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Abstract: Using the fiber bundle M over a manifold B, we define a semide(sull-back) bundle tB of type (p,q). The complete and
horizontal lift of projectable geometric objects on M to tsemi-tensor (pull-back) bundle tB of type (p,q) are presgénfThe main
purpose of this paper is to study the behaviour of complétefiivector and affinor (tensor of type (1,1)) fields on cresstions for
pull-back (semi-tensor) bundle tB of type (p,q).
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1 Introduction

Let M,, be amn-dimensional differentiable manifold of cla€s andr : M, — Br, the differentiable bundle determined by
a submersiom. Suppose thatd) = (x@,x%),a,b,...=1,....n—ma,B,...=n—m+1,...n;i,j,...= 1,2,...,nis a system
of local coordinates adapted to the bungie M, — B, wherex® are coordinates iBy,, andx? are fiber coordinates of
the bundler : My, — B, If (X') = (%@ ,x@") is another system of local adapted coordinates in the byttt we have

x@ =x@ (x,xB),

X0 = xa’ (xB) .

The Jacobian ofl) has components
() =(2)= (%%
! oxl 0 Ag ’

a’ _ 0x"’

B oxB”
Let (qu)X(Bm) (x=m(X),X= (x®,x%) € M) be the tensor space at a pairt By, with local coordinategx, ..., x™), we
have the holonomous frame field

where

O,y ® 04, @ ... ® 0o @AXL @ AX2 @ ... @ dx,
forie{1,...,m}P, je{1,....m}9 overU C By, of this tensor bundle, and for aiip, q)-tensor field we have [p], p.163]:
U =t1"Po, @0y, ... 00 @dX @ dX2 @ ... @ dxi9,

j1--iq

then by definition the set of all pointg' ) = (x3,x%,x%), x%= t}i'_"'_ij‘; O=a+mPta]. J,..=1,....n+mP9is a semi-tensor
bundlet§ (Bm) over the manifoldviy.
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The semi-tensor bundig (Br,) has the natural bundle structure o, its bundle projectiornt : t§(Bm) — Bm being
defined byr: (x@,x%,x%) — (x). If we introduce a mappings : t§(Bm) — Mn by 7& : (&, x%,x%) — (x,x9), then
tcﬁ’(Bm) has a bundle structure ovik,. It is easily verified thait= 15 o .

On the other hand, let = 17: E — B denote a fiber bundle with fibér. Given a manifold3’ and a mapf : B’ — B, one
can construct in a natural way a bundle oBewith the same fiber: Consider the subset

f*"E={(b',e) € B x E| f (b') = m(e)}

together with the subspace topology frdghx E, and denote bym : f*E — B, ™ : f*E — E the projections.
f*e = m : f*E — B’ is a fiber bundle with fibeF, called the pull-back bundle efvia f [[5],[7],[11,[13]].

From the above definition it follows that the semi-tensordiart§ (Bm), 7&) is a pull-back bundle of the tensor bundle
overBp, by .

In other words, the semi-tensor bundle (induced or pulkliamdle) of the tensor bund(e'l'qp(Bm), m, Bm) is the bundle
(t§(Bm), T, My) overMj with a total space

t8(Bm) = {((xa,x") XT) € Mnx (T), (Bm) : 10 (& x) = TT(X7,x7) = (x")} C M x (T), (Bm).

To a transformationl) of local coordinates oy, there corresponds a@fl(Br) the coordinate transformation

xd = x& (x0,xB).,
X = (), @
o _ (PiBp _ APLPp pABL-Bq 010 _ A(B) AB) B
X _tai...a{] _Aal---apAai...aétﬁl...Bq _A(a)A(a/)X :
The Jacobian ofd) is given by
A 0 0
A=(A)=| 0 A o | 3)
(a) (B") p(@) A(B) A(B)
0 0) 98 M) Aar) Atay Alar)

wherel = (a,a,a@),J = (b,8,B8), 1,J..=1,...,n4+mP*9, tég)) = tgllgqp Ag/ = ’;ﬁ; .

It is easily verified that the conditidhetA_7é 0 is equivalent to the condition:
Det(AZ) # 0, Det(AZ) # 0, Det(A% )AP) ) 2 0.

Also, dimtf(Bm)=n-+mP*9. In the special case=m, t§(By,) is a tensor bundi&’(Bm) [[9], p.118]. In the special case,
the semi-tensor bundlé$(Bm) (p= 1, = 0) andt)(By) (p=0, q= 1) are semi-tangent and semi-cotangent bundles,
respectively.

