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Abstract: In this article, the author solved certain system of timetiomal equations using integral transforms. Transfornthoe
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1 Introduction

In recent years, it has turned out that many phenomena inrfigithanics, physics, biology, engineering and other areas
of sciences can be successfully modeled by the use of fredtiterivatives. Fractional differential equations aiiise
unification of diffusion and wave propagation phenomendre fime fractional heat equation, which is a mathematical
model of a wide range of important physical phenomena, istabdifferential equation obtained from the classicadhe
equation by replacing the first time derivative by a fractibaterivative of order In this work, we considered method$ an
results for the system of partial fractional differentigb@tions which arise in applications.

Several methods have been introduced to solve fractioffateintial equations, the popular Laplace transform metho
[1],[2], [3],[12], the Fourier transform method [11], thieiation method [18] and operational method [11],[6]. Heare
most of these methods are suitable for special types ofidraadtdifferential equations, mainly the linear with coarst
coefficients. More detailed information about some of thesmilts can be found in a survey paper by Kilbas and
Trujillo[10] Atanackovic and Stankovic [4],[5] and Stanko [20] used the Laplace transform in a certain space of
distributions to solve a system of partial differential atjons with fractional derivatives, and indicated thathsac
system may serve as a certain model far a visco elastic rod.

Oldham and Spanier | [13] and [14], respectively, by redg@rboundary value problem involving Ficka's second law in
electro-analytic chemistry to a formulation based on thdigdaRiemann Liouville fractional with half derivative.
Oldham and Spanier [14] gave other application of such émusfor diffusion problems. Schneider [19] and Wyss [22]
considered the time fractional diffusion and wave equatimd obtained the solution in terms of Fox functions.
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2 Definitions and notations

Definition 1. The left Caputo fractional derivative of order
(0< a <1)of g(t) is as follows[8]

ca B 1 t 1
DS <"<X>—r(1_a>/a e ¥ e (1)

Definition 2. The Laplace transform of functior(tf) is defined as follows
2f(t) = / e S (t)dt = F (s). )
0

If Z{f(t)} =F(s), thenZ~1{F(s)} is given by

1 ~CHico

f(t) = e'F(s)ds 3

2_7'[i Jc—ioo
where Ks) is analytic in the regiorRe(s) > c. The above integral is known as Bromwich complex inversionula.

Example 1.By using an appropriate integral representation for theifiesbBessel’s functions of the second kind of order
v, Ky(s), show that

2 2
Kn(a\fs) V(bye), thled tvled

= . 4
{ g T ar @ )
Solution 1.1t is well known thaK (a,/s) has the following integral representation [6]
ay/s)V [® _g @’ dé
Kuiave = S [Tet @ SE ®
at this point, using complex inversion formula for the Lajgdransform and the above integral representation we get
1 Kn(ay) ctie ds (/a9 (% ¢ & dE
i & 1
g )= 2|n/c w 10 20 /o ¢ Wgpa)ds ©
Changing the order of integration and simplifying to get
£ o (t-2)s
1 Ke@ys), (e ec 1 qotiee &
Iy = | L, e dse ™
The value of inner integral i§(t — %), we arrive at
{Kn(a\/é)} an/w et 5(t_a_2)d§ (8)
o &ntt 4

making a change of varialile- %) =u, and using elementary properties of Dirac - delta functiemget the following
result

Kn(a\/é) -1k
b= (2a)n+1 "

H 9)
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Finally, we obtain

A Kaa Kby, et e
27 s? s? b= (2a)n 1 * (2b)V+L (10)

