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1 Introduction

In recent years, it has turned out that many phenomena in fluidmechanics, physics, biology, engineering and other areas

of sciences can be successfully modeled by the use of fractional derivatives. Fractional differential equations arisein

unification of diffusion and wave propagation phenomenon. The time fractional heat equation, which is a mathematical

model of a wide range of important physical phenomena, is a partial differential equation obtained from the classical heat

equation by replacing the first time derivative by a fractional derivative of order In this work, we considered methods and

results for the system of partial fractional differential equations which arise in applications.

Several methods have been introduced to solve fractional differential equations, the popular Laplace transform method,

[1],[2], [3],[12], the Fourier transform method [11], the iteration method [18] and operational method [11],[6]. However,

most of these methods are suitable for special types of fractional differential equations, mainly the linear with constant

coefficients. More detailed information about some of theseresults can be found in a survey paper by Kilbas and

Trujillo[10] Atanackovic and Stankovic [4],[5] and Stankovic [20] used the Laplace transform in a certain space of

distributions to solve a system of partial differential equations with fractional derivatives, and indicated that such a

system may serve as a certain model far a visco elastic rod.

Oldham and Spanier I [13] and [14], respectively, by reducing a boundary value problem involving Fickâ’s second law in

electro-analytic chemistry to a formulation based on the partial Riemann Liouville fractional with half derivative.

Oldham and Spanier [14] gave other application of such equations for diffusion problems. Schneider [19] and Wyss [22]

considered the time fractional diffusion and wave equations and obtained the solution in terms of Fox functions.
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2 Definitions and notations

Definition 1. The left Caputo fractional derivative of orderα
(0< α < 1) of φ(t) is as follows[8]

Dc,α
a φ(x) =

1
Γ (1−α)

∫ t

a

1
(t − ξ)α φ ′(ξ )dξ . (1)

Definition 2. The Laplace transform of function f(t) is defined as follows

L { f (t)} =
∫ ∞

0
e−st f (t)dt = F(s). (2)

If L { f (t)}= F(s), thenL −1{F(s)} is given by

f (t) =
1

2π i

∫ c+i∞

c−i∞
estF(s)ds, (3)

where F(s) is analytic in the regionRe(s)> c. The above integral is known as Bromwich complex inversionformula.

Example 1.By using an appropriate integral representation for the modified Bessel’s functions of the second kind of order

ν, Kν(s), show that

L
−1{Kη(a

√
s)

s
η
2

Kν(b
√

s)

s
ν
2

}= tη−1e−
a2
4t

(2a)1+η ∗ tν−1e−
b2
4t

(2b)1+ν . (4)

Solution 1. It is well known thatKν(a
√

s) has the following integral representation [6]

Kν (a
√

s) =
(a
√

s)ν

2ν+1

∫ ∞

0
e
−ξ− a2s

4ξ
dξ

ξ ν+1 , (5)

at this point, using complex inversion formula for the Laplace transform and the above integral representation we get

L
−1{Kη(a

√
s)

s
η
2

}= 1
2iπ

∫ c+i∞

c−i∞

ets

sη (
(
√

as)2η

2η+1

∫ ∞

0
e
−ξ− a2s

4ξ
dξ

ξ η+1 )ds. (6)

Changing the order of integration and simplifying to get

L
−1{Kη(a

√
s)

s
η
2

}= aη
∫ ∞

0

e−ξ

ξ η+1 (
1

2iπ

∫ c+i∞

c−i∞

e
(t− a2

4ξ )s

2η+1 ds)dξ . (7)

The value of inner integral isδ (t − a2

4ξ ), we arrive at

L
−1{Kη (a

√
s)

s
η
2

}= aη
∫ ∞

0

e−ξ

ξ η+1 δ (t − a2

4ξ
)dξ . (8)

making a change of variable(t− a2

4ξ ) = u , and using elementary properties of Dirac - delta function,we get the following

result

L
−1{Kη(a

√
s)

s
η
2

}= tη−1e−
a2
4t

(2a)η+1 . (9)
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Finally, we obtain

L
−1{Kη(a

√
s)

s
η
2

Kν(b
√

s)

s
ν
2

}= tη−1e−
a2
4t

(2a)η+1 ∗ tν−1e−
b2
4t

(2b)ν+1 . (10)

Definition 3. The The Laplace transform of Caputo fractional derivativesof order non integer . For n−1< α ≤ n , we

have the following identity [15][16]