We note that semi-tangent and semi-cotangent bundle wemiegd in [[l],[10],[12]] and [[14],[15]], respectively.
Also, Fattaev studied the special class of semi-tensorlbUstl We denote by(t§(Bm)) and 0§ (Bn) the modules
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over F (t§(Bm)) andF (By) of all tensor fields of typep,q) on t§(Bm) and By respectively, wherd (t§(By)) and
F (Bm) denote the rings of real-valu@l —functions ort§(Bm) andBy, respectively.

2 Vertical lifts of tensor fields and y—operator

If ¢ € t§(Bm), it is regarded, in a natural way, by contractiont§(Bm), which we denote byy. If ¢ has the local
expression o
Y=y 0. 00,0d @ ©dxp

1--lp

in a coordinate neighborhod#(x?) C B, theniy = g(t) has the local expression
W=
with respect to the coordinatée, x%,x%) in - 1(U) [4].
Suppose thah € 0§ (Bm). Then there is a unique vector field& € O3 (t§ (Bm)) such that fory € t§(Bm) [8]:
YA(GY) ="Aoo = (A omoTp = (A or=" (Y(A)), 4)

where™(@(A)) is the vertical lift of the functiony(A) € F(Bm). We note that the vertical lift'f = f o T of the arbitrary
function f € F(B) is constant along each fiber of: tcﬁ’(Bm) — By, If WA =W A2, +WAYJ, +VWAT 35, then we have
from (4)
. 6
wa wAatal apaawgi..g?) +WAG ay.. O!paawﬁl Bq _’_onrl’Ua1 U’al G?)Ael Gq

But L,ugl 2—‘; (3,3410,1 .ap anddq wa;;;;fi‘g can take any preassigned valued at each point. Thus we have

wW A1..0p  AWAQ4+91-0p _ AW AT _ A01---Op
Aty ? =0 VAT P = 0 WAT = Ag
HenceVA® = 0 at all points ot§ (B) except possibly those at which all the componeits- tB B °® are zero: that is, at
points of the base space. Thus we see that the compdfiafitare zero a point such thaf # 0, that is, ort§ (Bm) — Bm.
Howevertd (Bm) — Bm is dense in§(Bn) and the components 8YA are continuous at every point gf(Bm). Hence, we
have"VA® = 0 at all points ot§(Bm). Consequently, the vertical lifA of A to t§(Bm) has components

vaa 0
WA= | wae =0 (5)
= ap...0p
vaa Aﬁl...Bq
with respect to the coordinatée®, x,x7) ont§(Bm).
Let¢ € 0}(Bm). We define a vector fielgig in m1(U) by
vé = ZA l gll,_.e...ap¢ ) %’ (p>1,0>0) ©)

~ a a
7= (Sha B;...e..’?pq%) s (p=04>1)

with respect to the coordinatéxb,xﬁ,xﬁ) ont§(Bm). From @) we easily see that the vector fielgg¢ andyg defined
in eachr1(U) c t§(Bm) determine respectively global vertical vector fieldstffBm). We cally$ (or y$) the vertical-
vector lift of the tensor field) € 0} (By) to t§(Bm). For anyd € 03(Bp), if we take account of3) and @), we can prove

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

(_/
215 BISKA F. Yildirim: Note on the cross-section in the semi-tensandia

that (yp)' = A(y¢) whereyg is a vector field defined by

0
ve=(ve)=|0 | ()
Saoilp g e
Let¢ € 0}(Bm). On putting
0
yo=(v9) =|0 : (8)

a a
ZH 1 ﬁll---s--p-ﬁquﬁu
we easily see thdlyg) = A(yp).

3 Complete lifts of vector fields

We now denote byl§(Mn) the module oveF (M) of all tensor fields of typép, q) on M, whereF (My) denotes the ring
of real-valuedC” —functions onM,. LetX O3(Mn) be a projectable vector fiel@[with projectionX = X% (x¥)dg i.e.
X = X3(x2 x%) 35+ X (x%)dy. ON putting

ceyb Xb
cog — [ cexB | — [ xB , 9)
~7 p al...s...a
cexp 2r-1%p,..p PO XN — 34 Bl...e...quﬁuxg

we easily see th&fX' = (CCX) The vector field°X is called the complete lift oK to the semi-tensor bundi§(Bp).