Definition 3. The The Laplace transform of Caputo fractional derivatieésrder non integer . Fora-1< a <n, we
have the following identity [15][16]

n—-1

2{§D f(t)} = "F(s) — ;s“*k*1f<k) (0). (11)

k=

Definition 4. The The two-parameter function of the Mittag-Leffler typaefned by the series expansion

l b
Exg2=Y —. (12)
ap(?) n;r(anJrB)
whena, 3,z € C. We have the following relationship
B-1 a siF 1
g{t EG!B(:l:at )} = Sa—m(Rqs) > |a|a . (13)
Definition 5. The simplest Wright function is given by the series
W(a,Bi2) =y o (14)
T _n;n!r(an+[3)’
whena, 3,z € C. We have the following relationship
B-1 a s7P 1
L{tP T Eq p(£at”)} = s"—zFa(Re(S) > |a|@). (15)

Theorem 1. (Schouten-Van der Pol Theorem) Consider a functidty which has the Laplace transform(§) which
is analytic in the half-plane Re) > sp. We can use this knowledge to find)gwhose Laplace transform (§ equals
F(¢(s)), whereg(s) is also analytic for Rés) > 5. This means that if

G(s) = F(@(9) = [ f(r)exp(—g(o)r)er. (16)
and
1 fCtico
90 = 5z [ Flo(s) expltsjas an
then
gt) = /Ow f(1) (%/:T:oexp(—qo(s)r)exp(ts)ds) dr. (18)

Proof. See [6].
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Lemma 1.The following identity holds true

o) =2 HF(VI} = [ e ¥ (. (19)
Proof. If we set@(s) = /Sin relation (16), it leads to
G(s) = F(v8) = [ f(r)exp(—ar)ar. (20)
and
o0 = o [P/ exntsds @)
then, we get
g(t) = ./O'm £(1) (% /CC.T exp(—\/ér)exp(ts)ds) dr. 22)

after evaluation of the inner integral by means of table eflthplace transforms, we arrive at

o) = £ HF(S) = [ e Fi(nar (23)

T

0 2vmt3

Lemma 2.Let us assume that’{ f (t)} = F(s), then we have the following relations
£

(1) 2{H()} = g \/anze ¥ F(&)dE,

@.2{1(1)} = Ji/En(2y/F)F (£)dE
(@) 2{F(1%) =I5 [§K1 (55 IF (E)de.

Proof. See [6].

Note.The above Lemma has some interesting applications as below

Lemma 3.The foIIowing integral relations hold true.

(1). fo Kl(( \/—) )E\/_\/__ gn
@. 5/ En(2y/E)eHde :A—“-

5
Proof.(1). Letus také(t) = t3 , then we geF(s) = ”53) on the other hand we have
3

S

210 = 2{0) = 5

By setting all of the information in part 3 of the Lemma 1, we the following

2{HE)} =5 / \/> 3\f%r e=2

wlm
I\)

(A)lm
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Now, by choosing= 1 and after some simple manipulations we arrive at
on

© 1 1 2.1
/ J;K%«\g%) %=

5(—2), and the Laplace

(2). Letus takef(t) = 6(t—A) , then we havE(s) = e*S. On the other hand (%)

transform och(tl —A)is as follows
~00 1
LU = [ o - A)e St
Jo

In order to evaluate the above integral, we introduce a chafgariablen = % — A, toget

g{f(t})} - /j S(we ¥ WHAZ Az

using second part of the Lemmal.2. we obtain
S
e 2

2ty - [\ inevereme -5

Lemma 4. The following integral relation holds true

/‘°° xbei(zx/ﬂ)dxz glo(Z\/m)-

Jo  x2+n?

Proof. Let us consider the following integral

x2+n2

f(A):/Om xbesz)dX

Taking Laplace transform of the above function with respedt, leads to

2{IMY) :/OmefsA (/Om%\'/{;_x)dx)d/\

changing the order of integration which is permissibleldge
00 X [oe]
2170 :/ / e S bei(2v/xA)dA )dx
FON= [ oyl & Pbei2viaid)

The value of inner integral ié sin(%), therefore we have

2ir0n = [ mﬁxnzésin@)dx

The above integral can be evaluated by means of calculusioiues to obtain

n
es

2{IOY =5
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At this point, taking the inverse Laplace transform of thexabrelation to get

(A} =Jlo(2V/AN).