L {C
0Dα

t f (t)}= sαF(s)−
n−1

∑
k=0

sα−k−1 f (k)(0). (11)

Definition 4. The The two-parameter function of the Mittag-Leffler type isdefined by the series expansion

Eα ,β (z) =
∞

∑
n=0

zn

Γ (αn+β )
. (12)

whenα,β ,z∈C. We have the following relationship

L {tβ−1Eα ,β (±atα)}= sα−β

sα ∓a
(Re(s)> |a| 1

α . (13)

Definition 5. The simplest Wright function is given by the series

W(α,β ;z) =
∞

∑
n=0

zn

n!Γ (αn+β )
, (14)

whenα,β ,z∈C. We have the following relationship

L {tβ−1Eα ,β (±atα)}= sα−β

sα ∓a
(Re(s)> |a| 1

α ). (15)

Theorem 1. (Schouten-Van der Pol Theorem) Consider a function f(t) which has the Laplace transform F(s) which

is analytic in the half-plane Re(s) > s0. We can use this knowledge to find g(t) whose Laplace transform G(s) equals

F(φ(s)), whereφ(s) is also analytic for Re(s)> s0. This means that if

G(s) = F(φ(s)) =
∫ ∞

0
f (τ)exp(−φ(s)τ)dτ, (16)

and

g(t) =
1

2π i

∫ c+i∞

c−i∞
F(φ(s))exp(ts)ds, (17)

then

g(t) =
∫ ∞

0
f (τ)

(

1
2π i

∫ c+i∞

c−i∞
exp(−φ(s)τ)exp(ts)ds

)

dτ. (18)

Proof.See [6].
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Lemma 1.The following identity holds true

g(t) = L
−1{F(

√
s)} =

∫ ∞

0

τ
2
√

πt3
e−

τ2
4t f (τ)dτ. (19)

Proof. If we setφ(s) =
√

s in relation (16), it leads to

G(s) = F(
√

s) =
∫ ∞

0
f (τ)exp(−

√
sτ)dτ, (20)

and

g(t) =
1

2iπ

∫ c+i∞

c−i∞
F(

√
s)exp(ts)ds, (21)

then, we get

g(t) =
∫ ∞

0
f (τ)

(

1
2π i

∫ c+i∞

c−i∞
exp(−

√
sτ)exp(ts)ds

)

dτ. (22)

after evaluation of the inner integral by means of table of the Laplace transforms, we arrive at

g(t) = L
−1{F(

√
s)} =

∫ ∞

0

τ
2
√

πt3
e−

τ2
4t f (τ)dτ. (23)

Lemma 2.Let us assume thatL { f (t)}= F(s), then we have the following relations

(1).L { f (t2)} = ∫ ∞
0

√

1
4πξ e

− s2
4ξ F(ξ )dξ ,

(2).L { f (1
t )}=

∫ ∞
0

√

ξ
s J1(2

√

sξ )F(ξ )dξ ,

(3).L { f (t3)} =
∫ ∞

0

√

s
ξ K1

3
(( s

3 3
√

ξ
)

2
3 )F(ξ )dξ .

Proof.See [6].

Note.The above Lemma has some interesting applications as below.

Lemma 3.The following integral relations hold true.

(1).
∫ ∞

0 K1
3
(( 1

3 3
√

ξ
)

2
3 ) dξ

ξ
√

ξ 3
√

ξ 2
= 9π

2Γ ( 2
3 )

(2).
∫ ∞

0

√

ξ
s J1(2

√

sξ )e−λ ξ dξ = e−sλ

λ 2 .

Proof. (1). Let us takef (t) = t
2
3 , then we getF(s) =

Γ ( 5
3 )

s
5
3

, on the other hand we have

L { f (t3)}= L {t2)}= 2
s3

By setting all of the information in part 3 of the Lemma 1, we get the following

L { f (t3)}= 1
3π

∫ ∞

0

√

s
ξ

K1
3
((

s

3 3
√

ξ
)

2
3 )

Γ (5
3)

ξ
5
3

dξ =
2
s3
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Now, by choosings= 1 and after some simple manipulations we arrive at

∫ ∞

0

√

1
ξ

K1
3
((

1

3 3
√

ξ
)

2
3 )

1

ξ
5
3

dξ =
9π

2Γ (2
3)

