives

a ’ ’ 1
ed uo(,t) —u(t)+eu (t)—s/ ts(u(s))zds—ljtE =0. (22)
dt Jo 4
In this case for
/ 1 t U(s ’ ’ 1 t
F (u ,u,e) = I'(l—or)g/o c (S;ads un(t)+£un(t)fe/0 ts(Un(s))?ds— 1+ 7 (23)
and the iteration formula .
, F Fe+E
u(t)+—u(t)=— a; (24)
Fu Fu

the terms that will be replaced in, are

/ t
F=u,(t)—1+-
un() +47

FU = Oa
Fv =1,
. / 1 t UI(S) 1 2
Fe=—u,(t)+ I'(l—a)/o (t—s)"dsi/o ts(u(s))“ds (25)
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After substitution the differential equation for this pteim, Eq(21) becomes

Jo(=s+1)%un (s)ds A—t+4(—1+€)U,(t)

/ ! 2
ri—a) + (Uc(t))n:/O st(un (s))“ds+ . . (26)

Appropriate to the initial conditions, chosen(t) = 0 and, solving Eq29) for n = 0 gives

2

t
(U)o =t~ 5 +Ca. 27)
This expression written in
Up = U+ &(Ug(t)),- (28)
gives
t2
up (x,t) = uo(x,t)+£(tf§+C1) (29)
or
t2
uz (X,1) zs(t—§+Cl). (30)
Solving this equation for
uy (0) =0, (31)
we obtain
Ci=0. (32)
For this value an@ = 1 reorganizingi (t)
t2
ug (t) =t rE (33)

gives the first iteration result. If the iteration procedisreontinued in a similar way, we obtain the following itéoats.

5712 t>9(t+4(-3+a))

Ue(t) =2 = 325+ Ar(d—a)y (34)
.. 2984488% t320(t4+8(—2+q))
Us(t) =3+ T7g0a7200 — ar (5—2a)
+t2(3379230+8t*"(105]I+5760(—3+a))(—7+a)(—6+a)(—5+a)) (35)

15360—7+a)(—6+a)(—=5+a)l (4—a)
2240277 +(450151-2843@)a*  t*(—4+a)(—1159+2a(529+ 16(—10+a)a))
153607+ a)(—6+a)(=5+a)l (4—a) 64(—7+2a)r (5—a)? '

The other iterations contain large inputs and are not gidecomputational software program could help to calculate
the other iterations up to any order. In Table 1. some of ti#eiferation results are compared with the exact solutions.
The results express that the present method gives highhpriapate solutions. Also in Figure 1. the obtained resulés a
illustrated graphically.

Example 2.Consider the following nonlinear Volterra type fractioivgegro-differential equatiorf].

du(t)

t
S - | e WE@ds=1, t>0 0<t<1 0<a<l (36)
0

(© 2017 BISKA Bilisim Technology
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Table 1: Numerical results of Example 1. fog values for different values af.

a=025 a=050 a=075 a=10
t PIA PIA PIA PIA Exact Solution ~ Absolute Error

0.0 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000

0.1 0.40400 0.31001 0.19212 0.099981 0.100000 1.872712E-6
0.2 0.70027 0.51165 0.32983 0.199992 0.200000 7.490848E-6
0.3 0.92857 0.66680 0.45097 0.299983 0.300000 1.685440E-5
0.4 1.10862 0.79495 0.56312 0.399970 0.400000 2.996339E-5
0.5 1.25343 0.90616 0.66959 0.499953 0.500000 4.681780E-5
0.6 1.37247 1.00645 0.77217 0.599932 0.600000 6.741763E-5
0.7 1.47293 1.09971 0.87196 0.699908 0.700000 9.176289E-5
0.8 1.56044 1.18858 0.969682  0.799880 0.800000 1.198535E-4
0.9 1.63945 1.27490 1.06583 0.899848 0.900000 1.516896E-4
1.0 1.71351 1.35996 1.16078 0.999812 1.000000 1.872712E-4

100

Exact solution

80

60 PIA Solution

40

20

20 40 60 80 100

Fig. 1: Comparison of the PIA solutions(t) and exact solution for Example 1. when= 1

with the initial conditionu(0) = 1 and the known exact solution far= 1 is
ut) =¢. (37)

By applying similar procedures as in the first example, waiolthe following iteration results.

2 t3 t4 t5

t
U1(t)=l+t+§—g+ﬂ—m, (38)

_ 2, t4 5 t7 t8 t9 6nl0 21711 58112 10113 t14 t15
Wp(t) =14+ 2t+t°+ 55 — 30— 220 T T332 — 576 T 86400 950400 T 12404800 13478400 1209600 T8L44000

279 (14+t3(a—6)+t2(a—6)(a —5)+(t—1)((a—6) (a—5)(a—4)—(a—3)))
+ r7—a) )

(39)

and so on. The third iteration res\li3) is calculated in this manner. In Table 2. some of the PIA ftenaresults are
compared with the results from Laplace variational iteratmethod, and exact solutions. The results express that the
present method gives highly approximate solutions. AlsoRigure 2. the obtained results are illustrated graphicall

6 Conclusion

In this study, Perturbation-Iteration Algorithm was irdtwed for some Fredholm and Volterra type fractional-irdeg
differential equations and the convergence analysis ofrtéthod is given for the first time. The application and result
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Table 2: Numerical results of Example 2. fog values for different values af.

a=025 a=050 a=075 a=10
t PIA PIA PIA LVIM PIA Exact  Absolute Error LVIM  Absolute Error PIA

0.0 1.00000 1.00000 1.00000 1.000000 1.00000  1.00000 0.00000 0.000000
0.1 1.28212 1.24644 1.18464 1.11051 1.10517  1.10517 7.51813E 1.73951E-9
0.2 1.55024 1.46729 1.35031 1.22151 1.22140  1.22140 1.07825E 1.35655E-7
0.3 2.81414 1.68260 1.51800 1.35034 1.34986  1.34986 4.81854E 1.84719E-6
0.4 2.07933 1.90032 1.69403 1.49315 1.49181  1.49182 1.32812E 1.22371E-5
0.5 2.35017 2.12576 1.88236 1.65149 1.64867  1.64872 2.77849E 5.44797E-5
0.6 2.63047 2.36307 2.08602 1.82691 1.82193  1.82212 4.79381E 1.88391E-4
0.7 2.92353 2.61564 2.30752 2.02086 2.01321  2.01375 7.11310E 5.46883E-4
0.8 3.23214 2.88627 2.54898 2.23464 2.22414  2.22554 9.10386E 1.39627E-3
0.9 3.55846 3.17710 2.81216 2.46928 2.45637  2.45960 9.67344E 3.23130E-3
1.0 3.90380 3.48951 3.09828 2.72543 271136  2.71828 7.15378E 6.00691E-3

4.5

4.0 Exact solution

3.5

3.0 PIA solution

25

2.0

1.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 2: Comparison of the PIA solutions(t) and exact solution for Example 2. when= 1

show that the method is very simple and reliable perturbaitieration technique and producing highly approximate
results. We expect that the present method can be used tdatalthe approximate solutions of other types of fractiona

differential equations.
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