Lemma 5. Let us assume that

a

2UE VA = 5o

a
then we have the following integral relation

/Og(\/fcosqo)"\lv(zx/ﬁcosqo)( \/fsmq))“Ju(Z\/ﬁsinw) sin2pde = ..

va vb
t V442
(a——i—b) 2 Jvips2(2v/(@+bt).
Proof. By using convolution theorem for the Laplace transformshaee the following relation
ef el t t e

71{(Sv+1 (S“Jrl)} () 7JV(2\/_) * () 7‘]“(2\/&):"%71{(@)

CT

a
or,

() 832V « () £3,(2vb0) = 3,(2v/alt=8))(3) F Ju(2v/BE)dz.

Let us introduce a change of variabbkir® ¢ = &, we obtain

/Og(\/f\(;gw)"\]v(zx/acow)(\/f\jg](p)“J“(Z\/ﬁsin(p) sin2pdg = ...

= () a2V BB,
Singular integral equations arise in many problems of nma#tial physics. The mathematical formulation of physical
phenomenon often involves Cauchy types, or singular iategguations. Singular integral equations have many
applications in important fields, like fracture mechangastic contact problems, the theory of porous filteringtaion
integral and integro - differential equations with singldarnel.

Theorem 2.Let us consider the following system of fractional Voltengegro-differential equations of convolution-type
with the Bessel kernel
DL va (),

§Df 9(x) +A/

SDEy(x) +r;/ 2V/bt)g(t)dt,

whereg(0) = ¢(0) =0and0< a,B < 1,,and f(x), f2(x) are known functions. Then the above system has the following
formal solutions

o0 = 3 A0 () ™ o s@VRET B+

k=0

+Y k) {(%)%Jkaﬂwfl(%/(k(ﬂ b) +at}

a+b)+a

and

WO = 3 120+ G ) “F g aVR@EBI £
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o t ko+14+v—1
+ k;(/\ NRAGE {(m) 2 Jorrrp-1(2v/ (k(@+b) +bjt}.

Note. In the above equations, fractional derivitive is in the Qapsense.

Proof. By applying the Laplace transform on both sides of the abouagons term - wise, after simplifying we get the

following
e s
STO(s) =Fy(s)+ A @W(s),

b

e s
FSY(s) =Fa(s) + gt @(s).
By solving the above system we get the following

_a
Fi(s)+ f\,f—ﬁfll:z(s)
A
& — Sl

_b
Fi(s) + giarr Fi(9)

L'U(S) - A e’%)
$-de s
by using series expantions, we obtain
k(ath) k(at+b)+a
S (An)e s < (Anke s
P =R ) —qoa— TR0 ) —formv —
k; Ska+a kZO Ska+r+v

© ()\ n )k87 k(a;rb) o ()\ n )k67 k(a+sb)+b

W(s) = Fa(s) kZO —goip T Fi(s) kZO T

O=V+uU+B+20=v+u+a=21=a+p+1

1)

Now, using the fact that
tov e's
f{(a)ZJV(Z\/at} = 97D’

by taking the inverse Laplace transform of the above relatterm wise, we arrive at

o) = 5 A0 ) “F hrraa 2y KT B+

>

£ A0 (o) T a2V (ET B 7))

S (a+b)+a
and . .
wa>:g;unﬁwxw*{(Ma+bylig*»mm,KZVMa+bn}+u

E3 OO ()T derra(2y/ (@B FB
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3 Solution to impulsive KdV via Joint Laplace - Fourier transforms

In this section, the author implemented the joint Laplacerkes transform to construct exact solution for a varietyraf
non - homogeneous KdV equation. The KdV equations are &tigamany researchers around the world and a great deal
of work has already been done in some of these equation.

U + U+ KU+ A Uy = BO(t)Ai(X), (24)
u(x,0) = @(x). (25)

Then the above equation has the following formal solutiooteNhaAi(.) stands for the Airy function.