(2). Let us takef (t) = δ (t − λ ) , then we haveF(s) = e−λ s . On the other handf (1
t ) = δ (1

t − λ ) , and the Laplace

transform ofδ (1
t −λ ) is as follows

L { f (
1
t
)} =

∫ ∞

0
δ (

1
t
−λ )e−stdt

In order to evaluate the above integral, we introduce a change of variablew= 1
t −λ , to get

L { f (
1
t
)}=

∫ ∞

−λ
δ (w)e−

s
w+λ

dw
(w+λ )2 =

e−
s
λ

λ 2

using second part of the Lemma1.2. we obtain

L { f (
1
t
)}=

∫ ∞

0

√

ξ
s

J1(2
√

sξ )F(ξ )dξ =
e−

s
λ

λ 2 .

Lemma 4.The following integral relation holds true

∫ ∞

0

xbei(2
√

λx)
x2+η2 dx=

π
2

I0(2
√

λ η).

Proof.Let us consider the following integral

I (λ ) =
∫ ∞

0

xbei(2
√

λx)
x2+η2 dx

Taking Laplace transform of the above function with respectto λ , leads to

L {I (λ}) =
∫ ∞

0
e−sλ (

∫ ∞

0

xbei(2
√

λx)
x2+η2 dx)dλ

changing the order of integration which is permissible, yields

L {I (λ}) =
∫ ∞

0

x
x2+η2 (

∫ ∞

0
e−sλ bei(2

√
xλ)dλ )dx

The value of inner integral is1s sin( x
s), therefore we have

L {I (λ}) =
∫ ∞

0

x
x2+η2 (

1
s

sin(
x
s
))dx

The above integral can be evaluated by means of calculus of residues to obtain

L {I (λ}) = π
2

e
η
s

s
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At this point, taking the inverse Laplace transform of the above relation to get

I (λ}= π
2

I0(2
√

λ η).

Lemma 5.Let us assume that

L {( t
a
)

ν
2 Jν(2

√
at}= e−

a
s

sν+1

then we have the following integral relation

∫ π
2

0
(

√
t cosφ√

a
)νJν(2

√
atcosφ)(

√
t sinφ√

b
)µJµ(2

√
btsinφ)sin2φdφ = ..

(
t

a+b
)

ν+µ+2
2 Jν+µ+2(2

√

(a+b)t).

Proof.By using convolution theorem for the Laplace transforms, wehave the following relation

L
−1{( e−

a
s

sν+1 )(
e−

b
s

sµ+1 )}= (
t
a
)

ν
2 Jν(2

√
at)∗ ( t

b
)

µ
2 Jµ(2

√
bt) = L

−1{( e−
a+b

s

sν+µ+2 )

or,

(
t
a
)

ν
2 Jν(2

√
at)∗ ( t

b
)

µ
2 Jµ(2

√
bt) =

∫ t

0
(
t − ξ

a
)

ν
2 Jν(2

√

a(t − ξ ))(
ξ
b
)

µ
2 Jµ(2

√

bξ )dξ .

Let us introduce a change of variablet sin2 φ = ξ , we obtain

∫ π
2

0
(

√
t cosφ√

a
)ν Jν(2

√
atcosφ)(

√
t sinφ√

b
)µ Jµ(2

√
btsinφ)sin2φdφ = ...

= (
t

a+b
)

ν+µ+2
2 Jν+µ+2(2

√

(a+b)t).

Singular integral equations arise in many problems of mathematical physics. The mathematical formulation of physical

phenomenon often involves Cauchy types, or singular integral equations. Singular integral equations have many

applications in important fields, like fracture mechanics,elastic contact problems, the theory of porous filtering contain

integral and integro - differential equations with singular kernel.

Theorem 2.Let us consider the following system of fractional Volterraintegro-differential equations of convolution-type

with the Bessel kernel
C
0Dα

t φ(x) = f1(x)+λ
∫ t

0
(
x− t

a
)

ν
2 Iν(2

√
at)ψ(t)dt,

C
0Dβ

x ψ(x) = f2(x)+η
∫ x

0
(
x− t

b
)

µ
2 Jµ(2

√
bt)φ(t)dt,

whereφ(0) = ψ(0) = 0 and0< α,β ≤ 1,, and f1(x), f2(x) are known functions. Then the above system has the following

formal solutions

φ(t) =
∞

∑
k=0

(λ η)k f1(t)∗ {(
t

k(a+b)
)

kσ+α−1
2 Jkσ+α−1(2

√

k(a+b)t}+ ...