4 Horizontal lifts of vector fields

LetX € 03(My) be a projectable vector fiel@][with projectionX = X (x¥)dq i.€. X = X2(x,x)da + X (x)dg. If we
take account of3), we can prove thdt" X’ = A_\(HH)~() , where"H X is a vector field defined by
<b
HHY — | XP , (10)

01 -ap aAtal...s...ap)

[
X (Zu 1 |5,J [;1...5...Bq Z)\ 0 B1---Bq

with respect to the coordinatés®, X8, xB) ontf(By,). We callf"X the horizontal lift of the vector fiel& tot?(By,).

Theorem 1.1f X € 05(Mp) then
X —HH X = y(OX) - y(0X),

where the symmetric affine connectioris the given by?g =T,
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Proof. From (7), (8), (9) and (L0), we have

xb b
cc>~( _HH X _ )?B _ )?B
Shoate g OXY — Tt 608, X0 ) \X (St e, — 2R h )
0
=10
Z)\ . Ball'...'gé..ap(dgxa)\ _H-I‘;/\X zu ) 01'”0.r'p. (aﬁuxs+ i )

0
=10
S (00X X

B XA iﬁu XE

I
o

0
0 ay...a = |
= | «-p ,O01...E... = 1---Up £ 3
Shoaty P (0eX M+ TX) Zu 18g, ey (9B X"+ X)
—_————— —_———
0
0
S

- 153'"5;' (Bexe) 1t (05,%)
= y(0:X%) = 708, X°) = NOX) ~ HOX).

Thus, we have Theorefin

5 Cross-sections in the semi-tensor bundle

Leté e Dg(Bm) be a tensor field oB,. Then the correspondenre- &, &« being the value of atx € M,,, determines
a cross-sectiof; of semi-tensor bundle. Thus &z : Bm — qu(Bm) is a cross-section o(qup(Bm),ﬁ, Bm), such that
1o 05 = l(g,,, an associated cross-sectign: M, — té’(Bm) of semi-tensor bundlété’(Bm), nz,Mn) defined by [P], p.
217-218],[P], p. 126-127]:

Be (03, x7) = (& x¥, 0 o (&, X7)) = (X x7, 0¢ (x7)) = (xa,x" Egll B(:p (XB))

If the tensor field has the local componerﬁé’ll"_:'gq" (XB), the cross-sectiofis (My) of t§(Bm) is locally expressed by

X — b,
X =xP, (11)
n C(]_ .ap B
=& (0F),

with respect to the coordinate8 = (xb,xB,xﬁ) in t§(Bm). Differentiating (L1) by x°, we see thah — m tangent vector
fieldsB) (c=1,...,n—m) to B¢ (Mn) have components

OcxXP
0xB
Bo =g == | 0 |,
Ol 5
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which are tangent to the cross-sectfg§inM).

ThusB¢) have components

&
B
B(C) (B(C)) == O 3
0
with respect to the coordinaté, X8, xB) in t¥(By). Where
ox°
b_
=A= axc

Let X € 03(My) be a projectable vector fiel@[with projectionX = X% (x%)dg i.€. X = X2(x@,x%)da + X (x%)da. We
denote byBX the vector field with local components

X\ (AR (%0
. B yc\ _ _ _
BX.(B(C)X)— 0 =|o ~{o |, (12)
0 0 0

with respect to the coordinatée, X8, xB) in t§(Bm), which is defined globally alongs (Mn).

Differentiating (L1) by x, we have vector field§g) (6 =n—m+1,...,n) with components

X0
oxB B 09 5
Clo) = 5,8 = 9%" = | 96X :
%ols, s,
which are tangent to the cross-sectf@n(My)
ThusC ) have components
g
B
Co) (c(e)) -5 ,
09501...Gp
Bi.-Bq

with respect to the coordinaté®, x,x#) in t?(By,). Where

aX 5B B dXB

b
o= 9x0°% =R = 50

Let X € O3(My) be a projectable vector fiel@[with projectionX = X% (x%)dqg i.€. X = X2(x@,x%)da + X (x%)da. We
denote byCX the vector field with local components
ADXO

CX:(C(BQ)X")Z X5 , (13)
X005 7

with respect to the coordinatée, x%,x#) in t§(Bm), which is defined globally alongg (Mn).
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On the other hand, the fibre is locally expressed by

b

x? = const,
xB = const,
E_ aj...ap _ .01...0p
X =1p gy =lpy.py
tgllgqp being considered as parameters. Thus, on differentiatitigraspect toP = tgllgq" we easily see that the vector

fieldsE(g) (6 =n-+1,...,n+mP*9) with components

Igx° 0
- 1 (EB. ) = B = B _
E(e) | (E(E)) Bk Zi(al'““p B 091 6 xa;  x0p
2 Bl--.Bq 6B168C| 6y1 6yp

is tangent to the fibre, whegeis the Kronecker symbol.