Solution 2. By taking the joint Laplace — Fourier transform of the abogaation and using boundary condition, we get
the following transformed equation
T ®(w) BG(w)

VWS = S liw—iywota) | s+ (kw—iywo+a)° (26)

For the sake of simplicity, let us assume that ikw — iyw® + a, and using inverse Laplace transform of transformed
equation to obtain

O(W,t)szl{w;5—>t}, 27)
or,
0 (wt) = (@(W) +BG(w))e ™. (28)
At this point, inverting Fourier transform to get
u(x,t) = 1 /-+oo exp(—ixw) (®(w) + BG(w))e Tdw (29)
9 - \/ET o d
By settingt = ikw — iyw® + a, and after simplifying we get
e el ikt o’
uix) = S [ _exp(—i(kt = X)w) (®(w) + BO(W))d " dw (30)
or, equivalently
et e . . N —kt4x
it = S [ (@) + BAimAI(T 2 an. (31)
Note: For special case
1
B=a=0y=3. (32)

We get the simple standard linearized KdV, with the follogvgolution

et == [ " omait =2 an. )
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4 Main Results

Problem 1. Coupled Non-Homogenous Sub- Ballistic Fractional PDE &dhe following coupled non - homogeneous
partial fractional differential equations with constamefficients. The special case of sub- ballistic fractionBIEP
considered by V.V.Uchaikin [21].

Df’“qu% —kv=¢(x),(3.1) Df’“v+g—\)i+ku: Y(x). (34)

u(x,0) =0, u(o,t) =B v(x,0) =0, v(0,t) = .

Solution 3. We define the Laplace - transformufx, t) by

U(x,s) = /Ooo u(xt)e Stdt.

Let us definew(x,t) = u(x,t) +iv(x,t), w(0,t) = u(0,t) +iv(0,t) = B , @(X) + i (x) = h(x) andw(x,0) = u(x,0) +
iv(x,0) = 0, then the above system is equivalent to the following

Dy%w+ ((99_va +ikw = h(x), (35)
w(x,0) = 0,w(0,t) = B. (36)
Application of the Laplace transform leads to the solutibthe transformed problem in the following form

ow _ h(x)
X + (Sa +ik)W = S (37)

The above first order differential equation has the follaygolution

W(x,s) = %e*““ x4 L@:k : /0 h(n)e®"+kndn, (38)
at this point, we setr = 0.5 ( semi derivative case) in the above relation, to obtain

W(x,s) = %e*\fs”k)x + ijik)x /Oxh(r))e(fs”k)” dn, (39)

taking the inverse Laplace transform to obtain

ux.t) +iv(x t) = Be 'kXErfc(Z\/)/ ”‘(th(é)ErfC(%)dE, (40)
now, taking real and imaginary part of the above relatiopsbiobtain
(1) = (B1coskx-+ BaSINKNET Fo( ™) + +/ &) cosk(x— &) + W(&) sink(x— &))Erfe( 7 (41)
and
V(1) = (Bacoskx— BisinkQETfe(>2) + . +/ &) cosk(x— &) — (&) sink(x— & ))Erfc( 7 (42)
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For special cas@(x) = d(x—A), Y (x) = d(x— ) , we get finally the following results

u(x,t) = (Blcoskx+stlnkx)Erfc(— + ...+ COK(X — /\))Erfc(— sink(x— u))Erfc(

N N 5. @)

\/_

and

v(x,t) = (Brcoskx— By sinkx)Erfc(=—=) + ... + (cosk(x — ;J)Erfc(z\/ﬁt sink(x—A))Erfc( (44)

2 2

5 Conclusions

The paper is devoted to study and application of the Laplacestorm for solving certain system of time fractional frt
differential equations and evaluation of certain integjdIBessela’s functions. The author considered a geratin of
the problem of sub- ballistic fractional PDE studied by Wehaikin. The transform method provides powerful method
for analyzing linear systems. The main purpose of this wertoidevelop a method for finding analytic solution of the
system of integro-differential equations and time fracdbPDES.
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