+
∞

∑
k=0

(λ η)k f2(t)∗ {(
t

k(a+b)+a
)

kσ+τ+µ−1
2 Jkσ+τ+µ−1(2

√

(k(a+b)+a)t}

and

ψ(t) =
∞

∑
k=0

(λ η)k f2(t)∗ {(
t

k(a+b)
)

kσ+β−1
2 Jkσ+β−1(2

√

k(a+b)t}+ ...
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+
∞

∑
k=0

(λ η)k f1(t)∗ {(
t

k(a+b)+b
)

kσ+τ+ν−1
2 Jkσ+τ+µ−1(2

√

(k(a+b)+b)t}.

Note. In the above equations, fractional derivitive is in the Caputo sense.

Proof.By applying the Laplace transform on both sides of the above equations term - wise, after simplifying we get the

following

sα Φ(s) = F1(s)+λ
e−

a
s

sν+1Ψ(s),

sβΨ(s) = F2(s)+η
e−

b
s

sµ+1 Φ(s).

By solving the above system we get the following

Φ(s) =
F1(s)+

λ e−
a
s

sν+β+1 F2(s)

sα − λ ηe−
a+b

s

sν+β+µ+1

Ψ (s) =
F1(s)+

ηe−
b
s

sµ+α+1 F1(s)

sβ − λ ηe−
a+b

s

sν+α+µ+1

by using series expantions, we obtain

Φ(s) = F1(s)
∞

∑
k=0

(λ η)ke−
k(a+b)

s

skσ+α +F2(s)
∞

∑
k=0

(λ η)ke−
k(a+b)+a

s

skσ+τ+ν

Ψ(s) = F2(s)
∞

∑
k=0

(λ η)ke−
k(a+b)

s

skδ+β +F1(s)
∞

∑
k=0

(λ η)ke−
k(a+b)+b

s

skδ+τ+µ

σ = ν + µ +β +2,δ = ν + µ +α = 2,τ = α +β +1.

Now, using the fact that

L {( t
a
)

ν
2 Jν(2

√
at}= e−

a
s

sν+1 ,

by taking the inverse Laplace transform of the above relations term wise, we arrive at

φ(t) =
∞

∑
k=0

(λ η)k f1(t)∗ {(
t

k(a+b)
)

kσ+α−1
2 Jkσ+α−1(2

√

k(a+b)t}+ ...

+
∞

∑
k=0

(λ η)k f2(t)∗ {(
t

k(a+b)+a
)

kσ+τ+µ−1
2 Jkσ+τ+µ−1(2

√

(k(a+b)+a)t}

and

ψ(t) =
∞

∑
k=0

(λ η)k f2(t)∗ {(
t

k(a+b)
)

kσ+β−1
2 Jkσ+β−1(2

√

k(a+b)t}+ ...

+
∞

∑
k=0

(λ η)k f1(t)∗ {(
t

k(a+b)+b
)

kσ+τ+ν−1
2 Jkσ+τ+µ−1(2

√

(k(a+b)+b)t}.
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3 Solution to impulsive KdV via Joint Laplace - Fourier transforms

In this section, the author implemented the joint Laplace Fourier transform to construct exact solution for a variety ofthe

non - homogeneous KdV equation. The KdV equations are attracting many researchers around the world and a great deal

of work has already been done in some of these equation.

ut +αu+ kux+λuxxx= β δ (t)Ai(x), (24)

u(x,0) = φ(x). (25)

Then the above equation has the following formal solution. Note thatAi(.) stands for the Airy function.

Solution 2.By taking the joint Laplace – Fourier transform of the above equation and using boundary condition, we get

the following transformed equation

ˆ̄U(w,s) =
Φ(w)

s+(ikw− iγw3+α)
+

βG(w)
s+(ikw− iγw3+α)

. (26)

For the sake of simplicity, let us assume thatτ = ikw− iγw3 +α, and using inverse Laplace transform of transformed

equation to obtain

Û(w, t) = L
−1{Φ(w)+βG(w)

s+ τ
;s−> t}, (27)

or,

Û(w, t) = (Φ(w)+βG(w))e−tτ
. (28)

At this point, inverting Fourier transform to get

u(x, t) =
1√
2π

∫ +∞

−∞
exp(−ixw) (Φ(w)+βG(w))e−tτ dw. (29)