Let & be a tensor field of typép,q) with local components
E=& pd @ 0dd0d,©..©d,
onBm.
We denote by the vector field with local components
0
EE: (EE%) gr)=|o , (14)

Eorl...orp

B1.--Bq

which is tangent to the fibre.
According to (L2) and (L3), we define new projectable vector figttK by
BX-+CX =HX

with respect to the coordinaté®, x8, xB) in t?(B,), where

ARXC ABXO XP
HX = | o 1| xB = | xP : (15)
2] ap...ap 2] ap...ap
0 X 095[;1...ﬁq X 095[;1...ﬁq

We consider inr 1 (U) C t§(Bm), n+ mP*4 local vector fieldsB,c), Cig) and E(g) along s (My). They form a local

family of frames{B@,C(g), E@} alongBs (My), which is called the adapte@, C, E)-frame ofBg (My) in -1 (U).

We can state following theorem:

Theorem 2.LetX be a vector field on with projection X on B. We have alon@; (Mn) the formulas
(i) X =HX+E(-Lx¢), (16)
(i) W& =E¢
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foranyte DS(Bm), where Lk denotes the Lie derivative §fwith respect to X.

Proof. (i) Using (9), (14) and (L5), we have

XP 0
HX+E(—Lx&) = | XP +10

0 aj...ap RYL: al...api q B a C(]_...E...Gp

X"00ép, g, X%00p g — % =198, X Eﬁl...ﬁ...ﬁ +35_y9pX e,

b

— | xB =X,
C(...S...C(
She 19pXNEg ' P Zu 105, XP Egl...g...pq

Thus, we have (16).
(i) This immediately follows from ).

On the other hand, on puttir(g(ﬁ) = E(E)’ we write the adapted frame @ (Mn) as {B(b),C(B),C(E) } The adapted
frame{B(b),Cw),C(ﬁ)} of Bs (Mn) is given by the matrix
o 0pd@ 0

A= (Ag) - o & 0 . (16)
01 Up ﬁl By 501 50p
0 péaiar Oh"...00 3.0

~ -1
Since the matriA in (16) is non-singular, it has the inverse. Denoting this invdn}séA) , we have

1 1 5(? 709Xb 0
(A) - (Ag) —|lo & 0 , (17)
0 dgfal B O OOt 5P

Where,&(ﬂ) o (AB) (Xg) o 3 =1, whereA= (a,a,d),B= (b,B,E),C =(c,0,0).

Proof. In fact, from (L6) and (L7), we easily see that

-1 1 & Jpx 0 & —dpx® 0
AA) =g (R8) =|0 o 0 o o 0
0 0[35511 ay O8G0 ) \ O —aef"l A E L v
68 —0eX+0px® 0 30 0
=|0 5a 0 =| 035§ 0 |=&=I
0 Go&ar ol — JpEar P Ot...o00 0 0&f

Let A € O (Bm). If we take account off) and (L6), we can easily prove th4tA’ = A("A), where"A e O3(t§(Bm)) is a
vector field defined by

VVAa O

WA — waQa — 0
- aj...ap
AT Ap, g

with respect to the adapted frar{B(b),C(B),C(E)} of Bg (Mn).

Taking account of §), (10) and (L6), we see that the complete liffX and horizontal lift"" X have respectively
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components
XP XP
cex | XP HHX | X
_ ay...ap ay...ap
LXEgl...Bq (DXE)Bl...Bq

with respect to the adapted frarﬁB(b),qB),C@} of Be (Mn), where®X' = A (°°>~() andHHX’ = A (HH )?) .

We now, from equations7}, (8) and (L6) see thay¢ andy¢ have respectively components

0 0
v=p)=|0  Ly=)=(0

p 1...€... A q 1---

22=15B;..Bq P9c =1 31...5..?Bq¢fz,,

with respect to the adapted frar%B(b),C(B),C(E)} of Bg (Mn).
Let Se 03(My) now. If we take account ofi), we see thatyS) = A(yS). ySis given by

0 0 0
yS=(y9)= | 0 0 ol

with respect to the adapted frar%B(b),C(B),C(E)}, Wheresgi are local componenets &fon By,

BX,CX andE¢ also have components:

Xa 0 0
BX=[0 |,cx=|[xo | EE=]O
ay...ap
0 0 Eﬁlﬁq

respectively, with respect to the adapted fra{n‘ng),C(B),C(E)} of the cross-sectiofs; (M,) determined by a tensor
field & of type (p,q) in Mp.
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