By settingτ = ikw− iγw3+α, and after simplifying we get

u(x, t) =
e−αt
√

2π

∫ +∞

−∞
exp(−i(kt− x)w) (Φ(w)+βG(w))eitγw3

dw, (30)

or, equivalently

u(x, t) =
e−αt
√

2π

∫ +∞

−∞
(φ(η)+βAi(η))Ai(

η − kt+ x
3
√

3γη
)dη . (31)

Note: For special case

β = α = 0,γ =
1
3
. (32)

We get the simple standard linearized KdV, with the following solution

u(x, t) =
1√
2π

∫ +∞

−∞
φ(η)Ai(

η − kt+ x
3
√

η
)dη . (33)
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4 Main Results

Problem 1. Coupled Non-Homogenous Sub- Ballistic Fractional PDE Solve the following coupled non - homogeneous

partial fractional differential equations with constant coefficients. The special case of sub- ballistic fractional PDE

considered by V.V.Uchaikin [21].

Dc,α
t u+

∂u
∂x

− kv= φ(x),(3.1) Dc,α
t v+

∂v
∂x

+ ku= ψ(x). (34)

u(x,0) = 0, u(0, t) = β1 v(x,0) = 0, v(0, t) = β2.

Solution 3.We define the Laplace - transform ofu(x, t) by

U(x,s) =
∫ ∞

0
u(x, t)e−stdt.

Let us definew(x, t) = u(x, t) + iv(x, t), w(0, t) = u(0, t) + iv(0, t) = β , φ(x) + iψ(x) = h(x) and w(x,0) = u(x,0) +

iv(x,0) = 0, then the above system is equivalent to the following

Dc,α
t w+

∂w
∂x

+ ikw= h(x), (35)

w(x,0) = 0,w(0, t) = β . (36)

Application of the Laplace transform leads to the solution of the transformed problem in the following form

∂W
∂x

+(sα + ik)W =
h(x)

s
. (37)

The above first order differential equation has the following solution

W(x,s) =
β
s

e−(sα+ik)x+
e−(sα+ik)x

s

∫ x

0
h(η)e(s

α+ik)ηdη , (38)

at this point, we setα = 0.5 ( semi derivative case) in the above relation, to obtain

W(x,s) =
β
s

e−(
√

s+ik)x+
e−(

√
s+ik)x

s

∫ x

0
h(η)e(

√
s+ik)ηdη , (39)

taking the inverse Laplace transform to obtain

u(x, t)+ iv(x, t) = βe−ikxEr f c(
x

2
√

t
)
∫ x

0
e−ik(x−ξ h(ξ )Er f c(

x− t

2
√

ξ
)dξ , (40)

now, taking real and imaginary part of the above relationship to obtain

u(x, t) = (β1coskx+β2sinkx)Er f c(
x

2
√

t
)+ ...+

∫ x

0
(φ(ξ )cosk(x− ξ )+ψ(ξ )sink(x− ξ ))Er f c(

x− t

2
√

ξ
)dξ , (41)

and

v(x, t) = (β2coskx−β1sinkx)Er f c(
x

2
√

t
)+ ...+

∫ ∞

0
(ψ(ξ )cosk(x− ξ )−φ(ξ )sink(x− ξ ))Er f c(

x− t

2
√

ξ
). (42)
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For special caseφ(x) = δ (x−λ ),ψ(x) = δ (x− µ) , we get finally the following results

u(x, t) = (β1coskx+β2sinkx)Er f c(
x

2
√

t
)+ ...+ cosk(x−λ ))Er f c(

x− t

2
√

λ
)sink(x− µ))Er f c(

x− t
2
√µ

), (43)

and

v(x, t) = (β2coskx−β1sinkx)Er f c(
x

2
√

t
)+ ...+(cosk(x− µ)Er f c(

x− t
2
√µ

− sink(x−λ ))Er f c(
x− t

2
√

λ
). (44)

5 Conclusions

The paper is devoted to study and application of the Laplace transform for solving certain system of time fractional partial

differential equations and evaluation of certain integrals of Besselâ’s functions. The author considered a generalization of

the problem of sub- ballistic fractional PDE studied by V.V.Uchaikin. The transform method provides powerful method

for analyzing linear systems. The main purpose of this work is to develop a method for finding analytic solution of the

system of integro-differential equations and time fractional PDEs.
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